1
|
Rodriguez PM, Stratmann D, Duprat E, Papandreou N, Acuna R, Lacroix Z, Chomilier J. Correlating topology and thermodynamics to predict protein structure sensitivity to point mutations. BIO-ALGORITHMS AND MED-SYSTEMS 2018. [DOI: 10.1515/bams-2018-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe relation between distribution of hydrophobic amino acids along with protein chains and their structure is far from being completely understood. No reliable method allowsab initioprediction of the folded structure from this distribution of physicochemical properties, even when they are highly degenerated by considering only two classes: hydrophobic and polar. Establishment of long-range hydrophobic three dimension (3D) contacts is essential for the formation of the nucleus, a key process in the early steps of protein folding. Thus, a large number of 3D simulation studies were developed to challenge this issue. They are nowadays evaluated in a specific chapter of the molecular modeling competition, Critical Assessment of Protein Structure Prediction. We present here a simulation of the early steps of the folding process for 850 proteins, performed in a discrete 3D space, which results in peaks in the predicted distribution of intra-chain noncovalent contacts. The residues located at these peak positions tend to be buried in the core of the protein and are expected to correspond to critical positions in the sequence, important both for folding and structural (or similarly, energetic in the thermodynamic hypothesis) stability. The degree of stabilization or destabilization due to a point mutation at the critical positions involved in numerous contacts is estimated from the calculated folding free energy difference between mutated and native structures. The results show that these critical positions are not tolerant towards mutation. This simulation of the noncovalent contacts only needs a sequence as input, and this paper proposes a validation of the method by comparison with the prediction of stability by well-established programs.
Collapse
|
2
|
Sacquin-Mora S. Fold and flexibility: what can proteins' mechanical properties tell us about their folding nucleus? J R Soc Interface 2016; 12:rsif.2015.0876. [PMID: 26577596 DOI: 10.1098/rsif.2015.0876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The determination of a protein's folding nucleus, i.e. a set of native contacts playing an important role during its folding process, remains an elusive yet essential problem in biochemistry. In this work, we investigate the mechanical properties of 70 protein structures belonging to 14 protein families presenting various folds using coarse-grain Brownian dynamics simulations. The resulting rigidity profiles combined with multiple sequence alignments show that a limited set of rigid residues, which we call the consensus nucleus, occupy conserved positions along the protein sequence. These residues' side chains form a tight interaction network within the protein's core, thus making our consensus nuclei potential folding nuclei. A review of experimental and theoretical literature shows that most (above 80%) of these residues were indeed identified as folding nucleus member in earlier studies.
Collapse
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
3
|
Banach M, Prudhomme N, Carpentier M, Duprat E, Papandreou N, Kalinowska B, Chomilier J, Roterman I. Contribution to the prediction of the fold code: application to immunoglobulin and flavodoxin cases. PLoS One 2015; 10:e0125098. [PMID: 25915049 PMCID: PMC4411048 DOI: 10.1371/journal.pone.0125098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/20/2015] [Indexed: 12/19/2022] Open
Abstract
Background Folding nucleus of globular proteins formation starts by the mutual interaction of a group of hydrophobic amino acids whose close contacts allow subsequent formation and stability of the 3D structure. These early steps can be predicted by simulation of the folding process through a Monte Carlo (MC) coarse grain model in a discrete space. We previously defined MIRs (Most Interacting Residues), as the set of residues presenting a large number of non-covalent neighbour interactions during such simulation. MIRs are good candidates to define the minimal number of residues giving rise to a given fold instead of another one, although their proportion is rather high, typically [15-20]% of the sequences. Having in mind experiments with two sequences of very high levels of sequence identity (up to 90%) but different folds, we combined the MIR method, which takes sequence as single input, with the “fuzzy oil drop” (FOD) model that requires a 3D structure, in order to estimate the residues coding for the fold. FOD assumes that a globular protein follows an idealised 3D Gaussian distribution of hydrophobicity density, with the maximum in the centre and minima at the surface of the “drop”. If the actual local density of hydrophobicity around a given amino acid is as high as the ideal one, then this amino acid is assigned to the core of the globular protein, and it is assumed to follow the FOD model. Therefore one obtains a distribution of the amino acids of a protein according to their agreement or rejection with the FOD model. Results We compared and combined MIR and FOD methods to define the minimal nucleus, or keystone, of two populated folds: immunoglobulin-like (Ig) and flavodoxins (Flav). The combination of these two approaches defines some positions both predicted as a MIR and assigned as accordant with the FOD model. It is shown here that for these two folds, the intersection of the predicted sets of residues significantly differs from random selection. It reduces the number of selected residues by each individual method and allows a reasonable agreement with experimentally determined key residues coding for the particular fold. In addition, the intersection of the two methods significantly increases the specificity of the prediction, providing a robust set of residues that constitute the folding nucleus.
