1
|
Tagami T. Structural insights into starch-metabolizing enzymes and their applications. Biosci Biotechnol Biochem 2024; 88:864-871. [PMID: 38806254 DOI: 10.1093/bbb/zbae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Starch is a polysaccharide produced exclusively through photosynthesis in plants and algae; however, is utilized as an energy source by most organisms, from microorganisms to higher organisms. In mammals and the germinating seeds of plants, starch is metabolized by simple hydrolysis pathways. Moreover, starch metabolic pathways via unique oligosaccharides have been discovered in some bacteria. Each organism has evolved enzymes responsible for starch metabolism that are diverse in their enzymatic properties. This review, focusing on eukaryotic α-glucosidases and bacterial α-glucoside-hydrolyzing enzymes, summarizes the structural aspects of starch-metabolizing enzymes belonging to glycoside hydrolase families 15, 31, and 77 and their application for oligosaccharide production.
Collapse
Affiliation(s)
- Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Yi Z, Chen L, Jin Y, Shen Y, Liu N, Fang Y, Xiao Y, Wang X, Peng K, He K, Zhao H. Insight into broad substrate specificity and synergistic contribution of a fungal α-glucosidase in Chinese Nong-flavor daqu. Microb Cell Fact 2023; 22:114. [PMID: 37322438 DOI: 10.1186/s12934-023-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Chinese Nong-favor daqu, the presentative liquor starter of Baijiu, has been enriched with huge amounts of enzymes in degrading various biological macromolecules by openly man-made process for thousand years. According to previous metatranscriptomics analysis, plenty of α-glucosidases were identified to be active in NF daqu and played the key role in degrading starch under solid-state fermentation. However, none of α-glucosidases was characterized from NF daqu, and their actual functions in NF daqu were still unknown. RESULTS An α-glucosidase (NFAg31A, GH31-1 subfamily), the second highest expressed α-glucosidases in starch degradation of NF daqu, was directly obtained by heterologous expression in Escherichia coli BL21 (DE3). NFAg31A exhibited the highest sequence identities of 65.8% with α-glucosidase II from Chaetomium thermophilum, indicating its origin of fungal species, and it showed some similar features with homologous α-glucosidase IIs, i.e., optimal activity at pH ~ 7.0 and litter higher temperature of 45 ℃, well stability at 41.3 ℃ and a broad pH range of pH 6.0 to pH 10.0, and preference on hydrolyzing Glc-α1,3-Glc. Besides this preference, NFAg31A showed comparable activities on Glc-α1,2-Glc and Glc-α1,4-Glc, and low activity on Glc-α1,6-Glc, indicating its broad specificities on α-glycosidic substrates. Additionally, its activity was not stimulated by any of those detected metal ions and chemicals, and could be largely inhibited by glucose under solid-state fermentation. Most importantly, it exhibited competent and synergistic effects with two characterized α-amylases of NF daqu on hydrolyzing starch, i.e., all of them could efficiently degrade starch and malto-saccharides, two α-amylases showed advantage in degrading starch and long-chain malto-saccharides, and NFAg31A played the competent role with α-amylases in degrading short-chain malto-saccharides and the irreplaceable contribution in hydrolyzing maltose into glucose, thus alleviating the product inhibitions of α-amylases. CONCLUSIONS This study provides not only a suitable α-glucosidase in strengthening the quality of daqu, but also an efficient way to reveal roles of the complicated enzyme system in traditional solid-state fermentation. This study would further stimulate more enzyme mining from NF daqu, and promote their actual applications in solid-state fermentation of NF liquor brewing, as well as in other solid-state fermentation of starchy industry in the future.
Collapse
Affiliation(s)
- Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, 610041, P.R. China
| | - Lanchai Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, 610039, China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yi Shen
- Sichuan Langjiu Co., Ltd, Gulin, 646523, China
| | - Nian Liu
- Sichuan Food and Fermentation Industry Research & Design Institute, Chengdu, 611130, China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yao Xiao
- Analytical and Testing Center, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Xi Wang
- Sichuan Langjiu Co., Ltd, Gulin, 646523, China
| | - Kui Peng
- Sichuan Food and Fermentation Industry Research & Design Institute, Chengdu, 611130, China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, 610041, P.R. China
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
3
|
Glycoside hydrolases active on microbial exopolysaccharide α-glucans: structures and function. Essays Biochem 2023; 67:505-520. [PMID: 36876882 DOI: 10.1042/ebc20220219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
Glucose is the most abundant monosaccharide in nature and is an important energy source for living organisms. Glucose exists primarily as oligomers or polymers and organisms break it down and consume it. Starch is an important plant-derived α-glucan in the human diet. The enzymes that degrade this α-glucan have been well studied as they are ubiquitous throughout nature. Some bacteria and fungi produce α-glucans with different glucosidic linkages compared with that of starch, and their structures are quite complex and not fully understood. Compared with enzymes that degrade the α-(1→4) and α-(1→6) linkages in starch, biochemical and structural studies of the enzymes that catabolize α-glucans from these microorganisms are limited. This review focuses on glycoside hydrolases that act on microbial exopolysaccharide α-glucans containing α-(1→6), α-(1→3), and α-(1→2) linkages. Recently acquired information regarding microbial genomes has contributed to the discovery of enzymes with new substrate specificities compared with that of previously studied enzymes. The discovery of new microbial α-glucan-hydrolyzing enzymes suggests previously unknown carbohydrate utilization pathways and reveals strategies for microorganisms to obtain energy from external sources. In addition, structural analysis of α-glucan degrading enzymes has revealed their substrate recognition mechanisms and expanded their potential use as tools for understanding complex carbohydrate structures. In this review, the author summarizes the recent progress in the structural biology of microbial α-glucan degrading enzymes, touching on previous studies of microbial α-glucan degrading enzymes.
