1
|
Li X, Zhu Y, Zhao T, Zhang X, Qian H, Wang J, Miao X, Zhou L, Li N, Ye L. Role of COX-2/PGE2 signaling pathway in the apoptosis of rat ovarian granulosa cells induced by MEHP. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114717. [PMID: 36889213 DOI: 10.1016/j.ecoenv.2023.114717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE MEHP, as the metabolite of DEHP, is a widely used environmental endocrine disruptor. Ovarian granulosa cells participate in maintaining the function of ovary and COX2/PGE2 pathway may regulate the function of granulosa cells. We aimed to explore how COX-2/PGE2 pathway affects cell apoptosis in ovarian granulosa cells caused by MEHP. METHODS Primary rat ovarian granulosa cells were treated with MEHP (0, 200, 250, 300 and 350 μM) for 48 h. Adenovirus was used for over-expression of COX-2 gene. The cell viability was tested with CCK8 kits. The apoptosis level was tested by flow cytometry. The levels of PGE2 were tested with ELISA kits. The expression levels of COX-2/PGE2 pathway related genes, ovulation-related genes and apoptosis-related genes, were measured with RT-qPCR and Western blot. RESULTS MEHP decreased the cell viability. After MEHP exposure, the cell apoptosis level increased. The level of PGE2 markedly decreased. The expression levels of COX-2/PGE2 pathway related genes, ovulation-related genes and anti-apoptotic genes decreased; the expression levels of pro-apoptotic genes increased. The apoptosis level was alleviated after over-expression of COX-2, and the level of PGE2 slightly increased. The expression levels of PTGER2 and PTGER4, and the levels of ovulation-related genes increased; the levels of pro-apoptotic genes decreased. CONCLUSION MEHP can cause cell apoptosis by down-regulating the levels of ovulation-related genes via COX-2/PGE2 pathway in rat ovarian granulosa cells.
Collapse
Affiliation(s)
- Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jia Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Na Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China; Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Abstract
Among prostaglandins, Prostaglandin E2 (PGE2) (PGE2) is considered especially important for decidualization, ovulation, implantation and pregnancy. Four major PGE2 receptor subtypes, EP1, EP2, EP3, EP4, as well as peroxisome proliferator-activated receptors (PPARs), mediate various PGE2 effects via their coupling to distinct signaling pathways. This review summarizes up-to-date literatures on the role of prostaglandin E2 receptors in female reproduction, which could provide a broad perspective to guide further research in this field. PGE2 plays an indispensable role in decidualization, ovulation, implantation and pregnancy. However, the precise mechanism of Prostaglandin E2 (EP) receptors in the female reproductive system is still limited. More investigations should be performed on the mechanism of EP receptors in the pathological states, and the possibility of EP agonists or antagonists clinically used in improving reproductive disorders.
Collapse
|
3
|
Robker RL, Hennebold JD, Russell DL. Coordination of Ovulation and Oocyte Maturation: A Good Egg at the Right Time. Endocrinology 2018; 159:3209-3218. [PMID: 30010832 PMCID: PMC6456964 DOI: 10.1210/en.2018-00485] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/09/2018] [Indexed: 11/19/2022]
Abstract
Ovulation is the appropriately timed release of a mature, developmentally competent oocyte from the ovary into the oviduct, where fertilization occurs. Importantly, ovulation is tightly linked with oocyte maturation, demonstrating the interdependency of these two parallel processes, both essential for female fertility. Initiated by pituitary gonadotropins, the ovulatory process is mediated by intrafollicular paracrine factors from the theca, mural, and cumulus granulosa cells, as well as the oocyte itself. The result is the induction of cumulus expansion, proteolysis, angiogenesis, inflammation, and smooth muscle contraction, which are each required for follicular rupture. These complex intercellular communication networks and the essential ovulatory genes have been well defined in mouse models and are highly conserved in primates, including humans. Importantly, recent discoveries in regulation of ovulation highlight new areas of investigation.
