1
|
Chen X, Wei W, Xiong W, Wu S, Wu Q, Wang P, Zhu G. Two Different Isocitrate Dehydrogenases from Pseudomonas aeruginosa: Enzymology and Coenzyme-Evolutionary Implications. Int J Mol Sci 2023; 24:14985. [PMID: 37834433 PMCID: PMC10574006 DOI: 10.3390/ijms241914985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Pseudomonas aeruginosa PAO1, as an experimental model for Gram-negative bacteria, harbors two NADP+-dependent isocitrate dehydrogenases (NADP-IDHs) that were evolved from its ancient counterpart NAD-IDHs. For a better understanding of PaIDH1 and PaIDH2, we cloned the genes, overexpressed them in Escherichia coli and purified them to homogeneity. PaIDH1 displayed higher affinity to NADP+ and isocitrate, with lower Km values when compared to PaIDH2. Moreover, PaIDH1 possessed higher temperature tolerance (50 °C) and wider pH range tolerance (7.2-8.5) and could be phosphorylated. After treatment with the bifunctional PaIDH kinase/phosphatase (PaIDH K/P), PaIDH1 lost 80% of its enzymatic activity in one hour due to the phosphorylation of Ser115. Small-molecule compounds like glyoxylic acid and oxaloacetate can effectively inhibit the activity of PaIDHs. The mutant PaIDH1-D346I347A353K393 exhibited enhanced affinity for NAD+ while it lost activity towards NADP+, and the Km value (7770.67 μM) of the mutant PaIDH2-L589 I600 for NADP+ was higher than that observed for NAD+ (5824.33 μM), indicating a shift in coenzyme specificity from NADP+ to NAD+ for both PaIDHs. The experiments demonstrated that the mutation did not alter the oligomeric state of either protein. This study provides a foundation for the elucidation of the evolution and function of two NADP-IDHs in the pathogenic bacterium P. aeruginosa.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China; (X.C.); (W.W.); (W.X.); (S.W.); (Q.W.)
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China; (X.C.); (W.W.); (W.X.); (S.W.); (Q.W.)
| |
Collapse
|
2
|
Wei Q, Zhang J, Luo F, Shi D, Liu Y, Liu S, Zhang Q, Sun W, Yuan J, Fan H, Wang H, Qi L, Liu G. Molecular mechanisms through which different carbon sources affect denitrification by Thauera linaloolentis: Electron generation, transfer, and competition. ENVIRONMENT INTERNATIONAL 2022; 170:107598. [PMID: 36395558 DOI: 10.1016/j.envint.2022.107598] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Characterizing the molecular mechanism through which different carbon sources affect the denitrification process would provide a basis for the proper selection of carbon sources, thus avoiding excessive carbon source dosing and secondary pollution while also improving denitrification efficiency. Here, we selected Thauera linaloolentis as a model organism of denitrification, whose genomic information was elucidated by draft genome sequencing and KEGG annotations, to investigate the growth kinetics, denitrification performances and characteristics of metabolic pathways under diverse carbon source conditions. We reconstructed a metabolic network of Thauera linaloolentis based on genomic analysis to help develop a systematic method of researching electron pathways. Our findings indicated that carbon sources with simple metabolic pathways (e.g., ethanol and sodium acetate) promoted the reproduction of Thauera linaloolentis, and its maximum growth density reached OD600 = 0.36 and maximum specific growth rate reached 0.145 h-1. These carbon sources also accelerated the denitrification process without the accumulation of intermediates. Nitrate could be reduced completely under any carbon source condition; but in the "glucose group", the maximum accumulation of nitrite was 117.00 mg/L (1.51 times more than that in the "ethanol group", which was 77.41 mg/L), the maximum accumulation of nitric oxide was 363.02 μg/L (7.35 times more than that in the "ethanol group", which was 49.40 μg/L), and the maximum accumulation of nitrous oxide was 22.58 mg/L (26.56 times more than that in the "ethanol group", which was 0.85 mg/L). Molecular biological analyses demonstrated that diverse types of carbon sources directly induced different carbon metabolic activities, resulting in variations in electron generation efficiency. Furthermore, the activities of the electron transport system were positively correlated with different carbon metabolic activities. Finally, these differences were reflected in the phenomenon of electronic competition between denitrifying reductases. Thus we concluded that this was the main molecular mechanism through which the carbon source type affected the denitrification process. In brief, carbon sources with simple metabolic pathways induced higher efficiency of electron generation, transfer, and competition, which promoted rapid proliferation and complete denitrification; otherwise Thauera linaloolentis would grow slowly and intermediate products would accumulate seriously. Our study established a method to evaluate and optimize carbon source utilization efficiency based on confirmed molecular mechanisms.