Collapse
|
4
|
Ikegaya M, Moriya T, Adachi N, Kawasaki M, Park EY, Miyazaki T. Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides. J Biol Chem 2022; 298:101827. [PMID: 35293315 PMCID: PMC9061262 DOI: 10.1016/j.jbc.2022.101827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Carbohydrate-active enzymes are involved in the degradation, biosynthesis, and modification of carbohydrates and vary with the diversity of carbohydrates. The glycoside hydrolase (GH) family 31 is one of the most diverse families of carbohydrate-active enzymes, containing various enzymes that act on α-glycosides. However, the function of some GH31 groups remains unknown, as their enzymatic activity is difficult to estimate due to the low amino acid sequence similarity between characterized and uncharacterized members. Here, we performed a phylogenetic analysis and discovered a protein cluster (GH31_u1) sharing low sequence similarity with the reported GH31 enzymes. Within this cluster, we showed that a GH31_u1 protein from Lactococcus lactis (LlGH31_u1) and its fungal homolog demonstrated hydrolytic activities against nigerose [α-D-Glcp-(1→3)-D-Glc]. The kcat/Km values of LlGH31_u1 against kojibiose and maltose were 13% and 2.1% of that against nigerose, indicating that LlGH31_u1 has a higher specificity to the α-1,3 linkage of nigerose than other characterized GH31 enzymes, including eukaryotic enzymes. Furthermore, the three-dimensional structures of LlGH31_u1 determined using X-ray crystallography and cryogenic electron microscopy revealed that LlGH31_u1 forms a hexamer and has a C-terminal domain comprising four α-helices, suggesting that it contributes to hexamerization. Finally, crystal structures in complex with nigerooligosaccharides and kojibiose along with mutational analysis revealed the active site residues involved in substrate recognition in this enzyme. This study reports the first structure of a bacterial GH31 α-1,3-glucosidase and provides new insight into the substrate specificity of GH31 enzymes and the physiological functions of bacterial and fungal GH31_u1 members.
Collapse
Affiliation(s)
- Marina Ikegaya
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan; Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), Tsukuba, Ibaraki, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
5
|
Garcia CA, Gardner JG. Bacterial α-diglucoside metabolism: perspectives and potential for biotechnology and biomedicine. Appl Microbiol Biotechnol 2021; 105:4033-4052. [PMID: 33961116 PMCID: PMC8237927 DOI: 10.1007/s00253-021-11322-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
In a competitive microbial environment, nutrient acquisition is a major contributor to the survival of any individual bacterial species, and the ability to access uncommon energy sources can provide a fitness advantage. One set of soluble carbohydrates that have attracted increased attention for use in biotechnology and biomedicine is the α-diglucosides. Maltose is the most well-studied member of this class; however, the remaining four less common α-diglucosides (trehalose, kojibiose, nigerose, and isomaltose) are increasingly used in processed food and fermented beverages. The consumption of trehalose has recently been shown to be a contributing factor in gut microbiome disease as certain pathogens are using α-diglucosides to outcompete native gut flora. Kojibiose and nigerose have also been examined as potential prebiotics and alternative sweeteners for a variety of foods. Compared to the study of maltose metabolism, our understanding of the synthesis and degradation of uncommon α-diglucosides is lacking, and several fundamental questions remain unanswered, particularly with regard to the regulation of bacterial metabolism for α-diglucosides. Therefore, this minireview attempts to provide a focused analysis of uncommon α-diglucoside metabolism in bacteria and suggests some future directions for this research area that could potentially accelerate biotechnology and biomedicine developments. KEY POINTS: • α-diglucosides are increasingly important but understudied bacterial metabolites. • Kinetically superior α-diglucoside enzymes require few amino acid substitutions. • In vivo studies are required to realize the biotechnology potential of α-diglucosides.