Collapse
Affiliation(s)
- Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Nicolas Prudhomme
- Protein Structure Prediction group, IMPMC, UPMC & CNRS, Paris, France
| | - Mathilde Carpentier
- Protein Structure Prediction group, IMPMC, UPMC & CNRS, Paris, France
- RPBS, 35 rue Hélène Brion, 75013, Paris, France
| | - Elodie Duprat
- Protein Structure Prediction group, IMPMC, UPMC & CNRS, Paris, France
- RPBS, 35 rue Hélène Brion, 75013, Paris, France
| | - Nikolaos Papandreou
- Genetics Department, Agricultural University of Athens, Iera Odos 75, Athens, Greece
| | - Barbara Kalinowska
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jacques Chomilier
- Protein Structure Prediction group, IMPMC, UPMC & CNRS, Paris, France
- RPBS, 35 rue Hélène Brion, 75013, Paris, France
- * E-mail: (JC); (IR)
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Krakow, Poland
- * E-mail: (JC); (IR)
| |
Collapse
|
4
|
Banach M, Konieczny L, Roterman I. The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function. J Theor Biol 2014; 359:6-17. [PMID: 24859428 DOI: 10.1016/j.jtbi.2014.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/25/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022]
Abstract
In this paper we show that the fuzzy oil drop model represents a general framework for describing the generation of hydrophobic cores in proteins and thus provides insight into the influence of the water environment upon protein structure and stability. The model has been successfully applied in the study of a wide range of proteins, however this paper focuses specifically on domains representing immunoglobulin-like folds. Here we provide evidence that immunoglobulin-like domains, despite being structurally similar, differ with respect to their participation in the generation of hydrophobic core. It is shown that β-structural fragments in β-barrels participate in hydrophobic core formation in a highly differentiated manner. Quantitatively measured participation in core formation helps explain the variable stability of proteins and is shown to be related to their biological properties. This also includes the known tendency of immunoglobulin domains to form amyloids, as shown using transthyretin to reveal the clear relation between amyloidogenic properties and structural characteristics based on the fuzzy oil drop model.
Collapse
Affiliation(s)
- Mateusz Banach
- Department of Bioinformatics and Telemedicine - Jagiellonian University - Medical College, Krakow, Poland; Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Leszek Konieczny
- Chair of Medical Chemistry - Jagiellonian University - Medical College, Krakow, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine - Jagiellonian University - Medical College, Krakow, Poland.
| |
Collapse
|
5
|
Orevi T, Rahamim G, Shemesh S, Ben Ishay E, Amir D, Haas E. Fast closure of long loops at the initiation of the folding transition of globular proteins studied by time-resolved FRET-based methods. BIO-ALGORITHMS AND MED-SYSTEMS 2014. [DOI: 10.1515/bams-2014-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe protein folding problem would be considered “solved” when it will be possible to “read genes”, i.e., to predict the native fold of proteins, their dynamics, and the mechanism of fast folding based solely on sequence data. The long-term goal should be the creation of an algorithm that would simulate the stepwise mechanism of folding, which constrains the conformational space and in which random search for stable interactions is possible. Here, we focus attention on the initial phases of the folding transition starting with the compact disordered collapsed ensemble, in search of the initial sub-domain structural biases that direct the otherwise stochastic dynamics of the backbone. Our studies are designed to test the “loop hypothesis”, which suggests that fast closure of long loop structures by non-local interactions between clusters of mainly non-polar residues is an essential conformational step at the initiation of the folding transition of globular proteins. We developed and applied experimental methods based on time-resolved resonance excitation energy transfer (trFRET) measurements combined with fast mixing methods and studied the initial phases of the folding of
Collapse
|
6
|
Protein intrachain contact prediction with most interacting residues (MIR). BIO-ALGORITHMS AND MED-SYSTEMS 2014. [DOI: 10.1515/bams-2014-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe transition state ensemble during the folding process of globular proteins occurs when a sufficient number of intrachain contacts are formed, mainly, but not exclusively, due to hydrophobic interactions. These contacts are related to the folding nucleus, and they contribute to the stability of the native structure, although they may disappear after the energetic barrier of transition states has been passed. A number of structure and sequence analyses, as well as protein engineering studies, have shown that the signature of the folding nucleus is surprisingly present in the native three-dimensional structure, in the form of closed loops, and also in the early folding events. These findings support the idea that the residues of the folding nucleus become buried in the very first folding events, therefore helping the formation of closed loops that act as anchor structures, speed up the process, and overcome the Levinthal paradox. We present here a review of an algorithm intended to simulate in a discrete space the early steps of the folding process. It is based on a Monte Carlo simulation where perturbations, or moves, are randomly applied to residues within a sequence. In contrast with many technically similar approaches, this model does not intend to fold the protein but to calculate the number of non-covalent neighbors of each residue, during the early steps of the folding process. Amino acids along the sequence are categorized as most interacting residues (MIRs) or least interacting residues. The MIR method can be applied under a variety of circumstances. In the cases tested thus far, MIR has successfully identified the exact residue whose mutation causes a switch in conformation. This follows with the idea that MIR identifies residues that are important in the folding process. Most MIR positions correspond to hydrophobic residues; correspondingly, MIRs have zero or very low accessible surface area. Alongside the review of the MIR method, we present a new postprocessing method called smoothed MIR (SMIR), which refines the original MIR method by exploiting the knowledge of residue hydrophobicity. We review known results and present new ones, focusing on the ability of MIR to predict structural changes, secondary structure, and the improved precision with the SMIR method.