Collapse
Affiliation(s)
- Qi Wei
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Jinsen Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Fangzhou Luo
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Dinghuan Shi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Yuchen Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Shuai Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Qian Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Wenzhuo Sun
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Junli Yuan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Haitao Fan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Hongchen Wang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Lu Qi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Guohua Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| |
Collapse
|
3
|
Wang X, Tang X, Chen H, Zhang H, Chen YQ, Zhao J, Chen W. Purification and characterization of isocitrate dehydrogenase from Mortierella alpina. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Tian C, Wen B, Bian M, Jin M, Wang P, Xu L, Zhu G. From a dimer to a monomer: Construction of a chimeric monomeric isocitrate dehydrogenase. Protein Sci 2021; 30:2396-2407. [PMID: 34647384 DOI: 10.1002/pro.4204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Many isocitrate dehydrogenases (IDHs) are dimeric enzymes whose catalytic sites are located at the intersubunit interface, whereas monomeric IDHs form catalytic sites with single polypeptide chains. It was proposed that monomeric IDHs were evolved from dimeric ones by partial gene duplication and fusion, but the evolutionary process had not been reproduced in laboratory. To construct a chimeric monomeric IDH from homo-dimeric one, it is necessary to reconstitute an active center by a duplicated region; to properly link the duplicated region to the rest part; and to optimize the newly formed protein surface. In this study, a chimeric monomeric IDH was successfully constructed by using homo-dimeric Escherichia coli IDH as a start point by rational design and site-saturation mutagenesis. The ~67 kDa chimeric enzyme behaved as a monomer in solution, with a Km of 61 μM and a kcat of 15 s-1 for isocitrate in the presence of NADP+ and Mn2+ . Our result demonstrated that dimeric IDHs have a potential to evolve monomeric ones. The evolution of the IDH family was also discussed.
Collapse
Affiliation(s)
- Changqing Tian
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
| | - Bin Wen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
| | - Mingjie Bian
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
| | - Mingming Jin
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
| | - Lei Xu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China.,Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
5
|
Huang S, Zhao J, Li W, Wang P, Xue Z, Zhu G. Biochemical and Phylogenetic Characterization of a Novel NADP +-Specific Isocitrate Dehydrogenase From the Marine Microalga Phaeodactylum tricornutum. Front Mol Biosci 2021; 8:702083. [PMID: 34291089 PMCID: PMC8287583 DOI: 10.3389/fmolb.2021.702083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) family of proteins is classified into three subfamilies, namely, types I, II, and III. Although IDHs are widely distributed in bacteria, archaea, and eukaryotes, all type III IDHs reported to date are found only in prokaryotes. Herein, a novel type III IDH subfamily member from the marine microalga Phaeodactylum tricornutum (PtIDH2) was overexpressed, purified, and characterized in detail for the first time. Relatively few eukaryotic genomes encode this type of IDH and PtIDH2 shares the highest homology with marine bacterial monomeric IDHs, suggesting that PtIDH2 originated through a horizontal gene transfer event between a marine alga and a bacterium. Size-exclusion chromatography revealed that the native PtIDH2 is a homotetramer (∼320 kDa) in solution, comprising four monomeric IDH-like subunits (80 kDa each). Enzymatic characterization showed that PtIDH2 is a bivalent metal ion-dependent enzyme and Mn2+ is the optimal activator. The recombinant PtIDH2 protein exhibited maximal activity at 35°C and pH 8.0 in the presence of Mn2+. Heat-inactivation analysis revealed that PtIDH2 is a cold-adapted enzyme. Kinetic analysis demonstrated that PtIDH2 is a completely NADP+-specific IDH with no detectable NAD+-associated catalytic activity. The three putative key NADP+-binding residues (His604, Arg615, and Arg664) in PtIDH2 were also evaluated by site-directed mutagenesis. The H604L/R615D/R664S triple mutant showed a 3.25-fold preference for NAD+ over NADP+, implying that the coenzyme specificity of PtIDH2 can be converted from NADP+ to NAD+ through rational engineering approaches. Additionally, the roles of the conserved residues Ala718 and Leu742 in the thermostability of PtIDH2 were also explored by site-directed mutagenesis. We found that the L742F mutant displayed higher thermostability than wild-type PtIDH2. This study expands the phylogeny of the IDH family and provides new insights into the evolution of IDHs.
Collapse
Affiliation(s)
- Shiping Huang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China.,College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jiaxin Zhao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Wenjing Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhenglian Xue
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
6
|
Wang P, Wang Y, Guo X, Huang S, Zhu G. Biochemical and phylogenetic characterization of a monomeric isocitrate dehydrogenase from a marine methanogenic archaeon Methanococcoides methylutens. Extremophiles 2020; 24:319-328. [PMID: 31970482 DOI: 10.1007/s00792-020-01156-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
Monomeric isocitrate dehydrogenase (IDH) stands for a separated subgroup among IDH protein family. Up to now, all reported monomeric IDHs are from prokaryotes. Here, a monomeric IDH from a marine methanogenic archaeon Methanococcoides methylutens (MmIDH) was reported for the first time. BLAST search demonstrated that only a few marine archaea encode the monomeric IDH and all these organisms are methylotrophic. MmIDH shows the highest homology (~ 70%) to the monomeric IDHs from some marine bacteria, suggesting a lateral gene transfer event between marine bacteria and archaea. The monomeric state of MmIDH was determined by size exclusion chromatography. MmIDH is divalent cation-dependent and Mn2+ is the most favored. Kinetic analysis showed that MmIDH is highly specific to NADP+ and cannot utilize the NAD+. The optimal temperature for MmIDH activity is 50 °C and the optimal pH is 8.2. Heat inactivation assay revealed that MmIDH is a mesophilic enzyme. It sustained 50% activity after incubation at 39 °C for 20 min. Moreover, the putative coenzyme binding residues (His590, Arg601, and Arg650) of MmIDH were explored by mutagenesis. The triple mutant H590L/R601D/R650S displayed a 5.93-fold preference for NAD+ over NADP+, indicating that the coenzyme specificity of MmIDH was significantly switched from NADP+ to NAD+ by three key mutations.