Collapse
Affiliation(s)
- Cecelia A Garcia
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, MD, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
6
|
Miyazaki T, Park EY. Crystal structure of the Enterococcus faecalis α-N-acetylgalactosaminidase, a member of the glycoside hydrolase family 31. FEBS Lett 2020; 594:2282-2293. [PMID: 32367553 DOI: 10.1002/1873-3468.13804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Glycoside hydrolases catalyze the hydrolysis of glycosidic linkages in carbohydrates. The glycoside hydrolase family 31 (GH31) contains α-glucosidase, α-xylosidase, α-galactosidase, and α-transglycosylase. Recent work has expanded the diversity of substrate specificity of GH31 enzymes, and α-N-acetylgalactosaminidases (αGalNAcases) belonging to GH31 have been identified in human gut bacteria. Here, we determined the first crystal structure of a truncated form of GH31 αGalNAcase from the human gut bacterium Enterococcus faecalis. The enzyme has a similar fold to other reported GH31 enzymes and an additional fibronectin type 3-like domain. Additionally, the structure in complex with N-acetylgalactosamine reveals that conformations of the active site residues, including its catalytic nucleophile, change to recognize the ligand. Our structural analysis provides insight into the substrate recognition and catalytic mechanism of GH31 αGalNAcases.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Japan
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
7
|
Identification of salt tolerance-related genes of Lactobacillus plantarum D31 and T9 strains by genomic analysis. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01551-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract
Purpose
The aim of this study was to identify salt tolerance-related genes of Lactobacillus plantarum D31 and T9 strains, isolated from Chinese traditional fermented food, by genomic analysis.
Methods
Tolerance of L. plantarum D31 and T9 strains was evaluated at different stress conditions (temperatures, acid, osmolality, and artificial gastrointestinal fluids). Draft genomes of the two strains were determined using the Illumina sequencing technique. Comparative genomic analysis and gene transcriptional analysis were performed to identify and validate the salt tolerance-related genes.
Results
Both L. plantarum D31 and T9 strains were able to withstand high osmotic pressure caused by 5.0% NaCl, and L. plantarum D31 even to tolerate 8.0% NaCl. L. plantarum D31 genome contained 3,315,786 bp (44.5% GC content) with 3106 predicted protein-encoding genes, while L. plantarum T9 contained 3,388,070 bp (44.1% GC content) with 3223 genes. Comparative genomic analysis revealed a number of genes involved in the maintenance of intracellular ion balance, absorption or synthesis of compatible solutes, stress response, and modulation of membrane composition in L. plantarum D31 and or T9 genomes. Gene transcriptional analysis validated that most of these genes were coupled with the stress-resistance phenotypes of the two strains.
Conclusions
L. plantarum D31 and T9 strains tolerated 5.0% NaCl, and D31 even tolerated 8.0% NaCl. The draft genomes of these two strains were determined, and comparative genomic analysis revealed multiple molecular coping strategies for the salt stress tolerance in L. plantarum D31 and T9 strains.
Collapse
|
8
|
Tsutsumi K, Gozu Y, Nishikawa A, Tonozuka T. Structural insights into polysaccharide recognition by
Flavobacterium johnsoniae
dextranase, a member of glycoside hydrolase family 31. FEBS J 2019; 287:1195-1207. [DOI: 10.1111/febs.15074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/25/2019] [Accepted: 09/20/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Kenta Tsutsumi
- Department of Applied Biological Science Tokyo University of Agriculture and Technology Japan
| | - Yoshifumi Gozu
- Department of Applied Biological Science Tokyo University of Agriculture and Technology Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science Tokyo University of Agriculture and Technology Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science Tokyo University of Agriculture and Technology Japan
| |
Collapse
|
9
|
Okuyama M, Miyamoto M, Matsuo I, Iwamoto S, Serizawa R, Tanuma M, Ma M, Klahan P, Kumagai Y, Tagami T, Kimura A. Substrate recognition of the catalytic α-subunit of glucosidase II from Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2017; 81:1503-1511. [DOI: 10.1080/09168451.2017.1320520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Abstract
The recombinant catalytic α-subunit of N-glycan processing glucosidase II from Schizosaccharomyces pombe (SpGIIα) was produced in Escherichia coli. The recombinant SpGIIα exhibited quite low stability, with a reduction in activity to <40% after 2-days preservation at 4 °C, but the presence of 10% (v/v) glycerol prevented this loss of activity. SpGIIα, a member of the glycoside hydrolase family 31 (GH31), displayed the typical substrate specificity of GH31 α-glucosidases. The enzyme hydrolyzed not only α-(1→3)- but also α-(1→2)-, α-(1→4)-, and α-(1→6)-glucosidic linkages, and p-nitrophenyl α-glucoside. SpGIIα displayed most catalytic properties of glucosidase II. Hydrolytic activity of the terminal α-glucosidic residue of Glc2Man3-Dansyl was faster than that of Glc1Man3-Dansyl. This catalytic α-subunit also removed terminal glucose residues from native N-glycans (Glc2Man9GlcNAc2 and Glc1Man9GlcNAc2) although the activity was low.
