1
|
Ramakrishnan K, Johnson RL, Winter SD, Worthy HL, Thomas C, Humer DC, Spadiut O, Hindson SH, Wells S, Barratt AH, Menzies GE, Pudney CR, Jones DD. Glycosylation increases active site rigidity leading to improved enzyme stability and turnover. FEBS J 2023; 290:3812-3827. [PMID: 37004154 PMCID: PMC10952495 DOI: 10.1111/febs.16783] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Glycosylation is the most prevalent protein post-translational modification, with a quarter of glycosylated proteins having enzymatic properties. Yet, the full impact of glycosylation on the protein structure-function relationship, especially in enzymes, is still limited. Here, we show that glycosylation rigidifies the important commercial enzyme horseradish peroxidase (HRP), which in turn increases its turnover and stability. Circular dichroism spectroscopy revealed that glycosylation increased holo-HRP's thermal stability and promoted significant helical structure in the absence of haem (apo-HRP). Glycosylation also resulted in a 10-fold increase in enzymatic turnover towards o-phenylenediamine dihydrochloride when compared to its nonglycosylated form. Utilising a naturally occurring site-specific probe of active site flexibility (Trp117) in combination with red-edge excitation shift fluorescence spectroscopy, we found that glycosylation significantly rigidified the enzyme. In silico simulations confirmed that glycosylation largely decreased protein backbone flexibility, especially in regions close to the active site and the substrate access channel. Thus, our data show that glycosylation does not just have a passive effect on HRP stability but can exert long-range effects that mediate the 'native' enzyme's activity and stability through changes in inherent dynamics.
Collapse
Affiliation(s)
| | - Rachel L. Johnson
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| | | | - Harley L. Worthy
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterUK
| | | | - Diana C. Humer
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical EngineeringTU WienAustria
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical EngineeringTU WienAustria
| | | | | | - Andrew H. Barratt
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| | | | - Christopher R. Pudney
- Department of Biology and BiochemistryUniversity of BathUK
- Centre for Therapeutic InnovationUniversity of BathUK
| | - D. Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityUK
| |
Collapse
|
2
|
Humer D, Furlanetto V, Schruef AK, Wlodarczyk A, Kuttke M, Divne C, Spadiut O. Potential of unglycosylated horseradish peroxidase variants for enzyme prodrug cancer therapy. Biomed Pharmacother 2021; 142:112037. [PMID: 34392084 DOI: 10.1016/j.biopha.2021.112037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/17/2022] Open
Abstract
Fighting cancer still relies on chemo- and radiation therapy, which is a trade-off between effective clearance of malignant cells and severe side effects on healthy tissue. Targeted cancer treatment on the other hand is a promising and refined strategy with less systemic interference. The enzyme horseradish peroxidase (HRP) exhibits cytotoxic effects on cancer cells in combination with indole-3-acetic acid (IAA). However, the plant-derived enzyme is out of bounds for medical purposes due to its foreign glycosylation pattern and resulting rapid clearance and immunogenicity. In this study, we generated recombinant, unglycosylated HRP variants in Escherichia coli using random mutagenesis and investigated their biochemical properties and suitability for cancer treatment. The cytotoxicity of the HRP-IAA enzyme prodrug system was assessed in vitro with HCT-116 human colon, FaDu human nasopharyngeal squamous cell carcinoma and murine colon adenocarcinoma cells (MC38). Extensive cytotoxicity was shown in all three cancer cell lines: the cell viability of HCT-116 and MC38 cells treated with HRP-IAA was below 1% after 24 h incubation and the surviving fraction of FaDu cells was ≤ 10% after 72 h. However, no cytotoxic effect was observed upon in vivo intratumoral application of HRP-IAA on a MC38 tumor model in C57BL/6J mice. However, we expect that targeting of HRP to the tumor by conjugation to specific antibodies or antibody fragments will reduce HRP clearance and thereby enhance therapy efficacy.
