1
|
Nilpa P, Chintan K, Sayyed RZ, El Enshasy H, El Adawi H, Alhazmi A, Almalki AH, Haque S. Formation of recombinant bifunctional fusion protein: A newer approach to combine the activities of two enzymes in a single protein. PLoS One 2022; 17:e0265969. [PMID: 35363796 PMCID: PMC8975109 DOI: 10.1371/journal.pone.0265969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The tissue of insects, pests, and fungi has a chitin layer followed by protein in the cell membrane. The complete biodegradation of chitin and protein-present in the waste requires the action of two enzymes, namely chitinase, and protease. Combining chitinase and protease in a single protein/enzyme will serve as a bifunctional enzyme that can efficiently degrade the chitin and protein-rich biomass. The present study was aimed to fuse these two enzymes to produce a single protein and study the kinetics of the recombinant fusion protein. A chitinase and alkaline protease genes were isolated, cloned, and expressed successfully as a fusion product in heterologous host Escherichia coli. The two native genes were successfully fused in E.coli by using flexible glycine–serine (G4S)2 linker (GGGGS, GS linker). The recombinant fusion protein in E.coli showed hydrolyzed chitin and protein on chitin and bovine serum albumin agar plates confirming the successful cloning and expression of chitinase and protease enzymes in a single fusion protein. The common pUC18-T7 mini vector with the ompA signal sequence helps the extracellular expression of fusion protein efficiently. The native gel electrophoresis revealed a molecular mass of purified protein as 92.0 kDa. The fusion protein’s maximal chitinase and protease activity occurred at pH 5.0 and 8.0 and 30 0C, respectively resembling the individual enzymes’. In the kinetic studies of the fusion protein, it was observed that the presence of metal ions such as Cu2+, Na2+, and Ca2+; significantly enhanced the enzyme activities while organic solvents oxidants and chemicals have drastically affected the activities of both the enzymes in the fusion protein. No such fusion protein has been produced in a heterologous host yet. The reports on fusion protein with biomass-degrading capacity are also scarce. This is probably the first report of a bifunctional chitinase/protease expressed in E. coli.
Collapse
Affiliation(s)
- Patel Nilpa
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, Gujarat, India
| | - Kapadia Chintan
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, Gujarat, India
- * E-mail: (KC); (RZS)
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S. I. Patil Arts, G B Patel Science & STKVS Commerce College, Shahada, Maharashtra, India
- Department of Entomology, Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL, United States of America
- * E-mail: (KC); (RZS)
| | - Hesham El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | - Hala El Adawi
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer,Bursa, Turkey
| |
Collapse
|
2
|
Xie F, Feng F, Liu D, Quan S, Liu L, Zhang X, Chen G. Bacillus amyloliquefaciens 35 M can exclusively produce and secrete proteases when cultured in soybean-meal-based medium. Colloids Surf B Biointerfaces 2022; 209:112188. [PMID: 34742021 DOI: 10.1016/j.colsurfb.2021.112188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
Some microbial strains are ideal producers of extracellular enzymes that can be used in various industries. However, in many fields, especially in the pharmaceutical field, these enzymes need to be recovered and purified through multistep processes and tedious procedures before they can be used. The recovery process is difficult and increases the cost of enzyme production. Therefore, reducing purification steps will greatly benefit the utilization of microbial enzymes. The 35 M strain of Bacillus amyloliquefaciens, which has high extracellular protease production, was isolated from a phosphate mine. When cultured in a medium with soybean meal as the main component, the maximum activity of extracellular protease reached 16,992 U/mL. SDS-PAGE showed that there were two main proteins in the fermentation supernatant, with a paucity of other defined protein bands. Mass spectrometry and zymogram analysis showed that the two main bands were two proteases, corresponding to alkaline protease (AprM) and neutral protease (NprM), respectively. Gene cloning, sequencing, and further comparisons were used to confirm AprM and NprM correspond to these proteases from B. amyloliquefaciens. Notably, SDS-PAGE and zymogram analysis showed that NprM had obviously higher catalytic efficiency toward casein than did AprM. Strain 35 M is a promising protease producer with great potential for applications in industrial protease production. Additionally, this study demonstrates strain 35 M may be particularly well suited to use in degrading anti-nutritional factors in soybean meal, so as to improve the nutritional value of soybean meal.