Collapse
Affiliation(s)
- Rebecca L Robker
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
- Correspondence: Rebecca L. Robker, PhD, Robinson Research Institute, School of Medicine, University of Adelaide, South Australia 5005, Australia. E-mail:
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Darryl L Russell
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Niringiyumukiza JD, Cai H, Xiang W. Prostaglandin E2 involvement in mammalian female fertility: ovulation, fertilization, embryo development and early implantation. Reprod Biol Endocrinol 2018; 16:43. [PMID: 29716588 PMCID: PMC5928575 DOI: 10.1186/s12958-018-0359-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/20/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Infertility in mammalian females has been a challenge in reproductive medicine. The causes of female infertility include anovulation, ovulated oocyte defects, abnormal fertilization, and insufficient luteal support for embryo development, as well as early implantation. Ovulation induction, in vitro fertilization and luteal support regimens have been performed for decades to increase fertility rates. The identification of proteins and biochemical factors involved in female reproduction is essential to further increase female fertility rates. Evidence has shown that prostaglandins (PGs) might be involved in the female reproductive process, mainly ovulation, fertilization, and implantation. However, only a few studies on individual PGs in female reproduction have been done so far. This review aimed to identify the pivotal role of prostaglandin E2 (PGE2), a predominant PG, in female reproduction to improve fertility, specifically ovulation, fertilization, embryo development and early implantation. RESULTS Prostaglandin E2 (PGE2) was shown to play a relevant role in the ovulatory cascade, including meiotic maturation, cumulus expansion and follicle rupture, through inducing ovulatory genes, such as Areg, Ereg, Has2 and Tnfaip6, as well as increasing intracellular cAMP levels. PGE2 reduces extracellular matrix viscosity and thereby optimizes the conditions for sperm penetration. PGE2 reduces the phagocytic activity of polymorphonuclear neutrophils (PMNs) against sperm. In the presence of PGE2, sperm function and binding capacity to oocytes are enhanced. PGE2 maintains luteal function for embryo development and early implantation. In addition, it induces chemokine expression for trophoblast apposition and adhesion to the decidua for implantation. CONCLUSION It has been shown that PGE2 positively affects different stages of female fertility. Therefore, PGE2 should be taken into consideration when optimizing reproduction in infertile females. We suggest that in clinical practice, the administration of non-steroidal anti-inflammatory drugs, which are PGE2 synthesis inhibitors, should be reasonable and limited in infertile women. Additionally, assessments of PGE2 protein and receptor expression levels should be taken into consideration.
Collapse
Affiliation(s)
- Jean Damascene Niringiyumukiza
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Hongcai Cai
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Wenpei Xiang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
5
|
Fujihara Y, Miyata H, Ikawa M. Factors controlling sperm migration through the oviduct revealed by gene-modified mouse models. Exp Anim 2018; 67:91-104. [PMID: 29353867 PMCID: PMC5955741 DOI: 10.1538/expanim.17-0153] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian fertilization is comprised of many steps including sperm survival in the
uterus, sperm migration in the female reproductive tract, physiological and morphological
changes to the spermatozoa, and sperm-egg interaction in the oviduct. In
vitro studies have revealed essential factors for these fertilization steps for
over half a century. However, the molecular mechanism of fertilization has recently been
revised by the emergence of genetically modified animals. Here, we focus on essential
factors for sperm fertilizing ability and describe recent advances in our knowledge of the
mechanisms of mammalian fertilization, especially of sperm migration from the uterus into
the oviduct.
Collapse
Affiliation(s)
- Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
6
|
Kim SO, Duffy DM. Mapping PTGERs to the Ovulatory Follicle: Regional Responses to the Ovulatory PGE2 Signal. Biol Reprod 2016; 95:33. [PMID: 27307073 PMCID: PMC5029471 DOI: 10.1095/biolreprod.116.140574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/27/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a key intrafollicular mediator of ovulation in many, if not all, mammalian species. PGE2 acts at follicular cells via four distinct PGE2 receptors (PTGERs). Within the ovulatory follicle, each cell type (e.g., oocyte, cumulus granulosa cell, mural granulosa cell, theca cell, endothelial cell) expresses a different subset of the four PTGERs. Expression of a subset of PTGERs has consequences for the generation of intracellular signals and ultimately the unique functions of follicular cells that respond to PGE2. Just as the ovulatory LH surge regulates PGE2 synthesis, the LH surge also regulates expression of the four PTGERs. The pattern of expression of the four PTGERs among follicular cells before and after the LH surge forms a spatial and temporal map of PGE2 responses. Differential PTGER expression, coupled with activation of cell-specific intracellular signals, may explain how a single paracrine mediator can have pleotropic actions within the ovulatory follicle. Understanding the role of each PTGER in ovulation may point to previously unappreciated opportunities to both promote and prevent fertility.