Collapse
Affiliation(s)
- Peng Wang
- The Research Center of Life Omics and Health and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Yuan Wang
- The Research Center of Life Omics and Health and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Xiuxiu Guo
- The Research Center of Life Omics and Health and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Shiping Huang
- The Research Center of Life Omics and Health and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Guoping Zhu
- The Research Center of Life Omics and Health and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, Anhui, China.
| |
Collapse
|
7
|
Wang P, Chen X, Yang J, Pei Y, Bian M, Zhu G. Characterization of the nicotinamide adenine dinucleotides (NAD + and NADP +) binding sites of the monomeric isocitrate dehydrogenases from Campylobacter species. Biochimie 2019; 160:148-155. [PMID: 30876971 DOI: 10.1016/j.biochi.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
Monomeric isocitrate dehydrogenases (IDHs) have once been proposed to be exclusively NADP+-specific. Intriguingly, we recently have reported an NAD+-specific monomeric IDH from Campylobacter sp. FOBRC14 (CaIDH). Moreover, bioinformatic analysis revealed at least three different coenzyme-binding motifs among Campylobacter IDHs. Besides the NAD+-binding motif in CaIDH (Leu584/Asp595/Ser644), a typical NADP+-binding motif was also identified in Campylobacter corcagiensis IDH (CcoIDH, His582/Arg593/Arg638). Meanwhile, a third putative NAD+-binding motif was found in Campylobacter concisus IDH (CcIDH, Leu580/Leu591/Ala640). In this study, CcIDH was overexpressed in Escherichia coli and purified to homogeneity. Gel filtration chromatography demonstrated that the recombinant CcIDH exists as a monomer in solution. Kinetic analysis showed that the Km value of CcIDH for NADP+ was over 49-fold higher than that for NAD+ and the catalytic efficiency (kcat/Km) of CcIDH is 115-fold greater for NAD+ than NADP+. Thus, CcIDH is indeed an NAD+-specific enzyme. However, the catalytic efficiency (kcat/Km = 0.886 μM-1 s-1) of CcIDH for NAD+ is much lower (<5%) when compared to that of the typical monomeric NADP-IDHs for NADP+. Then, the three core NAD+-binding sites were evaluated by site-directed mutagenesis. The mutant CcIDH (H580R591R640) showed a 51-fold higher Km value for NAD+ and 21-fold lower Km value for NADP+ as compared to that of the wild type enzyme, respectively. The overall specificity of the mutant CcIDH was 12-fold greater for NADP+ than that for NAD+. Thus, the coenzyme specificity of CcIDH was converted from NAD+ to NADP+. Isocitrate dependence of enzyme kinetics showed that although the mutant H580R591R640 preferred NADP+ as its coenzyme, its catalytic efficiency for isocitrate reduced to half of that for the wild-type CcIDH as using NAD+. The finding of both NAD+ and NADP+-binding sites in monomeric IDHs from Campylobacter species will provide us a chance to explore the evolution of the coenzyme specificity in monomeric IDH subfamily.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Molecular Biology and Biotechnology and the Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Xuefei Chen
- Institute of Molecular Biology and Biotechnology and the Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Jing Yang
- Institute of Molecular Biology and Biotechnology and the Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Yunyun Pei
- Institute of Molecular Biology and Biotechnology and the Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Mingjie Bian
- Institute of Molecular Biology and Biotechnology and the Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology and the Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.
| |
Collapse
|
8
|
Wang P, Wu Y, Liu J, Song P, Li S, Zhou X, Zhu G. Crystal Structure of the Isocitrate Dehydrogenase 2 from Acinetobacter baumannii (AbIDH2) Reveals a Novel Dimeric Structure with Two Monomeric-IDH-Like Subunits. Int J Mol Sci 2018; 19:ijms19041131. [PMID: 29642588 PMCID: PMC5979607 DOI: 10.3390/ijms19041131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Monomeric isocitrate dehydrogenases (IDHs) have a single polypeptide sizing around 85 kDa. The IDH2 from the opportunistic bacterium Acinetobacter baumannii (AbIDH2) with a mass of 83 kDa was formerly recognized as a typical monomeric IDH. However, both size exclusion chromatography and analytical ultracentrifugation analysis indicated that AbIDH2 exists as a homodimer in solution. The crystallographic study of the substrate/coenzyme-free AbIDH2 gave a dimeric structure and each subunit contained a domain I and a domain II. The dimeric assembly is mainly stabilized by hydrophobic interactions (16 hydrogen bonds and 11 salt bridges) from the dimer’s interface platform, which centered around the three parallel helices (α4, α12, and α17) and one loop from the domain II. Kinetic analysis showed that the dimeric AbIDH2 showed much lower catalytic efficiency (0.39 μM−1·s−1) as compared to the typical monomeric IDHs (~15 μM−1·s−1). Key residues crucial for dimer formation were simultaneously changed to generate the mutant mAbIDH2. The disruption of the hydrophobic forces disassociated the dimeric AbIDH2, making mAbIDH2 a monomeric enzyme. mAbIDH2 sustained specific activity (21.9 ± 2 U/mg) comparable to AbIDH2 (25.4 ± 0.7 U/mg). However, mAbIDH2 proved to be a thermolabile enzyme, indicating that the thermostable dimeric AbIDH2 may have a physiological significance for the growth and pathogenesis of A. baumannii. Phylogenetic analysis demonstrated the existence of numerous AbIDH2 homologous proteins, thus expanding the monomeric IDH protein family.
