1
|
The biological feasibility and social context of gene-edited, caffeine-free coffee. Food Sci Biotechnol 2022; 31:635-655. [PMID: 35646415 PMCID: PMC9133285 DOI: 10.1007/s10068-022-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Coffee, especially the species Coffea arabica and Coffea canephora, is one of the world’s most consumed beverages. The consumer demand for caffeine-free coffee is currently being met through chemical decaffeination processes. However, this method leads to loss of beverage quality. In this review, the feasibility of using gene editing to produce caffeine-free coffee plants is reviewed. The genes XMT (7-methylxanthosine methyltransferase) and DXMT (3,7-dimethylxanthine methyltransferase) were identified as candidate target genes for knocking out caffeine production in coffee plants. The possible effect of the knock-out of the candidate genes was assessed. Using Agrobacterium tumefaciens-mediated introduction of the CRISPR-Cas system to Knock out XMT or DXMT would lead to blocking caffeine biosynthesis. The use of CRISPR-Cas to genetically edit consumer products is not yet widely accepted, which may lead to societal hurdles for introducing gene-edited caffeine-free coffee cultivars onto the market. However, increased acceptance of CRISPR-Cas/gene editing on products with a clear benefit for consumers offers better prospects for gene editing efforts for caffeine-free coffee.
Collapse
|
2
|
Koudounas K, Guirimand G, Hoyos LFR, Carqueijeiro I, Cruz PL, Stander E, Kulagina N, Perrin J, Oudin A, Besseau S, Lanoue A, Atehortùa L, St-Pierre B, Giglioli-Guivarc'h N, Papon N, O'Connor SE, Courdavault V. Tonoplast and Peroxisome Targeting of γ-tocopherol N-methyltransferase Homologs Involved in the Synthesis of Monoterpene Indole Alkaloids. PLANT & CELL PHYSIOLOGY 2022; 63:200-216. [PMID: 35166361 DOI: 10.1093/pcp/pcab160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.
Collapse
Affiliation(s)
- Konstantinos Koudounas
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Luisa Fernanda Rojas Hoyos
- Grupo de Biotransformación-Escuela de Microbiología, Universidad de Antioquia, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - Ines Carqueijeiro
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Pamela Lemos Cruz
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Emily Stander
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Natalja Kulagina
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Jennifer Perrin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Audrey Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Arnaud Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin 50010, Colombia
| | - Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Nicolas Papon
- GEIHP, SFR ICAT, University of Angers, Université de Bretagne Occidentale, 4 rue de Larrey - F49933, Angers 49000, France
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
- Graduate School of Sciences, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Thagun C, Motoda Y, Kigawa T, Kodama Y, Numata K. Simultaneous introduction of multiple biomacromolecules into plant cells using a cell-penetrating peptide nanocarrier. NANOSCALE 2020; 12:18844-18856. [PMID: 32896843 DOI: 10.1039/d0nr04718j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant cells contain groups of biomolecules that participate together in a particular biological process. Exogenous codelivery of multiple biomolecules is an essential step for elucidation of the biological significance of these molecules and enables various biotechnological applications in plants. However, the currently existing biomolecule delivery methods face difficulties in delivering multiple components into plant cells, mediating transgene expression, and maintaining the stability of the numerous components and lead to delays in biomolecular function. Cell-penetrating peptides (CPPs) have demonstrated remarkable abilities to introduce diverse biomolecules into various plant species. Here, we employed the engineered CPP KH9-BP100 as a carrier to deliver multiple biomolecules into plant cells and performed a bimolecular fluorescence complementation assay to assess the simultaneous introduction of multiple biomolecules. We demonstrate that multiple biomolecule/CPP cargos can be simultaneously internalized by a particular plant cell, albeit with different efficiencies. We present a cutting-edge technique for codelivery of multiple biomolecules into plant cells that can be used for elucidation of functional correlations and for metabolic engineering.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
4
|
A novel orange-colored bimolecular fluorescence complementation (BiFC) assay using monomeric Kusabira-Orange protein. Biotechniques 2018; 64:153-161. [DOI: 10.2144/btn-2017-0121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The bimolecular fluorescence complementation (BiFC) assay was developed as a tool for the visualization of protein–protein interactions in living cells. To date, many types of BiFC systems with distinct colors have been developed. Most of the colors in the visible spectrum have been used in BiFC assays, with the exception of orange. In this study, we developed an orange-colored BiFC system using the Kusabira-Orange (KO) protein from the stony coral Fungia concinna. To obtain bright BiFC fluorescence, we compared fluorescence intensities of two monomeric KO variants (mKO1 and mKO2) and identified mKO2 as brighter than mKO1. The optimal split site for mKO2-based BiFC was defined by a comparative analysis of complementation efficiency and a signal-to-noise ratio. The resulting mKO2-based BiFC system successfully demonstrated protein dimerization in plant cells as a model experiment. The novel mKO2-based BiFC system will expand the possibility of multicolor BiFC analysis.