Collapse
Affiliation(s)
- Soon Ok Kim
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
7
|
Li FX, Liu Y, Miao XP, Fu GQ, Curry TE. Expression and regulation of the differentiation regulators ERBB Receptor Feedback Inhibitor 1 (ERRFI1) and Interferon-related Developmental Regulator 1 (IFRD1) during the periovulatory period in the rat ovary. Mol Reprod Dev 2016; 83:714-23. [DOI: 10.1002/mrd.22673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Fei-xue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Ying Liu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Xiao-ping Miao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Guo-quan Fu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou China
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center; University of Kentucky; Lexington Kentucky
| |
Collapse
|
8
|
Sugimoto Y, Inazumi T, Tsuchiya S. Roles of prostaglandin receptors in female reproduction. J Biochem 2014; 157:73-80. [PMID: 25480981 DOI: 10.1093/jb/mvu081] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prostaglandins (PGs) have long been known to play roles in various processes of female reproduction; however, the molecular mechanisms therein remained unsolved until recently. This review summarizes the recent progress towards understanding the molecular mechanisms underlying PG actions in fertilization and parturition. A series of studies using EP2-deficient mice demonstrated that after ovulation chemokine signalling in the cumulus cells stimulates integrin activation and cumulus extracellular matrix (ECM) assembly through the RhoA/ROCK/actomyosin pathway, although excessive chemokine signalling disturbs sperm penetration. PGE2-EP2 signalling suppresses such a chemokine signalling and stimulates cumulus ECM disassembly, which contributes to successful fertilization. A series of studies using FP-deficient mice revealed that PGF(2α)-FP signalling induces parturition at least by terminating progesterone production; however, some other EP signals are likely to be involved in parturition by inducing myometrial contraction. Therefore, it should be clarified as to which EP and/or FP receptor signals are physiologically essential for myometrial contraction and successful parturition.
Collapse
Affiliation(s)
- Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan and CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Peluffo MC, Stanley J, Braeuer N, Rotgeri A, Fritzemeier KH, Fuhrmann U, Buchmann B, Adevai T, Murphy MJ, Zelinski MB, Lindenthal B, Hennebold JD, Stouffer RL. A prostaglandin E2 receptor antagonist prevents pregnancies during a preclinical contraceptive trial with female macaques. Hum Reprod 2014; 29:1400-12. [PMID: 24781425 DOI: 10.1093/humrep/deu083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Can administration of a prostaglandin (PG) E2 receptor 2 (PTGER2) antagonist prevent pregnancy in adult female monkeys by blocking periovulatory events in the follicle without altering menstrual cyclicity or general health? SUMMARY ANSWER This is the first study to demonstrate that a PTGER2 antagonist can serve as an effective non-hormonal contraceptive in primates. WHAT IS KNOWN ALREADY The requirement for PGE2 in ovulation and the release of an oocyte surrounded by expanded cumulus cells (cumulus-oocyte expansion; C-OE) was established through the generation of PTGS2 and PTGER2 null-mutant mice. A critical role for PGE2 in primate ovulation is supported by evidence that intrafollicular injection of indomethacin in rhesus monkeys suppressed follicle rupture, whereas co-injection of PGE2 with indomethacin resulted in ovulation. STUDY DESIGN, SIZE, DURATION First, controlled ovulation protocols were performed in adult, female rhesus monkeys to analyze the mRNA levels for genes encoding PGE2 synthesis and signaling components in the naturally selected pre-ovulatory follicle at different times after the ovulatory hCG stimulus (0, 12, 24, 36 h pre-ovulation; 36 h post-ovulation, n = 3-4/time point). Second, controlled ovarian stimulation cycles were utilized to obtain multiple cumulus-oocyte complexes (COCs) from rhesus monkeys to evaluate the role of PGE2 in C-OE in vitro (n = 3-4 animals/treatment; ≥3 COCs/animal/treatment). Third, adult cycling female cynomolgus macaques were randomly assigned (n = 10/group) to vehicle (control) or PTGER2 antagonist (BAY06) groups to perform a contraceptive trial. After the first treatment cycle, a male of proven fertility was introduced into each group and they remained housed together for the duration of the 5-month contraceptive trial that was followed by a post-treatment reversibility trial. PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative real-time PCR, COC culture and expansion, immunofluorescence/confocal microscopy, enzyme immunoassay, contraceptive