Collapse
Affiliation(s)
- Peng Wang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Yatao Wu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Jie Liu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Ping Song
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Shan Li
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Xinxin Zhou
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
9
|
Functional characterization and transcriptional analysis of icd2 gene encoding an isocitrate dehydrogenase of Xanthomonas campestris pv. campestris. Arch Microbiol 2017; 199:917-929. [DOI: 10.1007/s00203-017-1370-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
10
|
Lv C, Wang P, Wang W, Su R, Ge Y, Zhu Y, Zhu G. Two isocitrate dehydrogenases from a plant pathogen Xanthomonas campestris pv. campestris 8004. Bioinformatic analysis, enzymatic characterization, and implication in virulence. J Basic Microbiol 2016; 56:975-85. [PMID: 27282849 DOI: 10.1002/jobm.201500648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
Abstract
Isocitrate dehydrogenase (IDH) is a key enzyme in the tricarboxylate (TCA) cycle, which may play an important role in the virulence of pathogenic bacteria. Here, two structurally different IDHs from a plant pathogen Xanthomonas campestris pv. campestris 8004 (XccIDH1 and XccIDH2) were characterized in detail. The recombinant XccIDH1 forms homodimer in solution, while the recombinant XccIDH2 is a typical monomer. Phylogenetic analysis showed that XccIDH1 belongs to the type I IDH subfamily and XccIDH2 groups into the monomeric IDH clade. Kinetic characterization demonstrated that XccIDH1's specificity towards NAD(+) was 110-fold greater than NADP(+) , while XccIDH2's specificity towards NADP(+) was 353-fold greater than NAD(+) . The putative coenzyme discriminating amino acids (Asp268, Ile269 and Ala275 for XccIDH1, and Lys589, His590 and Arg601 for XccIDH2) were studied by site-directed mutagenesis. The coenzyme specificities of the two mutants, mXccIDH1 and mXccIDH2, were completely reversed from NAD(+) to NADP(+) , and NADP(+) to NAD(+) , respectively. Furthermore, Ser80 of XccIDH1, and Lys256 and Tyr421 of XccIDH2, were the determinants for the substrate binding. The detailed biochemical properties, such as optimal pH and temperature, thermostability, and metal ion effects, of XccIDH1 and XccIDH2 were further investigated. The possibility of taking the two IDHs into consideration as the targets for drug development to control the plant diseases caused by Xcc 8004 were described and discussed thoroughly.
Collapse
Affiliation(s)
- Changqi Lv
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Peng Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Wencai Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Ruirui Su
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Yadong Ge
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China
| | - Youming Zhu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Stomatological Hospital, Anhui Medical University, China.
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, China.
| |
Collapse
|
11
|
Kashyap PL, Rai A, Singh R, Chakdar H, Kumar S, Srivastava AK. Deciphering the salinity adaptation mechanism inPenicilliopsis clavariiformisAP, a rare salt tolerant fungus from mangrove. J Basic Microbiol 2015; 56:779-91. [DOI: 10.1002/jobm.201500552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/11/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Prem Lal Kashyap
- ICAR-National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| | - Anuradha Rai
- ICAR-National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| | - Ruchi Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| | - Sudheer Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
- ICAR-Indian Institute of Wheat and Barley Research; Karnal Haryana India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms; Mau Uttar Pradesh India
| |
Collapse
|
12
|
Ge Y, Cao Z, Song P, Zhu G. Identification and characterization of a novel citrate synthase fromStreptomyces diastaticusNo. 7 strain M1033. Biotechnol Appl Biochem 2015; 62:300-8. [DOI: 10.1002/bab.1372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/14/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Yadong Ge
- Institute of Molecular Biology and Biotechnology, Key Laboratory of Molecular Evolution and Biodiversity; Key Laboratory of the Biotic Environment and Ecological Safety in Anhui Province, Anhui Normal University; Wuhu Anhui People's Republic of China
| | - Zhengyu Cao
- Institute of Molecular Biology and Biotechnology, Key Laboratory of Molecular Evolution and Biodiversity; Key Laboratory of the Biotic Environment and Ecological Safety in Anhui Province, Anhui Normal University; Wuhu Anhui People's Republic of China
| | - Ping Song
- Institute of Molecular Biology and Biotechnology, Key Laboratory of Molecular Evolution and Biodiversity; Key Laboratory of the Biotic Environment and Ecological Safety in Anhui Province, Anhui Normal University; Wuhu Anhui People's Republic of China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, Key Laboratory of Molecular Evolution and Biodiversity; Key Laboratory of the Biotic Environment and Ecological Safety in Anhui Province, Anhui Normal University; Wuhu Anhui People's Republic of China
| |
Collapse
|
13
|
Wu MC, Tian CQ, Cheng HM, Xu L, Wang P, Zhu GP. A Novel Type II NAD+-Specific Isocitrate Dehydrogenase from the Marine Bacterium Congregibacter litoralis KT71. PLoS One 2015; 10:e0125229. [PMID: 25942017 PMCID: PMC4420465 DOI: 10.1371/journal.pone.0125229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/22/2015] [Indexed: 11/29/2022] Open