Collapse
|
5
|
Li M, Sun Y, Pan SA, Deng WW, Yu O, Zhang Z. Engineering a novel biosynthetic pathway in Escherichia coli for the production of caffeine. RSC Adv 2017. [DOI: 10.1039/c7ra10986e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work demonstrated a novel biosynthetic pathway to produce caffeine in Escherichia coli.
Collapse
Affiliation(s)
- Mengmeng Li
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei 230036
- People's Republic of China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei 230036
- People's Republic of China
| | - Si-an Pan
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei 230036
- People's Republic of China
| | - Wei-wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei 230036
- People's Republic of China
| | | | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei 230036
- People's Republic of China
| |
Collapse
|
6
|
Xanthine Alkaloids: Occurrence, Biosynthesis, and Function in Plants. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 105 2017; 105:1-88. [DOI: 10.1007/978-3-319-49712-9_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Sakamoto H, Sakata K, Kusumi K, Kojima M, Sakakibara H, Iba K. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1. Biochem Biophys Res Commun 2012; 423:392-7. [PMID: 22664102 DOI: 10.1016/j.bbrc.2012.05.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 05/25/2012] [Indexed: 11/27/2022]
Abstract
The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.
Collapse
Affiliation(s)
- Hikaru Sakamoto
- Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 093-2422, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Imaging Protein Oligomerization in Neurodegeneration Using Bimolecular Fluorescence Complementation. Methods Enzymol 2012; 506:157-74. [DOI: 10.1016/b978-0-12-391856-7.00033-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
9
|
Mohanpuria P, Kumar V, Yadav SK. Tea caffeine: Metabolism, functions, and reduction strategies. Food Sci Biotechnol 2010. [DOI: 10.1007/s10068-010-0041-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Tanabe N, Kimura A, Yoshimura K, Shigeoka S. Plant-specific SR-related protein atSR45a interacts with spliceosomal proteins in plant nucleus. PLANT MOLECULAR BIOLOGY 2009; 70:241-52. [PMID: 19238562 DOI: 10.1007/s11103-009-9469-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 02/08/2009] [Indexed: 05/08/2023]
Abstract
Serine/arginine-rich (SR) protein and its homologues (SR-related proteins) are important regulators of constitutive and/or alternative splicing and other aspects of mRNA metabolism. To clarify the contribution of a plant-specific and stress-responsive SR-related protein, atSR45a, to splicing events, here we analyzed the interaction of atSR45a with the other splicing factors by conducting a yeast two-hybrid assay and a bimolecular fluorescence complementation analysis. The atSR45a-1a and -2 proteins, the presumed mature forms produced by alternative splicing of atSR45a, interacted with U1-70K and U2AF(35)b, splicing factors for the initial definition of 5' and 3' splice sites, respectively, in the early stage of spliceosome assembly. Both proteins also interacted with themselves, other SR proteins (atSR45 and atSCL28), and PRP38-like protein, a homologue of the splicing factor essential for cleavage of the 5' splice site. The mapping of deletion mutants of atSR45a proteins revealed that the C-terminal arginine/serine-rich (RS) domain of atSR45a proteins are required for the interaction with U1-70K, U2AF(35)b, atSR45, atSCL28, PRP38-like protein, and themselves, and the N-terminal RS domain enhances the interaction efficiency. Interestingly, the distinctive N-terminal extension in atSR45a-1a protein, but not atSR45a-2 protein, inhibited the interaction with these splicing factors. These findings suggest that the atSR45a proteins help to form the bridge between 5' and 3' splice sites in the spliceosome assembly and the efficiency of spliceosome formation is affected by the expression ratio of atSR45a-1a and atSR45a-2.
Collapse
Affiliation(s)
- Noriaki Tanabe
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, Japan
| | | | | | | |
Collapse
|
11
|
Kodama Y, Wada M. Simultaneous visualization of two protein complexes in a single plant cell using multicolor fluorescence complementation analysis. PLANT MOLECULAR BIOLOGY 2009; 70:211-217. [PMID: 19219406 DOI: 10.1007/s11103-009-9467-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 01/30/2009] [Indexed: 05/27/2023]
Abstract
Bimolecular fluorescence complementation (BiFC) is an approach used to analyze protein-protein interaction in vivo, in which non-fluorescent N-terminal and C-terminal fragments of a fluorescent protein are reconstituted to emit fluorescence only when they are brought together by interaction of two proteins to fuse both fragments. A method for simultaneous visualization of two protein complexes by multicolor BiFC with fragments from green fluorescent protein (GFP) and its variants such as cyan and yellow fluorescent proteins (CFP and YFP) was recently reported in animal cells. In this paper we describe a new strategy for simultaneous visualization of two protein complexes in plant cells using the multicolor BiFC with fragments from CFP, GFP, YFP and a red fluorescent protein variant (DsRed-Monomer). We identified nine different BiFC complexes using fragments of CFP, GFP and YFP, and one BiFC complex using fragments of DsRed-Monomer. Fluorescence complementation did not occur by combinations between fragments of GFP variants and DsRed-Monomer. Based on these findings, we achieved simultaneous visualization of two protein complexes in a single plant cell using two colored fluorescent complementation pairs (cyan/red, green/red or yellow/red).