trial, ultrasonography, complete blood counts, serum biochemistry tests and blood lipid profiles. MAIN RESULTS AND THE ROLE OF CHANCE Several mRNAs encoding proteins involved in PGE2 synthesis, metabolism and signaling increase (P < 0.05) in the periovulatory follicle after administration of an ovulatory hCG bolus. PGE2 signaling through PTGER2 induces cumulus cell expansion and production of hyaluronic acid, which are critical events for fertilization. Moreover, chronic administration of a selective PTGER2 antagonist resulted in a significant (P < 0.05 versus vehicle-treated controls) contraceptive effect without altering steroid hormone patterns or menstrual cyclicity during a 5-months contraceptive trial. Fertility recovered as early as 1 month after ending treatment. LIMITATIONS, REASONS FOR CAUTION This is a proof-of-concept study in a non-human primate model. Further investigations are warranted to elucidate the mechanism(s) of PTGER2 antagonist action in the primate ovary. Although PTGER2 antagonist treatment did not produce any obvious undesirable effects, improvements in the mode of administration, as well as the efficacy of these compounds, are necessary to consider such a contraceptive for women. WIDER IMPLICATIONS OF THE FINDINGS Monitoring as well as improving the efficacy and safety of female contraceptives is an important public health activity. Even though hormonal contraceptives are effective for women, concerns remain regarding their side-effects and long-term use because of the widespread actions of such steroidal products in many tissues. Moreover, some women cannot take hormones for medical reasons. Thus, development of non-hormonal contraceptives for women is warranted. STUDY FUNDING/COMPETING INTEREST(S) Supported by Bayer HealthCare Pharmaceuticals, The Eunice Kennedy Shriver NICHD Contraceptive Development and Research Center (U54 HD055744), NIH Office of the Director (Oregon National Primate Research Center P51 OD011092), and a Lalor Foundation Postdoctoral Basic Research Fellowship (MCP). The use of the Leica confocal was supported by grant number S10RR024585. Some of the authors (N.B., A.R., K.-H.F., U.F., B.B. and B.L.) are employees of Bayer Healthcare Pharma.
Collapse
|
10
|
Sayasith K, Lussier J, Doré M, Sirois J. Human chorionic gonadotropin-dependent up-regulation of epiregulin and amphiregulin in equine and bovine follicles during the ovulatory process. Gen Comp Endocrinol 2013. [PMID: 23178756 DOI: 10.1016/j.ygcen.2012.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Little is known about the expression and regulation of epiregulin (EREG) and amphiregulin (AREG) in ovarian follicles of large monoovulatory animal species. To characterize the gonadotropin-dependent regulation of EREG and AREG mRNAs in equine follicles prior to ovulation, extracts were prepared from equine follicles collected during estrus between 0 and 39h post-hCG and corpora lutea obtained on day 8 of the estrous cycle (day 0=day of ovulation). Results from RT-PCR/Southern blot analyses showed that levels of EREG and AREG mRNAs were very low in follicles obtained at 0h but increased thereafter (P<0.05), with maximal levels observed 33-39h post-hCG. This significant increase was observed in both granulosa and theca cells. Immunohistochemistry and immunoblot analyses confirmed the hCG-dependent induction of EREG protein in both cell types. RT-PCR/Southern blot analyses of ADAM17, which encodes an enzyme that cleaves and releases soluble bioactive EREG and AREG, showed that levels of its transcript were high and remained constant throughout the period studied. Studies on the hCG-dependent regulation of EREG and AREG in bovine preovulatory follicles in vivo showed that the induction of both transcripts was transient, observed predominantly at 6h post-hCG and localized only in granulosa cells. To characterize the effect of epidermal growth factor receptor (EGFR) activation on the expression of ovulation-related genes in granulosa cells of a large monoovulatory animal species, primary cultures of bovine granulosa cells were established. Results from RT-PCR analyses revealed that EREG and AREG mRNAs were induced by forskolin treatment in vitro; but the EGFR inhibitor PD153035 suppressed the forskolin-dependent induction of several ovulation-related transcripts, including PTGS2, PTGER2, TNFAIP6, PGR, MMP1, VEGFA, and CTSL2 mRNAs. Moreover, these transcripts were induced in granulosa cell cultures by EGF, an analog of EREG and AREG. Collectively, this study identifies differences in the temporal and cellular localization of EREG and AREG expression in equine and bovine preovulatory follicles, and underscores the potential role of follicular EGFR activation in the regulation of ovulation-regulated genes in large monoovulatory species.