Abstract
In most living organisms, isocitrate dehydrogenases (IDHs) convert isocitrate into ɑ-ketoglutarate (ɑ-KG). Phylogenetic analyses divide the IDH protein family into two subgroups: types I and II. Based on cofactor usage, IDHs are either NAD+-specific (NAD-IDH) or NADP+-specific (NADP-IDH); NADP-IDH evolved from NAD-IDH. Type I IDHs include NAD-IDHs and NADP-IDHs; however, no type II NAD-IDHs have been reported to date. This study reports a novel type II NAD-IDH from the marine bacterium Congregibacter litoralis KT71 (ClIDH, GenBank accession no. EAQ96042). His-tagged recombinant ClIDH was produced in Escherichia coli and purified; the recombinant enzyme was NAD+-specific and showed no detectable activity with NADP+. The Km values of the enzyme for NAD+ were 262.6±7.4 μM or 309.1±11.2 μM with Mg2+ or Mn2+ as the divalent cation, respectively. The coenzyme specificity of a ClIDH Asp487Arg/Leu488His mutant was altered, and the preference of the mutant for NADP+ was approximately 24-fold higher than that for NAD+, suggesting that ClIDH is an NAD+-specific ancestral enzyme in the type II IDH subgroup. Gel filtration and analytical ultracentrifugation analyses revealed the homohexameric structure of ClIDH, which is the first IDH hexamer discovered thus far. A 163-amino acid segment of CIIDH is essential to maintain its polymerization structure and activity, as a truncated version lacking this region forms a non-functional monomer. ClIDH was dependent on divalent cations, the most effective being Mn2+. The maximal activity of purified recombinant ClIDH was achieved at 35°C and pH 7.5, and a heat inactivation experiment showed that a 20-min incubation at 33°C caused a 50% loss of ClIDH activity. The discovery of a NAD+-specific, type II IDH fills a gap in the current classification of IDHs, and sheds light on the evolution of type II IDHs.
Collapse
Affiliation(s)
- Ming-Cai Wu
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, Anhui, China
| | - Chang-Qing Tian
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
| | - Hong-Mei Cheng
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
| | - Lei Xu
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, Anhui, China
| | - Peng Wang
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
- * E-mail: (PW); (G-PZ)
| | - Guo-Ping Zhu
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
- * E-mail: (PW); (G-PZ)
| |
Collapse
|
14
|
Wang P, Lv C, Zhu G. Novel type II and monomeric NAD+ specific isocitrate dehydrogenases: phylogenetic affinity, enzymatic characterization, and evolutionary implication. Sci Rep 2015; 5:9150. [PMID: 25775177 PMCID: PMC4360740 DOI: 10.1038/srep09150] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/23/2015] [Indexed: 11/09/2022] Open
Abstract
NAD(+) use is an ancestral trait of isocitrate dehydrogenase (IDH), and the NADP(+) phenotype arose through evolution as an ancient adaptation event. However, no NAD(+)-specific IDHs have been found among type II IDHs and monomeric IDHs. In this study, novel type II homodimeric NAD-IDHs from Ostreococcus lucimarinus CCE9901 IDH (OlIDH) and Micromonas sp. RCC299 (MiIDH), and novel monomeric NAD-IDHs from Campylobacter sp. FOBRC14 IDH (CaIDH) and Campylobacter curvus (CcIDH) were reported for the first time. The homodimeric OlIDH and monomeric CaIDH were determined by size exclusion chromatography and MALDI-TOF/TOF mass spectrometry. All the four IDHs were demonstrated to be NAD(+)-specific, since OlIDH, MiIDH, CaIDH and CcIDH displayed 99-fold, 224-fold, 61-fold and 37-fold preferences for NAD(+) over NADP(+), respectively. The putative coenzyme discriminating amino acids (Asp326/Met327 in OlIDH, Leu584/Asp595 in CaIDH) were evaluated, and the coenzyme specificities of the two mutants, OlIDH R(326)H(327) and CaIDH H(584)R(595), were completely reversed from NAD(+) to NADP(+). The detailed biochemical properties, including optimal reaction pH and temperature, thermostability, and metal ion effects, of OlIDH and CaIDH were further investigated. The evolutionary connections among OlIDH, CaIDH, and all the other forms of IDHs were described and discussed thoroughly.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Changqi Lv
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| |
Collapse
|
15
|
Takahashi-Iñiguez T, Cruz-Rabadán S, Burciaga-Cifuentes LM, Flores ME. Molecular cloning, purification, and biochemical characterization of recombinant isocitrate dehydrogenase from Streptomyces coelicolor M-145. Biosci Biotechnol Biochem 2014; 78:1490-4. [PMID: 25209496 DOI: 10.1080/09168451.2014.923290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Isocitrate dehydrogenase is a key enzyme in carbon metabolism. In this study we demonstrated that SCO7000 of Streptomyces coelicolor M-145 codes for the isocitrate dehydrogenase. Recombinant enzyme expressed in Escherichia coli had a specific activity of 25.3 μmoles/mg/min using NADP(+) and Mn(2+) as a cofactor, 40-times higher than that obtained in cell-free extract. Pure IDH showed a single band with an apparent Mr of 84 KDa in SDS-PAGE, which was also recognized as His-tag protein in the Western blot. Unexpectedly, in ND-PAGE conditions showed a predominant band of ~168 KDa that corresponded to the dimeric form of ScIDH. Also, zymogram assay and analytical gel filtration reveal that dimer was the active form. Kinetic parameters were 1.38, 0.11, and 0.109 mM for isocitrate, NADP, and Mn(2+), respectively. ATP, ADP, AMP, and their mixtures were the main ScIDH activity inhibitors. Zn(2+), Mg(2+), Ca(2+), and Cu(+) had inhibitory effect on enzyme activity.