Collapse
|
7
|
Banach M, Roterman I, Prudhomme N, Chomilier J. Hydrophobic core in domains of immunoglobulin-like fold. J Biomol Struct Dyn 2013; 32:1583-600. [PMID: 23998258 DOI: 10.1080/07391102.2013.829756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This work analyzes proteins which contain an immunoglobulin fold, focusing on their hydrophobic core structure. The "fuzzy oil drop" model was used to measure the regularity of hydrophobicity distribution in globular domains belonging to proteins which exhibit the above-mentioned fold. Light-chain IgG domains are found to frequently contain regular hydrophobic cores, unlike the corresponding heavy-chain domains. Enzymes and DNA binding proteins present in the data-set are found to exhibit poor accordance with the hydrophobic core model.
Collapse
Affiliation(s)
- M Banach
- a Department of Bioinformatics and Telemedicine , Collegium Medicum, Jagiellonian University , Krakow , Poland
| | | | | | | |
Collapse
|
8
|
Orevi T, Rahamim G, Hazan G, Amir D, Haas E. The loop hypothesis: contribution of early formed specific non-local interactions to the determination of protein folding pathways. Biophys Rev 2013; 5:85-98. [PMID: 28510159 DOI: 10.1007/s12551-013-0113-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/01/2013] [Indexed: 12/12/2022] Open
Abstract
The extremely fast and efficient folding transition (in seconds) of globular proteins led to the search for some unifying principles embedded in the physics of the folding polypeptides. Most of the proposed mechanisms highlight the role of local interactions that stabilize secondary structure elements or a folding nucleus as the starting point of the folding pathways, i.e., a "bottom-up" mechanism. Non-local interactions were assumed either to stabilize the nucleus or lead to the later steps of coalescence of the secondary structure elements. An alternative mechanism was proposed, an "up-down" mechanism in which it was assumed that folding starts with the formation of very few non-local interactions which form closed long loops at the initiation of folding. The possible biological advantage of this mechanism, the "loop hypothesis", is that the hydrophobic collapse is associated with ordered compactization which reduces the chance for degradation and misfolding. In the present review the experiments, simulations and theoretical consideration that either directly or indirectly support this mechanism are summarized. It is argued that experiments monitoring the time-dependent development of the formation of specifically targeted early-formed sub-domain structural elements, either long loops or secondary structure elements, are necessary. This can be achieved by the time-resolved FRET-based "double kinetics" method in combination with mutational studies. Yet, attempts to improve the time resolution of the folding initiation should be extended down to the sub-microsecond time regime in order to design experiments that would resolve the classes of proteins which first fold by local or non-local interactions.
Collapse
Affiliation(s)
- Tomer Orevi
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel, 52900
| | - Gil Rahamim
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel, 52900
| | - Gershon Hazan
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel, 52900
| | - Dan Amir
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel, 52900
| | - Elisha Haas
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel, 52900.
| |
Collapse
|
9
|
Bottini S, Bernini A, De Chiara M, Garlaschelli D, Spiga O, Dioguardi M, Vannuccini E, Tramontano A, Niccolai N. ProCoCoA: A quantitative approach for analyzing protein core composition. Comput Biol Chem 2013; 43:29-34. [DOI: 10.1016/j.compbiolchem.2012.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/18/2012] [Accepted: 12/23/2012] [Indexed: 11/26/2022]
|
10
|
What lessons can be learned from studying the folding of homologous proteins? Methods 2010; 52:38-50. [PMID: 20570731 PMCID: PMC2965948 DOI: 10.1016/j.ymeth.2010.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 01/30/2023] Open
Abstract
The studies of the folding of structurally related proteins have proved to be a very important tool for investigating protein folding. Here we review some of the insights that have been gained from such studies. Our highlighted studies show just how such an investigation should be designed and emphasise the importance of the synergy between experiment and theory. We also stress the importance of choosing the right system carefully, exploiting the excellent structural and sequence databases at our disposal.
Collapse
|