Collapse
Affiliation(s)
- Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masashi Miyamoto
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Shogo Iwamoto
- Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Ryo Serizawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masanari Tanuma
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Min Ma
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Patcharapa Klahan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuya Kumagai
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Genetic and biochemical characterization of an oligo-α-1,6-glucosidase from Lactobacillus plantarum. Int J Food Microbiol 2017; 246:32-39. [DOI: 10.1016/j.ijfoodmicro.2017.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/03/2016] [Accepted: 01/30/2017] [Indexed: 01/01/2023]
|
11
|
Jung JH, Seo DH, Holden JF, Kim HS, Baik MY, Park CS. Broad substrate specificity of a hyperthermophilic α-glucosidase from Pyrobaculum arsenaticum. Food Sci Biotechnol 2016; 25:1665-1669. [PMID: 30263460 DOI: 10.1007/s10068-016-0256-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 11/26/2022] Open
Abstract
Pyrobaculum arsenaticum is a hyperthermophilic archaeon that thrives at 95°C. This strain encodes a putative GH31 intracellular α-glucosidase (Pars_2044, PyAG) in its genome. The recombinant PyAG (rPyAG) was optimally expressed in Escherichia coli at 37°C for 4 h after IPTG induction. The purified rPyAG is a homotetrameric α-glucosidase that exhibited highly thermostable properties. Maximum p-nitrophenyl-α-D-glucopyranoside (pNPG) hydrolysis activity was observed at 90°C and pH 5.0. The enzyme mainly recognized the non-reducing end of the substrate, releasing the glucose unit. rPyAG also had broad substrate specificity, cleaving maltose (α-1,4-linkage), kojibiose (α-1,2-linkage), and nigerose (α-1,3-linkage) with similar efficiency. Based on these results, rPyAG can be used to modify health-relevant sugar conjugates linked by α-1,2- or α-1,3-bonds.
Collapse
Affiliation(s)
- Jong-Hyun Jung
- 1Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Gyeonggi, 17140 Korea
- 2Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212 Korea
| | - Dong-Ho Seo
- 1Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Gyeonggi, 17140 Korea
- 3Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - James F Holden
- 4Department of Microbiology, University of Massachusetts, Amherst, MA 01003 USA
| | - Hyun-Seok Kim
- 5Department of Food Science and Biotechnology, Andong National University, Andong, Gyeongbuk, 36729 Korea
| | - Moo-Yeol Baik
- 1Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Gyeonggi, 17140 Korea
| | - Cheon-Seok Park
- 1Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Gyeonggi, 17140 Korea
| |
Collapse
|
12
|
Gozu Y, Ishizaki Y, Hosoyama Y, Miyazaki T, Nishikawa A, Tonozuka T. A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae. Biosci Biotechnol Biochem 2016; 80:1562-7. [DOI: 10.1080/09168451.2016.1182852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity.
Collapse
Affiliation(s)
- Yoshifumi Gozu
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Yuichi Ishizaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Yuhei Hosoyama
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takatsugu Miyazaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
13
|
Biochemical properties and substrate recognition mechanism of GH31 α-glucosidase from Bacillus sp. AHU 2001 with broad substrate specificity. Biochimie 2015; 108:140-8. [DOI: 10.1016/j.biochi.2014.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022]
|
14
|
Maneesan J, Matsuura H, Tagami T, Mori H, Kimura A. Production of 1,5-anhydro-d-fructose by an α-glucosidase belonging to glycoside hydrolase family 31. Biosci Biotechnol Biochem 2014; 78:2064-8. [DOI: 10.1080/09168451.2014.943651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
α-1,4-Glucan lyases [glycoside hydrolase family (GH) 31] catalyze an elimination reaction to form 1,5-anhydro-d-fructose (AF), while GH31 α-glucosidases normally catalyze a hydrolytic reaction. We determined that a small amount of AF was produced by GH31 Aspergillus niger α-glucosidase from maltooligosaccharides by elimination reaction, likely via an oxocarbenium ion intermediate.
Collapse
Affiliation(s)
- Janjira Maneesan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Characterization of a Glycoside Hydrolase Family 31 α-Glucosidase Involved in Starch Utilization inPodospora anserina. Biosci Biotechnol Biochem 2014; 77:2117-24. [DOI: 10.1271/bbb.130545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|