Collapse
Affiliation(s)
- Tóshiko Takahashi-Iñiguez
- a Departamento de Biología Molecular y Biotecnología , Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , México, D.F., México
| | | | | | | |
Collapse
|
16
|
Zhao X, Wang P, Zhu G, Wang B, Zhu G. Enzymatic characterization of a type II isocitrate dehydrogenase from pathogenic Leptospira interrogans serovar Lai strain 56601. Appl Biochem Biotechnol 2013; 172:487-96. [PMID: 24092452 DOI: 10.1007/s12010-013-0521-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/15/2013] [Indexed: 01/20/2023]
Abstract
Leptospira interrogans, a Gram-negative pathogen, could cause infections in a wide variety of mammalian hosts, but due to their fastidious cultivation requirements and the lack of genetic systems, the pathogenic factor is still not clear. Isocitrate dehydrogenase (IDH) is a key enzyme in the tricarboxylation (TCA) cycle, which could have an important impact on the growth and pathogenesis of the bacteria. In the present study, we first report the cloning, heterologous expression, and detailed characterization of the IDH gene from L. interrogans serovar Lai strain 56601(LiIDH). The molecular weight of LiIDH was determined to be 87 kDa by filtration chromatography, suggesting LiIDH is a typical homodimer. The optimum activity of LiIDH was found at 60 °C, and its optimum pH was 7.0 (Mn(2+)) and 8.0 (Mg(2+)). Heat inactivation studies showed that heat treatment for 20 min at 50 °C caused a 50 % loss of enzyme activity. LiIDH was completely divalent cation dependent as other typical dimeric IDHs and Mg(2+) was its best activator. The recombinant LiIDH specificities (kcat/Km values for NADP(+) and NAD(+)) in the presence of Mg(2+) and Mn(2+) were 6,269-fold and 1,000-fold greater for NADP(+) than NAD(+), respectively. This current work is expected to shed light on the functions of metabolic enzymes in L. interrogans and provide useful information for LiIDH to be considered as a possible candidate for serological diagnostics and detection of L. interrogans infection.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Molecular Biology and Biotechnology and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, Anhui, China
| | | | | | | | | |
Collapse
|
17
|
NADP(+)-specific isocitrate dehydrogenase from oleaginous yeast Yarrowia lipolytica CLIB122: biochemical characterization and coenzyme sites evaluation. Appl Biochem Biotechnol 2013; 171:403-16. [PMID: 23846800 DOI: 10.1007/s12010-013-0373-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/26/2013] [Indexed: 12/18/2022]
Abstract
NADP(+)-dependent isocitrate dehydrogenase from Yarrowia lipolytica CLIB122 (YlIDP) was overexpressed and purified. The molecular mass of YlIDP was estimated to be about 81.3 kDa, suggesting its homodimeric structure in solution. YlIDP was divalent cation dependent and Mg(2+) was found to be the most favorable cofactor. The purified recombinant YlIDP displayed maximal activity at 55 °C and its optimal pH for catalysis was found to be around 8.5. Heat inactivation studies revealed that the recombinant YlIDP was stable below 45 °C, but its activity dropped quickly above this temperature. YlIDP was absolutely dependent on NADP(+) and no NAD-dependent activity could be detected. The K m values displayed for NADP(+) and isocitrate were 59 and 31 μM (Mg(2+)), 120 μM and 58 μM (Mn(2+)), respectively. Mutant enzymes were constructed to tentatively alter the coenzyme specificity of YlIDP. The K m values for NADP(+) of R322D mutant was 2,410 μM, being about 41-fold higher than that of wild type enzyme. NAD(+)-dependent activity was detected for R322D mutant and the K m and k cat values for NAD(+) were 47,000 μM and 0.38 s(-1), respectively. Although the R322D mutant showed low activity with NAD(+), it revealed the feasibility of engineering an eukaryotic IDP to a NAD(+)-dependent one.