Collapse
Affiliation(s)
- Khampoun Sayasith
- Centre de recherche en reproduction animale and Département de biomédecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
| | | | | | | |
Collapse
|
11
|
Toda K, Ono M, Yuhki KI, Ushikubi F, Saibara T. 17β-Estradiol is critical for the preovulatory induction of prostaglandin E(2) synthesis in mice. Mol Cell Endocrinol 2012; 362:176-82. [PMID: 22713853 DOI: 10.1016/j.mce.2012.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Aromatase-deficient (ArKO) mice are totally anovulatory due to insufficient estrogen production. However, sequential administrations of high doses of 17β-estradiol (E2) and gonadotropins were found to induce ovulation in these mice. Here, we examined how the ovulatory stimulation for ArKO mice alters the expressions of genes related to prostaglandin (PG) E(2) metabolism and ovarian contents of PGE(2), as PGE(2) is one of the critical mediators of ovulatory induction. The ovulatory stimulation significantly increased mRNA expressions of prostaglandin-endoperoxide synthase 2, PGE(2) receptor type 4 and sulfotransferase family 1E, member 1, in preovulatory ArKO ovaries. In contrast, it suppressed the mRNA expression of 15-hydroxyprostaglandin dehydrogenase. Furthermore, significant elevation in the PGE(2) contents was detected in the preovulatory ovaries of ArKO mice after stimulation with E2 plus ovulatory doses of gonadotropins. Thus, these analyses demonstrate a requirement of E2 for the preovulatory enhancement of PGE(2) synthesis, leading to future success in ovulation.
Collapse
Affiliation(s)
- Katsumi Toda
- Department of Biochemistry, Kochi University, School of Medicine, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | |
Collapse
|
12
|
Kotarska K, Lenartowicz M, Przybyło M, Gołas A, Styrna J. Increased prostaglandin E₂-EP2 signalling in cumulus cells of female mice sired by males with the Y-chromosome long-arm deletion. Reprod Fertil Dev 2012; 25:900-6. [PMID: 22953728 DOI: 10.1071/rd12086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/26/2012] [Indexed: 11/23/2022] Open
Abstract
Cumuli oophori surrounding ovulated oocytes of B10.BR(Y(del)) females (sired by males with the Y-chromosome long-arm deletion) are more resistant to hyaluronidase digestion than cumuli oophori around eggs of genetically identical females but sired by males with the intact Y chromosome (B10.BR). This has been interpreted as a result of differences in paternal genome imprinting, which females of both groups inherit from their fathers. The following study shows that it is not hyaluronan, but rather excessive protein concentration, that makes the cumulus extracellular matrix of B10.BR(Y(del)) oocytes more resistant to enzymatic treatment. It was revealed, additionally, that cumulus cells around ovulating oocytes of B10.BR(Y(del)) females display higher surface accumulation of prostaglandin EP2 subtype receptors and higher expression of the Ptgs2 gene (encoding a rate-limiting enzyme of prostaglandin E₂ synthesis) in relation to the cells of control B10.BR females. The expression levels of the prostaglandin-dependent Tnfaip6 and Ccl2 genes were also altered in B10.BR(Y(del)) cumulus cells in a manner indicating increased prostaglandin signalling. The study provides further evidence for the divergence in reproductive phenotypes between B10.BR and B10.BR(Y(del)) female mice. It supports the hypothesis that genes of the Y-chromosome long arm may be involved in establishment of epigenetic marks in X-bearing spermatozoa.