Collapse
Affiliation(s)
- Fuhong Xie
- Henan Engineering Research Center of Industrial Enzymes, Biology Institute of Henan Academy of Sciences, Zhengzhou 450008, China; Henan Academy of Sciences, Zhengzhou 450008, China.
| | - Fei Feng
- Henan Engineering Research Center of Industrial Enzymes, Biology Institute of Henan Academy of Sciences, Zhengzhou 450008, China; Henan Academy of Sciences, Zhengzhou 450008, China
| | - Dehai Liu
- Henan Engineering Research Center of Industrial Enzymes, Biology Institute of Henan Academy of Sciences, Zhengzhou 450008, China; Henan Academy of Sciences, Zhengzhou 450008, China
| | - Shujing Quan
- Henan Engineering Research Center of Industrial Enzymes, Biology Institute of Henan Academy of Sciences, Zhengzhou 450008, China; Henan Academy of Sciences, Zhengzhou 450008, China
| | - Li Liu
- Henan Engineering Research Center of Industrial Enzymes, Biology Institute of Henan Academy of Sciences, Zhengzhou 450008, China; Henan Academy of Sciences, Zhengzhou 450008, China
| | - Xiujiang Zhang
- Henan Engineering Research Center of Industrial Enzymes, Biology Institute of Henan Academy of Sciences, Zhengzhou 450008, China; Henan Academy of Sciences, Zhengzhou 450008, China
| | - Guocan Chen
- Henan Engineering Research Center of Industrial Enzymes, Biology Institute of Henan Academy of Sciences, Zhengzhou 450008, China; Henan Academy of Sciences, Zhengzhou 450008, China
| |
Collapse
|
3
|
Takenaka S, Takada A, Kimura Y, Watanabe M, Kuntiya A. Improvement of the halotolerance of a Bacillus serine protease by protein surface engineering. J Basic Microbiol 2021; 62:174-184. [PMID: 34811778 DOI: 10.1002/jobm.202100335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/24/2021] [Accepted: 11/06/2021] [Indexed: 11/07/2022]
Abstract
A moderately halotolerant serine protease was previously isolated from Bacillus subtilis from salted, fermented food. Eight mutation sites on the protein surface were selected for protein engineering based on sequence and structural comparisons with moderately halotolerant proteases and homologous non-halotolerant proteases. The newly constructed multiple mutants with substituted Asp and Arg residues were compared with the recombinant wild type (rApr) and the previously constructed mAla-8 substituted with Ala to analyze the contribution of protein surface charge to the salt adaptation of the protease. The three mutants showed >1.2-fold greater halotolerance than rApr. In addition, the mutants showed a broader range of pH stability than rApr, retaining >80% of their maximum activity in the pH range 5.0-11. The mutants also retained >75% of their activity after incubation for 1 h at pH 8.0 and 55°C or at pH 11.5 and 25°C. The Asp and Arg residues exchanged by multiple substitution probably played a role in increasing protein surface hydration and solubility in high salt conditions. This study illustrated that increasing a high proportion of the negative or positive charge on the surface of the Bacillus serine protease stably improved the protein's salt adaptation.
Collapse
Affiliation(s)
- Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Airi Takada
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Masanori Watanabe
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Ampin Kuntiya
- Bioprocess Research Cluster, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Chang C, Gong S, Liu Z, Yan Q, Jiang Z. High level expression and biochemical characterization of an alkaline serine protease from Geobacillus stearothermophilus to prepare antihypertensive whey protein hydrolysate. BMC Biotechnol 2021; 21:21. [PMID: 33706728 PMCID: PMC7953746 DOI: 10.1186/s12896-021-00678-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteases are important for hydrolysis of proteins to generate peptides with many bioactivities. Thus, the development of novel proteases with high activities is meaningful to discover bioactive peptides. Because natural isolation from animal, plant and microbial sources is impractical to produce large quantities of proteases, gene cloning and expression of target protease are preferred. RESULTS In this study, an alkaline serine protease gene (GsProS8) from Geobacillus stearothermophilus was successfully cloned and expressed in Bacillus subtilis. The recombinant GsProS8 was produced with high protease activity of 3807 U/mL after high cell density fermentation. GsProS8 was then purified through ammonium sulfate precipitation and a two-step chromatographic method to obtain the homogeneous protease. The molecular mass of GsProS8 was estimated to be 27.2 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 28.3 kDa by gel filtration. The optimal activity of GsProS8 was found to be pH 8.5 and 50 °C, respectively. The protease exhibited a broad substrate specificity and different kinetic parameters to casein and whey protein. Furthermore, the hydrolysis of whey protein using GsProS8 resulted in a large amount of peptides with high angiotensin-I-converting enzyme (ACE) inhibitory activity (IC50 of 0.129 mg/mL). CONCLUSIONS GsProS8 could be a potential candidate for industrial applications, especially the preparation of antihypertensive peptides.