Collapse
|
18
|
Isocitrate dehydrogenase from Streptococcus mutans: biochemical properties and evaluation of a putative phosphorylation site at Ser102. PLoS One 2013; 8:e58918. [PMID: 23484056 PMCID: PMC3590139 DOI: 10.1371/journal.pone.0058918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/08/2013] [Indexed: 11/30/2022] Open
Abstract
Isocitrate deyhdrogenase (IDH) is a reversible enzyme in the tricarboxylic acid cycle that catalyzes the NAD(P)+-dependent oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG) and the NAD(P)H/CO2-dependent reductive carboxylation of αKG to isocitrate. The IDH gene from Streptococcus mutans was fused with the icd gene promoter from Escherichia coli to initiate its expression in the glutamate auxotrophic strain E. coli Δicd::kanr of which the icd gene has been replaced by kanamycin resistance gene. The expression of S. mutans IDH (SmIDH) may restore the wild-type phenotype of the icd-defective strain on minimal medium without glutamate. The molecular weight of SmIDH was estimated to be 70 kDa by gel filtration chromatography, suggesting a homodimeric structure. SmIDH was divalent cation-dependent and Mn2+ was found to be the most effective cation. The optimal pH of SmIDH was 7.8 and the maximum activity was around 45°C. SmIDH was completely NAD+ dependent and its apparent Km for NAD+ was 137 μM. In order to evaluate the role of the putative phosphorylation site at Ser102 in catalysis, two “stably phosphorylated” mutants were constructed by converting Ser102 into Glu102 or Asp102 in SmIDH to mimick a constitutively phosphorylated state. Meanwhile, the functional roles of another four amino acids (threonine, glycine, alanine and tyrosine) containing variant size of side chains were investigated. The replacement of Asp102 or Glu102 totally inactivated the enzyme, while the S102T, S102G, S102A and S102Y mutants decreased the affinity to isocitrate and only retained 16.0%, 2.8%, 3.3% and 1.1% of the original activity, respectively. These results reveal that Ser102 plays important role in substrate binding and is required for the enzyme function. Also, Ser102 in SmIDH is a potential phosphorylation site, indicating that the ancient NAD-dependent IDHs might be the underlying origin of “phosphorylation mechanism” used by their bacterial NADP-dependent homologs.
Collapse
|
19
|
Expression and characterization of a novel isocitrate dehydrogenase from Streptomyces diastaticus No. 7 strain M1033. Mol Biol Rep 2012; 40:1615-23. [PMID: 23073782 DOI: 10.1007/s11033-012-2210-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 10/09/2012] [Indexed: 01/01/2023]
Abstract
Isocitrate dehydrogenase (IDH) is one of the key enzymes in tricarboxylic acid cycle, widely distributed in Archaea, Bacteria and Eukarya. Here, we report for the first time the cloning, expression and characterization of a monomeric NADP(+)-dependent IDH from Streptomyces diastaticus No. 7 strain M1033 (SdIDH). Molecular mass of SdIDH was about 80 kDa and showed high amino acid sequence identity with known monomeric IDHs. Maximal activity of SdIDH was observed at pH 8.0 (Mn(2+)) and 9.0 (Mg(2+)), and the optimal temperature was 40 °C (Mn(2+)) and 37 °C (Mg(2+)). Heat-inactivation studies showed that SdIDH remained about 50 % activity after 20 min of incubation at 47 °C. SdIDH displayed a 19,000 and 32,000-fold (k (cat)/K (m)) preference for NADP(+) over NAD(+) with Mn(2+) and Mg(2+), respectively. Our work implicate that SdIDH is a divalent metal ion-dependent monomeric IDH with remarkably high coenzyme preference for NADP(+). This work may provide fundamental information for further investigation on the catalytic mechanism of monomeric IDH and give a clue to disclose the real cause of IDH monomerization.
Collapse
|
20
|
Wang P, Jin M, Zhu G. Biochemical and molecular characterization of NAD+-dependent isocitrate dehydrogenase from the ethanologenic bacterium Zymomonas mobilis. FEMS Microbiol Lett 2011; 327:134-41. [DOI: 10.1111/j.1574-6968.2011.02467.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/14/2011] [Accepted: 11/22/2011] [Indexed: 11/29/2022] Open
Affiliation(s)
- Peng Wang
- The Key Laboratory of Molecular Evolution and Biodiversity; Institute of Molecular Biology and Biotechnology; College of Life Sciences; Anhui Normal University; Wuhu; China
| | - Mingming Jin
- The Key Laboratory of Molecular Evolution and Biodiversity; Institute of Molecular Biology and Biotechnology; College of Life Sciences; Anhui Normal University; Wuhu; China
| | - Guoping Zhu
- The Key Laboratory of Molecular Evolution and Biodiversity; Institute of Molecular Biology and Biotechnology; College of Life Sciences; Anhui Normal University; Wuhu; China
| |
Collapse
|
21
|
Sidhu NS, Delbaere LTJ, Sheldrick GM. Structure of a highly NADP+-specific isocitrate dehydrogenase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:856-69. [PMID: 21931217 DOI: 10.1107/s0907444911028575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/16/2011] [Indexed: 11/10/2022]
Abstract
Isocitrate dehydrogenase catalyzes the first oxidative and decarboxylation steps in the citric acid cycle. It also lies at a crucial bifurcation point between CO2-generating steps in the cycle and carbon-conserving steps in the glyoxylate bypass. Hence, the enzyme is a focus of regulation. The bacterial enzyme is typically dependent on the coenzyme nicotinamide adenine dinucleotide phosphate. The monomeric enzyme from Corynebacterium glutamicum is highly specific towards this coenzyme and the substrate isocitrate while retaining a high overall efficiency. Here, a 1.9 Å resolution crystal structure of the enzyme in complex with its coenzyme and the cofactor Mg2+ is reported. Coenzyme specificity is mediated by interactions with the negatively charged 2'-phosphate group, which is surrounded by the side chains of two arginines, one histidine and, via a water, one lysine residue, forming ion pairs and hydrogen bonds. Comparison with a previous apoenzyme structure indicates that the binding site is essentially preconfigured for coenzyme binding. In a second enzyme molecule in the asymmetric unit negatively charged aspartate and glutamate residues from a symmetry-related enzyme molecule interact with the positively charged arginines, abolishing coenzyme binding. The holoenzyme from C. glutamicum displays a 36° interdomain hinge-opening movement relative to the only previous holoenzyme structure of the monomeric enzyme: that from Azotobacter vinelandii. As a result, the active site is not blocked by the bound coenzyme as in the closed conformation of the latter, but is accessible to the substrate isocitrate. However, the substrate-binding site is disrupted in the open conformation. Hinge points could be pinpointed for the two molecules in the same crystal, which show a 13° hinge-bending movement relative to each other. One of the two pairs of hinge residues is intimately flanked on both sides by the isocitrate-binding site. This suggests that binding of a relatively small substrate (or its competitive inhibitors) in tight proximity to a hinge point could lead to large conformational changes leading to a closed, presumably catalytically active (or inactive), conformation. It is possible that the small-molecule concerted inhibitors glyoxylate and oxaloacetate similarly bind close to the hinge, leading to an inactive conformation of the enzyme.