Collapse
Affiliation(s)
- Yutaka Kodama
- Division of Photobiology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | |
Collapse
|
12
|
Nakamura K, Sano H. A plasma-membrane linker for the phosphoinositide-specific phospholipase C in tobacco plants. PLANT SIGNALING & BEHAVIOR 2009; 4:26-9. [PMID: 19704699 PMCID: PMC2634064 DOI: 10.4161/psb.4.1.7222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 05/10/2023]
Abstract
We previously screened genes that were transcriptionally activated during the early stage of wound response in tobacco plants (Nicotiana tabacum), and isolated a particular clone, which encoded a membrane-located protein, designated as NtC7. Upon overexpression in tobacco plants, NtC7 conferred a marked tolerance to osmotic stress, suggesting it to be involved in maintenance of osmotic adjustments. In this study, we searched for proteins which interact with NtC7 by the yeast two-hybrid screening, and isolated a clone encoding phosphoinositide-specific phospholipase C, designated as NtPI-PLC. Physical interaction between NtC7 and C2 domain of NtPI-PLC was confirmed by the pull-down assay. Expression of fused protein to green-fluorescence protein in onion epidermal cell layers indicated both proteins to predominantly localize to the plasma membrane. Their interaction in planta was shown by the bimolecular fluorescence complementation, which exhibited a clear fluorescence of reconstituted yellow fluorescence protein. Transcripts of NtC7 and NtPI-PLC were markedly increased 30 to 60 min after wounding. PI-PLC is one of key enzymes in metabolism of inositol phospholipids, which function in signal transduction and also in response to stresses including osmotic changes. It was shown to localize to plasma-membrane and, to a lesser extent, to cytosol. However, molecular mechanism of membrane localization has remained to be determined, because of the apparent lack of domains for membrane association. The present results suggest that one of such mechanisms is tethering NtPI-PLC to the plasma membrane through interaction with NtC7, which possesses a transmembrane domain at the C-terminus.
Collapse
Affiliation(s)
- Kimiyo Nakamura
- Research and Education Center for Genetic Information; Nara Institute of Science and Technology; Nara Japan
| | - Hiroshi Sano
- Research and Education Center for Genetic Information; Nara Institute of Science and Technology; Nara Japan
- Department of Botany; Stockholm University; Stockholm Sweden
| |
Collapse
|
13
|
Rigbers O, Li SM. Ergot alkaloid biosynthesis in Aspergillus fumigatus. Overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase. J Biol Chem 2008; 283:26859-68. [PMID: 18678866 DOI: 10.1074/jbc.m804979200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The putative gene fgaMT was identified in the biosynthetic gene cluster of fumigaclavines in Aspergillus fumigatus. The coding region of fgaMT was amplified by PCR from a cDNA library, cloned into pQE60, and overexpressed in Escherichia coli. FgaMT comprises 339 amino acids with a molecular mass of about 38.1 kDa. The soluble dimeric His(6)-FgaMT was purified to near homogeneity and characterized biochemically. FgaMT was found to catalyze the N-methylation of 4-dimethylallyltryptophan in the presence of S-adenosylmethionine, resulting in the formation of 4-dimethylallyl-l-abrine, which was identified by NMR and mass spectrometry analysis. Therefore, FgaMT represents the second pathway-specific enzyme in the biosynthesis of ergot alkaloids. The enzyme did not require metal ions for its enzymatic reaction and showed a relatively high specificity toward the prenyl moiety at position C-4 of the indole ring. 4-Dimethylallyltryptophan derivatives with modification at the indole ring were also accepted by FgaMT as substrates. K(m) values for 4-dimethylallyltryptophan and S-adenosylmethionine were determined at 0.12 and 2.4 mm, respectively. The turnover number was 2.0 s(-1).
Collapse
Affiliation(s)
- Ole Rigbers
- Heinrich-Heine-Universität Düsseldorf, Institut für Pharmazeutische Biologie und Biotechnologie, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
14
|
Ashihara H, Sano H, Crozier A. Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. PHYTOCHEMISTRY 2008; 69:841-56. [PMID: 18068204 DOI: 10.1016/j.phytochem.2007.10.029] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 10/15/2007] [Indexed: 05/04/2023]
Abstract
Details of the recently elucidated biosynthetic pathways of caffeine and related purine alkaloids are reviewed. The main caffeine biosynthetic pathway is a sequence consisting of xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine. Genes encoding N-methyltransferases involved in three of these four reactions have been isolated and the molecular structure of N-methyltransferases investigated. Pathways for the catabolism of caffeine have also been studied, although there are currently no reports of enzymatic and genetic studies having been successfully carried out. Metabolism of purine alkaloids in species including Camellia, Coffea, Theobroma and Ilex plants is summarised, and evidence for the involvement of caffeine in chemical defense and allelopathy is discussed. Finally, information is presented on metabolic engineering that has produced coffee seedlings with reduced caffeine content, and transgenic caffeine-producing tobacco plants with enhanced disease resistance.
Collapse
Affiliation(s)
- Hiroshi Ashihara
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| | | | | |
Collapse
|