Collapse
Affiliation(s)
- Chang Chang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China
| | - Siyi Gong
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China
| | - Zhiping Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China.
| |
Collapse
|
5
|
Expression, purification, and molecular characterization of a full-length thermostable alkaline protease gene from Bacillus subtilis DMA-09. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Tekin A, Uzuner U, Sezen K. Homology modeling and heterologous expression of highly alkaline subtilisin-like serine protease from Bacillus halodurans C-125. Biotechnol Lett 2020; 43:479-494. [PMID: 33047274 DOI: 10.1007/s10529-020-03025-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023]
Abstract
Here we report heterologous expression, enzymatic characterization and structure homology modeling of a subtilisin-like alkaline serine protease (ASP) from Bacillus halodurans C-125. Encoding gene was successfully obtained by PCR and cloned into pMA0911 shuttle vector under the control of strong HpaII promoter and expressed extracellularly. ASP enzyme was successfully expressed in B. subtilis WB800 cell line lacking eight extracellular proteases and produced extracellularly in the culture medium. Km, Vmax and specific activity parameters of the recombinantly produced ASP were identified as 0.2899 mg/ml, 76.12 U/ml and 9500 U/mg, respectively. The purified enzyme revealed remarkable proteolytic activity at highly alkaline conditions with a pH optimum 12.0 and notable thermostability with temperature optimum at 60 °C. Furthermore, substrate-free enzyme revealed remarkable pH stability at pH 12.0 and maintained 93% of its initial activity when incubated at 37 °C for 24 h and 60% of its initial activity upon incubation at 60 °C for 1 h. Theoretically calculated molecular mass of ASP protein was confirmed through SDS-PAGE and western blot analysis (Mw: 28.3 kDa). The secondary and tertiary structures of ASP protein were also identified through homology modeling and further examined in detail. ASP harbors a typical S8/S53 peptidase domain comprising 17 β-sheets and 9 α-helixes within its secondary structure. The structure dynamics analysis of modeled 3D structure further revealed that transient inactivating propeptide chain is the most dynamic region of ASP enzyme with 8.52 Å2 β-Factor value. Additional residue-dependent fluctuation plot analysis also confirmed the elevated structure dynamics patterning of ASP N-terminus which could be the potential prerequisite for the autonomous propeptide removal of alkaline serine peptidases. Yet the functional domain of ASP becomes quite stable after autonomous exclusion of its propeptide. Although the sequence homology between ASP and commercial detergent additive B. lentus protease (PDB ID:1GCI) was moderate (65.4% sequence similarity), their overlaid 3D structures revealed much higher similarity (98.14%) within 0.80 Å RMSD. In conclusions, with remarkable pH stability, notable thermostability and particularly high specific activity at extreme alkaline conditions, the unveiled ASP protein stands out as a novel protease candidate for various industrial sectors such as textile, detergent, leather, feed, waste, pharmaceutical and others.
Collapse
Affiliation(s)
- Aşkın Tekin
- Department of Medical Services and Techniques, Şebinkarahisar Social Sciences Vocational School, 28400, Şebinkarahisar, Giresun, Turkey
| | - Ugur Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Kazım Sezen
- Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
7
|
Bhatt HB, Singh SP. Cloning, Expression, and Structural Elucidation of a Biotechnologically Potential Alkaline Serine Protease From a Newly Isolated Haloalkaliphilic Bacillus lehensis JO-26. Front Microbiol 2020; 11:941. [PMID: 32582046 PMCID: PMC7283590 DOI: 10.3389/fmicb.2020.00941] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
An alkaline protease gene of Bacillus lehensis JO-26 from saline desert, Little Rann of Kutch, was cloned and expressed in Escherichia coli BL21 (DE3). A 1,014-bp ORF encoded 337 amino acids. The recombinant protease (APrBL) with Asp 97, His 127, and Ser 280 forming catalytic triad belongs to the subtilase S8 protease family. The gene was optimally expressed in soluble fraction with 0.2 mM isopropyl β-D-thiogalactopyranoside (IPTG), 2% (w/v) NaCl at 28°C. APrBL, a monomer with a molecular mass of 34.6 kDa was active over pH 8–11 and 30°C−70°C, optimally at pH 10 and 50°C. The enzyme was highly thermostable and retained 73% of the residual activity at 80°C up to 3 h. It was significantly stimulated by sodium dodecyl sulfate (SDS), Ca2+, chloroform, toluene, n-butanol, and benzene while completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and Hg2+. The serine nature of the protease was confirmed by its strong inhibition by PMSF. The APrBL gene was phylogenetically close to alkaline elastase YaB (P20724) and was distinct from the well-known commercial proteases subtilisin Carlsberg (CAB56500) and subtilisin BPN′ (P00782). The structural elucidation revealed 31.75% α-helices, 22.55% β-strands, and 45.70% coils. Although high glycine and fewer proline residues are a characteristic feature of the cold-adapted enzymes, the similar observation in thermally active APrBL suggests that this feature cannot be solely responsible for thermo/cold adaptation. The APrBL protease was highly effective as a detergent additive and in whey protein hydrolysis.