Collapse
Affiliation(s)
- Diana Humer
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Valentina Furlanetto
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health Department of Industrial Biotechnology, AlbaNova, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| | - Anna-Katharina Schruef
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Angelika Wlodarczyk
- Austrian Research Institute for Chemistry and Engineering (OFI), Franz-Grill-Straße 5, Objekt 213, 1030 Vienna, Austria
| | - Mario Kuttke
- Medical University of Vienna, Institute for Vascular Biology and Thrombosis Research, Center for Pharmacology and Physiology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Christina Divne
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health Department of Industrial Biotechnology, AlbaNova, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
3
|
Citartan M. Aptamers as the powerhouse of dot blot assays. Talanta 2021; 232:122436. [PMID: 34074421 DOI: 10.1016/j.talanta.2021.122436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
Dot blot assays have always been associated with antibodies as the main molecular recognition element, which are widely employed in a myriad of diagnostic applications. With the rising of aptamers as the equivalent molecular recognition elements of antibodies, dot blot assays are also one of the diagnostic avenues that should be scrutinized for their amenability with aptamers as the potential surrogates of antibodies. In this review, the stepwise procedures of an aptamer-based dot blot assays are underscored before reviewing the existing aptamer-based dot blot assays developed so far. Most of the applications center on monitoring the progress of SELEX and as the validatory assays to assess the potency of aptamer candidates. For the purpose of diagnostics, the current effort is still languid and as such possible suggestions to galvanize the move to spur the aptamer-based dot blot assays to a point-of-care arena are discussed.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
4
|
Improving the Performance of Horseradish Peroxidase by Site-Directed Mutagenesis. Int J Mol Sci 2019; 20:ijms20040916. [PMID: 30791559 PMCID: PMC6412888 DOI: 10.3390/ijms20040916] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 01/17/2023] Open
Abstract
Horseradish peroxidase (HRP) is an intensely studied enzyme with a wide range of commercial applications. Traditionally, HRP is extracted from plant; however, recombinant HRP (rHRP) production is a promising alternative. Here, non-glycosylated rHRP was produced in Escherichia coli as a DsbA fusion protein including a Dsb signal sequence for translocation to the periplasm and a His tag for purification. The missing N-glycosylation results in reduced catalytic activity and thermal stability, therefore enzyme engineering was used to improve these characteristics. The amino acids at four N-glycosylation sites, namely N13, N57, N255 and N268, were mutated by site-directed mutagenesis and combined to double, triple and quadruple enzyme variants. Subsequently, the rHRP fusion proteins were purified by immobilized metal affinity chromatography (IMAC) and biochemically characterized. We found that the quadruple mutant rHRP N13D/N57S/N255D/N268D showed 2-fold higher thermostability and 8-fold increased catalytic activity with 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as reducing substrate when compared to the non-mutated rHRP benchmark enzyme.
Collapse
|
5
|
Krainer FW, Glieder A. An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biotechnol 2015; 99:1611-25. [PMID: 25575885 PMCID: PMC4322221 DOI: 10.1007/s00253-014-6346-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 11/28/2022]
Abstract
Horseradish peroxidase has been the subject of scientific research for centuries. It has been used exhaustively as reporter enzyme in diagnostics and histochemistry and still plays a major role in these applications. Numerous studies have been conducted on the role of horseradish peroxidase in the plant and its catalytic mechanism. However, little progress has been made in its recombinant production. Until now, commercial preparations of horseradish peroxidase are still isolated from plant roots. These preparations are commonly mixtures of various isoenzymes of which only a small fraction has been described so far. The composition of isoenzymes in these mixed isolates is subjected to uncontrollable environmental conditions. Nowadays, horseradish peroxidase regains interest due to its broad applicability in the fields of medicine, life sciences, and biotechnology in cancer therapy, biosensor systems, bioremediation, and biocatalysis. These medically and commercially relevant applications, the recent discovery of new natural isoenzymes with different biochemical properties, as well as the challenges in recombinant production render this enzyme particularly interesting for future biotechnological solutions. Therefore, we reviewed previous studies as well as current developments with biotechnological emphasis on new applications and the major remaining biotechnological challenge—the efficient recombinant production of horseradish peroxidase enzymes.
Collapse
Affiliation(s)
- Florian W Krainer
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria,
| | | |
Collapse
|
6
|
Abstract
Plant (Class III) peroxidases have numerous applications throughout biotechnology but their thermal and oxidative stabilities may limit their usefulness. Horseradish peroxidase isoenzyme C (HRPC) has good catalytic turnover and is moderately resistant to heat and to excess (oxidizing) concentrations of hydrogen peroxide. In contrast, HRP isoenzyme A2 (HRP A2) has better oxidative but poorer thermal stability, while soybean peroxidase (SBP) displays enhanced thermal stability. Intrigued by these variations amongst closely related enzymes, we previously used maximum likelihood methods (with application of Bayesian statistics) to infer an amino acid sequence consistent with their most recent common ancestor, the 'Grandparent' (GP). Here, we report the cloning and expression of active recombinant GP protein in Escherichia coli. GP's half-inactivation temperature was 45 °C, notably less than HRP C's, but its resistance to excess H2O2 was 2-fold greater. This resurrected GP protein enables a greater understanding of plant peroxidase evolution and serves as a test-bed to explore their ancestral properties.