Collapse
Affiliation(s)
- Katarzyna Kotarska
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | | | | | | | | |
Collapse
|
13
|
Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage. PLoS One 2011; 6:e27179. [PMID: 22087263 PMCID: PMC3210145 DOI: 10.1371/journal.pone.0027179] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/11/2011] [Indexed: 11/22/2022] Open
Abstract
The bi-directional communication between the oocyte and the surrounding cumulus cells (CCs) is crucial for the acquisition of oocyte competence. We investigated the transcriptomic profile of human CCs isolated from mature and immature oocytes under stimulated cycle. We used human Genome U133 Plus 2.0 microarrays to perform an extensive analysis of the genes expressed in human CCs obtained from patients undergoing intra-cytoplasmic sperm injection. CC samples were isolated from oocyte at germinal vesicle, stage metaphase I and stage metaphase II. For microarray analysis, we used eight chips for each CC category. Significance analysis of microarray multiclass was used to analyze the microarray data. Validation was performed by RT-qPCR using an independent cohort of CC samples. We identified differentially over-expressed genes between the three CC categories. This study revealed a specific signature of gene expression in CCs issued from MII oocyte compared with germinal vesicle and metaphase I. The CC gene expression profile, which is specific of MII mature oocyte, can be useful as predictors of oocyte quality.
Collapse
|
14
|
Lee YS, VandeVoort CA, Gaughan JP, Midic U, Obradovic Z, Latham KE. Extensive effects of in vitro oocyte maturation on rhesus monkey cumulus cell transcriptome. Am J Physiol Endocrinol Metab 2011; 301:E196-209. [PMID: 21487073 PMCID: PMC3129840 DOI: 10.1152/ajpendo.00686.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The elaboration of a quality oocyte is integrally linked to the correct developmental progression of cumulus cell phenotype. In humans and nonhuman primates, oocyte quality is diminished with in vitro maturation. To determine the changes in gene expression in rhesus monkey cumulus cells (CC) that occur during the final day prior to oocyte maturation and how these changes differ between in vitro (IVM) and in vivo maturation (VVM), we completed a detailed comparison of transcriptomes using the Affymetrix gene array. We observed a large number of genes differing in expression when comparing IVM-CC and VVM-CC directly but a much larger number of differences when comparing the transitions from the prematuration to the post-IVM and post-VVM states. We observed a truncation or delay in the normal pattern of gene regulation but also remarkable compensatory changes in gene expression during IVM. Among the genes affected by IVM are those that contribute to productive cell-cell interactions between cumulus cell and oocyte and between cumulus cells. Numerous genes involved in lipid metabolism are incorrectly regulated during IVM, and the synthesis of sex hormones appears not to be suppressed during IVM. We identified a panel of 24 marker genes, the expression of which should provide the foundation for understanding how IVM can be improved for monitoring IVM conditions and for diagnosing oocyte quality.
Collapse
Affiliation(s)
- Young S Lee
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
15
|
Tsubota K, Kanki M, Noto T, Shiraki K, Takeuchi A, Nakatsuji S, Seki J, Oishi Y, Matsumoto M, Nakayama H. Transitional gene expression profiling in ovarian follicle during ovulation in normal-cycle rats. Toxicol Pathol 2011; 39:641-52. [PMID: 21551027 DOI: 10.1177/0192623311406932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evaluation of ovarian toxicity requires an understanding of the physiological changes related to the estrous cycle in the ovary. The authors investigated the transitional gene expression profile of ovulatory follicles in rats that show normal estrous cyclicity. Ovaries were collected at 10:00 and 22:00 on the proestrus day and at 10:00 on the estrus day. Ovarian follicles or early corpora lutea were isolated using laser microdissection, and extracted total RNA was analyzed using microarray technology. Clustering analysis revealed four different expression patterns: transient up- or down-regulation only at 22:00 on the proestrus day (pattern 1), up- or down-regulation only at 10:00 on the estrus day (pattern 2), continuous increase at 22:00 on the proestrus day and at 10:00 on the estrus day (pattern 3), and up- or down-regulation at 22:00 on the proestrus day and level maintenance at 10:00 on the estrus day (pattern 4). In addition, these probe sets were functionally categorized in each pattern using the Ingenuity Pathways Analysis database. These data will aid in understanding the physiology of ovulation and may be useful in assessing ovarian toxicity and its mechanism, such as in investigations of chemical-induced ovulatory impairment.
Collapse
Affiliation(s)
- Kenjiro Tsubota
- Toxicologic Pathology, Drug Safety Research Laboratories, Astellas Pharma Inc., Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|