Collapse
Affiliation(s)
- Hitarth B Bhatt
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
8
|
Huo YY, Rong Z, Jian SL, Xu CD, Li J, Xu XW. A Novel Halotolerant Thermoalkaliphilic Esterase from Marine Bacterium Erythrobacter seohaensis SW-135. Front Microbiol 2017; 8:2315. [PMID: 29213264 PMCID: PMC5702849 DOI: 10.3389/fmicb.2017.02315] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023] Open
Abstract
A novel esterase gene, e69, was cloned from Erythrobacter seohaensis SW-135, which was isolated from a tidal flat sediment of the Yellow Sea in Korea. This gene is 825 bp in length and codes for a 29.54 kDa protein containing 274 amino acids. Phylogenetic analysis showed that E69 is a new member of the bacterial lipolytic enzyme family IV. This enzyme exhibited the highest level of activity toward p-nitrophenyl (NP) butyrate but little or no activity toward the other p-NP esters tested. The optimum temperature and pH of the catalytic activity of E69 were 60°C and pH 10.5, respectively. The enzyme exhibited stable activity over a wide range of alkaline pH values (7.5-9.5). In addition, E69 was found to be a halotolerant esterase as it exhibited the highest hydrolytic activity in the presence of 0.5 M NaCl and was still active in the presence of 3 M NaCl. Moreover, it possessed some degree of tolerance to Triton X-100 and several organic solvents. Through homology modeling and comparison with other esterases, it was suggested that the absence of the cap domain and its narrow substrate-binding pocket might be responsible for its narrow substrate specificity. Sequence and structural analysis results suggested that its high ratio of negatively to positively charged residues, large hydrophobic surface area, and negative electrostatic potential on the surface may be responsible for its alkaline adaptation. The results of this study provide insight into marine alkaliphilic esterases, and the unique properties of E69 make it a promising candidate as a biocatalyst for industrial applications.
Collapse
Affiliation(s)
- Ying-Yi Huo
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Zhen Rong
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Shu-Ling Jian
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Cao-Di Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| |
Collapse
|
9
|
Pilon FM, Silva CDR, Visôtto LE, Barros RDA, da Silva Júnior NR, Campos WG, de Almeida Oliveira MG. Purification and characterization of trypsin produced by gut bacteria from Anticarsia gemmatalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21407. [PMID: 28762531 DOI: 10.1002/arch.21407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Purification of active trypsin in the digestive process of insects is essential for the development of potent protease inhibitors (PIs) as an emerging pest control technology and research into insect adaptations to dietary PIs. An important aspect is the presence of proteolytic microorganisms, which contribute to host nutrition. Here, we purified trypsins produced by bacteria Bacillus cereus, Enterococcus mundtii, Enterococcus gallinarum, and Staphylococcus xylosus isolated from the midgut of Anticarsia gemmatalis. The trypsins had a molecular mass of approximately 25 kDa. The enzymes showed increased activity at 40°C, and they were active at pH values 7.5-10. Aprotinin, bis-benzamidine, and soybean Kunitz inhibitor (SKTI) significantly inhibited trypsin activity. The l-1-tosyl-amido-2-phenylethylchloromethyl ketone (TPCK), pepstatin A, E-64, ethylenediamine tetraacetic acid, and calcium ions did not affect the enzyme activity at the concentrations tested. We infer the purified trypsins do not require calcium ions, by which they differ from the trypsins of other microorganisms and the soluble and insoluble trypsins characterized from A. gemmatalis. These data suggest the existence of different isoforms of trypsin in the velvetbean caterpillar midguts.