Collapse
|
7
|
Zakharova GS, Uporov IV, Tishkov VI. Horseradish peroxidase: modulation of properties by chemical modification of protein and heme. BIOCHEMISTRY (MOSCOW) 2012; 76:1391-401. [PMID: 22339595 DOI: 10.1134/s0006297911130037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Horseradish peroxidase (HRP) is one of the most studied enzymes of the plant peroxidase superfamily. HRP is also widely used in different bioanalytical applications and diagnostic kits. The methods of genetic engineering and protein design are now widely used to study the catalytic mechanism and to improve properties of the enzyme. Here we review the results of another approach to HRP modification-through the chemical modification of amino acids or prosthetic group of the enzyme. Computer models of HRPs with modified hemes are in good agreement with the experimental data.
Collapse
Affiliation(s)
- G S Zakharova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
8
|
Investigating the structural and functional effects of mutating Asn glycosylation sites of horseradish peroxidase to Asp. Appl Biochem Biotechnol 2010; 164:454-63. [PMID: 21193964 DOI: 10.1007/s12010-010-9147-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
Horseradish peroxidase (HRP) has long attracted intense research interest and is used in many biotechnological fields, including diagnostics, biosensors, and biocatalysis. Enhancement of HRP catalytic activity and/or stability would further increase its applications. One of the problems with heterologus expression of HRP especially in prokaryotic host is lack of glycosylation that affects it's stability toward H(2)O(2) and thermal inactivation. In this study, two asparagine residues which constitute two of the eight glycosylation sites in native HRP (Asn 13 and 268) with respectively 83% and 65% surface accessibility were substituted with aspartic acid in recombinant HRP. Both mutant proteins expressed in Escherichia coli showed increased stabilities against heat (increase in t (1/2) from 20 min in native rHRP to 32 and 67 min in N13D and N268D) and H(2)O(2) (up to threefold). Unexpectedly, despite the distance of the mutated positions from the active site, notable alterations in steady-state k (cat) and K (m) values occurred with phenol/4-aminoantipyrine as reducing substrate which might be due to conformational changes. No significant alteration in flexibility was detected by acrylamide quenching analyses, but ANS binding experiments purposed lesser binding of ANS to hydrophobic patches in mutated HRPs. Double mutation was non-additive and non-synergistic.
Collapse
|
9
|
Jäckel C, Bloom JD, Kast P, Arnold FH, Hilvert D. Consensus protein design without phylogenetic bias. J Mol Biol 2010; 399:541-6. [PMID: 20433850 DOI: 10.1016/j.jmb.2010.04.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 11/17/2022]
Abstract
Consensus design is an appealing strategy for the stabilization of proteins. It exploits amino acid conservation in sets of homologous proteins to identify likely beneficial mutations. Nevertheless, its success depends on the phylogenetic diversity of the sequence set available. Here, we show that randomization of a single protein represents a reliable alternative source of sequence diversity that is essentially free of phylogenetic bias. A small number of functional protein sequences selected from binary-patterned libraries suffice as input for the consensus design of active enzymes that are easier to produce and substantially more stable than individual members of the starting data set. Although catalytic activity correlates less consistently with sequence conservation in these extensively randomized proteins, less extreme mutagenesis strategies might be adopted in practice to augment stability while maintaining function.
Collapse
Affiliation(s)
- Christian Jäckel
- Laboratory of Organic Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Watanabe L, de Moura PR, Bleicher L, Nascimento AS, Zamorano LS, Calvete JJ, Sanz L, Pérez A, Bursakov S, Roig MG, Shnyrov VL, Polikarpov I. Crystal structure and statistical coupling analysis of highly glycosylated peroxidase from royal palm tree (Roystonea regia). J Struct Biol 2009; 169:226-42. [PMID: 19854274 DOI: 10.1016/j.jsb.2009.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 10/10/2009] [Accepted: 10/16/2009] [Indexed: 11/15/2022]
Abstract
Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85A. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP.
Collapse
Affiliation(s)
- Leandra Watanabe
- Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|