Collapse
Affiliation(s)
- Navdeep S Sidhu
- Department of Structural Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
22
|
Wang P, Jin M, Su R, Song P, Wang M, Zhu G. Enzymatic characterization of isocitrate dehydrogenase from an emerging zoonotic pathogen Streptococcus suis. Biochimie 2011; 93:1470-5. [PMID: 21586311 DOI: 10.1016/j.biochi.2011.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 04/28/2011] [Indexed: 11/30/2022]
Abstract
Streptococcus suis, a Gram-positive coccus, is an emerging zoonotic pathogen for both humans and pigs, but little is known about the properties of its metabolic enzymes. Isocitrate dehydrogenase (IDH) is a key regulatory enzyme in the citric acid cycle that catalyzes the oxidative decarboxylation of isocitrate yielding α-ketoglutarate and NAD(P)H. Here, we report the overexpression and enzymatic characterization of IDH from S. suis Serotype 2 Chinese highly virulent strain 05ZYH33 (SsIDH). The molecular weight of SsIDH was estimated to be 74 kDa by gel filtration chromatography, suggesting a homodimeric structure. Additionally, SsIDH was divalent cation-dependent and Mg(2+) was found to be the most effective cation. The optimal pH of SsIDH was 7.0 (Mn(2+)) and 8.5 (Mg(2+)), and the maximum activity was around 30 °C (Mn(2+)) and 50 °C (Mg(2+)), respectively. Heat inactivation studies showed that SsIDH retained 50% activity after 20 min of incubation at 49 °C. Sequence comparison revealed that SsIDH had a significantly homologous identity to bacterial homodimeric IDHs. The recombinant SsIDH displayed a 117-fold (k(cat)/K(m)) preference for NAD(+) over NADP(+) with Mg(2+), and a 80-fold greater specificity for NAD(+) than NADP(+) with Mn(2+). Therefore, SsIDH has remarkably high coenzyme preference toward NAD(+). This current work is expected to shed light on the functions of metabolic enzymes in S. suis and provide useful information for SsIDH to be considered as a possible candidate for serological diagnostics and detection of S. suis infection.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecular Evolution and Biodiversity, and Institute of Molecular Biology and Biotechnology, Anhui Normal University, Wuhu 241000, China
| | | | | | | | | | | |
Collapse
|
23
|
Heteroexpression and characterization of a monomeric isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680. Mol Biol Rep 2010; 38:3717-24. [PMID: 21104016 DOI: 10.1007/s11033-010-0486-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 11/09/2010] [Indexed: 12/21/2022]
Abstract
A monomeric NADP-dependent isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680 (SaIDH) was heteroexpressed in Escherichia coli, and the His-tagged enzyme was further purified to homogeneity. The molecular weight of SaIDH was about 80 kDa which is typical for monomeric isocitrate dehydrogenases. Structure-based sequence alignment reveals that the deduced amino acid sequence of SaIDH shows high sequence identity with known momomeric isocitrate dehydrogenase, and the coenzyme, substrate and metal ion binding sites are completely conserved. The optimal pH and temperature of SaIDH were found to be pH 9.4 and 45°C, respectively. Heat-inactivation studies showed that heating for 20 min at 50°C caused a 50% loss in enzymatic activity. In addition, SaIDH was absolutely specific for NADP+ as electron acceptor. Apparent Km values were 4.98 μM for NADP+ and 6,620 μM for NAD+, respectively, using Mn2+ as divalent cation. The enzyme performed a 33,000-fold greater specificity (kcat/Km) for NADP+ than NAD+. Moreover, SaIDH activity was entirely dependent on the presence of Mn2+ or Mg2+, but was strongly inhibited by Ca2+ and Zn2+. Taken together, our findings implicate the recombinant SaIDH is a divalent cation-dependent monomeric isocitrate dehydrogenase which presents a remarkably high cofactor preference for NADP+.
Collapse
|