Collapse
Affiliation(s)
- Franciny Martins Pilon
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Camila da Rocha Silva
- Instituto de Ciências Agrárias, Universidade Federal de Viçosa Campus Rio Paranaíba, MG, Brazil
| | - Liliane Evangelista Visôtto
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa Campus Rio Paranaíba, MG, Brazil
| | - Rafael de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Neilier Rodrigues da Silva Júnior
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Wellington Garcia Campos
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del Rei, São João Del Rei, MG, Brazil
| | - Maria Goreti de Almeida Oliveira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
10
|
Salwan R, Sharma V, Pal M, Kasana RC, Yadav SK, Gulati A. Heterologous expression and structure-function relationship of low-temperature and alkaline active protease from Acinetobacter sp. IHB B 5011(MN12). Int J Biol Macromol 2017; 107:567-574. [PMID: 28916383 DOI: 10.1016/j.ijbiomac.2017.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
The gene encoding protease from Acinetobacter sp. IHB B 5011(MN12) was cloned and expressed in Escherichia coli BL21(DE3). The nucleotide sequence revealed 1323bp ORF encoding 441 amino acids protein with molecular weight 47.2kDa. The phylogenetic analysis showed clustering of Alp protease with subtilisin-like serine proteases of S8 family. The amino acid sequence was comprised of N-terminal signal peptide 1-21 amino acids, pre-peptide 22-143 amino acids, peptidase S8 domain 144-434 amino acids, and pro-peptide 435-441 amino acids at C-terminus. Three constructs with signal peptide pET-Alp, without signal peptide pET-Alp1 and peptidase S8 domain pET-Alp2 were prepared for expression in E. coli BL21(DE3). The recombinant proteins Alp1 and Alp2 expressed as inclusion bodies showed ∼50kDa and ∼40kDa bands, respectively. The pre-propeptide ∼11kDa removed from Alp1 resulted in mature protein of ∼35kDa with 1738Umg-1 specific activity. The recombinant protease was optimally active at 40°C and pH 9, and stable over 10-70°C and 6-12pH. The activity at low-temperature and alkaline pH was supported by high R/(R+K) ratio, more glycine, less proline, negatively charged amino acids, less salt bridges and longer loops. These properties suggested the suitability of Alp as additive in the laundry.
Collapse
Affiliation(s)
- Richa Salwan
- Academy of Scientific and Innovative Research, New Delhi, India; CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Vivek Sharma
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Mohinder Pal
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | | | - Sudesh Kumar Yadav
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Arvind Gulati
- Academy of Scientific and Innovative Research, New Delhi, India; CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
| |
Collapse
|
11
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
12
|
Characterization of a salt-activated protease with temperature-dependent secretion in Stenotrophomonas maltophilia FF11 isolated from frozen Antarctic krill. ACTA ACUST UNITED AC 2016; 43:829-40. [DOI: 10.1007/s10295-016-1749-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 11/26/2022]
Abstract
Abstract
Seafood is sometimes wasted due to the growth of psychrotolerant microbes which secrete proteases and break down proteins. Stenotrophomonas maltophilia FF11, isolated from frozen Antarctic krill, grows at a wide range of temperatures and secretes more proteases at low temperatures. According to zymogram analysis, two kinds of proteases were produced from this strain. A major protease was produced largely at 15 °C, but not at 37 °C. The temperature-dependent secreted protease was purified to homogeneity. Its molecular mass was determined at 37.4 kDa and its amino acid sequence was also obtained. This protease is a member of the subtilase group according to the NCBI blast analysis. The enzyme was highly stable at high salt concentration (4 M). Interestingly, its activity increased about 1.6-fold under high salt condition. The enzyme remains active and stable in different organic solvents (50 %, v/v) such as dimethylsulfoxide, dimethyl formamide, dioxane and acetone. These properties may provide potential applications in quality control for sea foods, in protein degradation at high salt concentration, in biocatalysis and biotransformation within non-aqueous media, such as detergent and transesterification.
Collapse
|
13
|
Wani AH, Sharma M, Salwan R, Singh G, Chahota R, Verma S. Cloning, Expression, and Functional Characterization of Serine Protease Aprv2 from Virulent Isolate Dichelobacter nodosus of Indian Origin. Appl Biochem Biotechnol 2016; 180:576-587. [PMID: 27168406 DOI: 10.1007/s12010-016-2117-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
A gene encoding an extracellular protease from Dichelobacter nodosus was characterized and expressed in E. coli rosetta-gami (DE3). The nucleotide sequence analysis revealed an ORF of 1427 bp ecoding 475 amino acids long protein of calculated molecular weight 50.6 kDa and pI value 6.09. The phylogenetic analysis showed relatedness to subtilisin-like serine proteases of peptidase S8 family. The amino acid sequence analysis showed presence of N-terminal pre-peptide (1-23 aa), pro-peptide (24-160 aa), peptidase S8 domain (161-457 aa), and a C-terminal extension (458-475 aa). The gene harboring native signal peptide was expressed in pET-22b(+) for production of AprV2 recombinant protein. SDS-PAGE revealed the highest production of IPTG induced recombinant protein ∼37 kDa at 16 °C after 16 h. The purified protein after Ni-NTA affinity chromatography showed single protein band of ∼37 kDa which was also confirmed by the detection of blue coloured band of same size in Western blotting. The recombinant protein showed activity over broad temperature and pH range with optimum at 35 °C and pH 7.0. Similarly, the enzyme was stable over broad range 15-65 °C and 4-10 pH with maximum stability at 25 °C and pH 6. The activity of purified enzyme was also stimulated in the presence of Ca2+. The purified enzyme showed highest activity towards casein as compared to gelatin and BSA. These findings suggest AprV2 as an important candidate for industrial applications such as pharmaceuticals.
Collapse
Affiliation(s)
- Aasim Habib Wani
- Department of Veterinary Microbiology, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - Mandeep Sharma
- Department of Veterinary Microbiology, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - Richa Salwan
- Department of Veterinary Microbiology, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - Geetanjali Singh
- Department of Veterinary Physiology and Biochemistry, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - Rajesh Chahota
- Department of Veterinary Microbiology, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - Subhash Verma
- Department of Veterinary Microbiology, Dr. G.C. Negi-College of Veterinary and Animal Sciences, CSK-Himachal Pradesh Agricultural University, Palampur, 176062, India.
| |
Collapse
|
14
|
Crystal structures and functional studies clarify substrate selectivity and catalytic residues for the unique orphan enzyme N-acetyl-D-mannosamine dehydrogenase. Biochem J 2014; 462:499-511. [PMID: 24969681 DOI: 10.1042/bj20140266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NAMDH (N-acetyl-D-mannosamine dehydrogenase), from the soil bacteroidete Flavobacterium sp. 141-8, catalyses a rare NAD+-dependent oxidation of ManNAc (N-acetyl-D-mannosamine) into N-acetylmannosamino-lactone, which spontaneously hydrolyses into N-acetylmannosaminic acid. NAMDH belongs to the SDR (short-chain dehydrogenase/reductase) superfamily and is the only NAMDH characterized to date. Thorough functional, stability, site-directed mutagenesis and crystallographic studies have been carried out to understand better the structural and biochemical aspects of this unique enzyme. NAMDH exhibited a remarkable alkaline pH optimum (pH 9.4) with a high thermal stability in glycine buffer (Tm=64°C) and a strict selectivity towards ManNAc and NAD+. Crystal structures of ligand-free and ManNAc- and NAD+-bound enzyme forms revealed a compact homotetramer having point 222 symmetry, formed by subunits presenting the characteristic SDR α3β7α3 sandwich fold. A highly developed C-terminal tail used as a latch connecting nearby subunits stabilizes the tetramer. A dense network of polar interactions with the substrate including the encasement of its acetamido group in a specific binding pocket and the hydrogen binding of the sugar 4OH atom ensure specificity for ManNAc. The NAMDH-substrate complexes and site-directed mutagenesis studies identify the catalytic tetrad and provide useful traits for identifying new NAMDH sequences.
Collapse
|
15
|
Nguyen TT, Quyen TD, Le HT. Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800. Microb Cell Fact 2013; 12:79. [PMID: 24021098 PMCID: PMC3848721 DOI: 10.1186/1475-2859-12-79] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/04/2013] [Indexed: 11/17/2022] Open
Abstract
Background Nattokinases/Subtilisins (EC 3.4.21.62) belong to the second large family of serine proteases, which gain significant attention and play important role in many biotechnology processes. Thus, a number of nattokinases/subtilisins from various Bacillus species, especially from B. subtilis strains, extensively have been investigated to understand their biochemical and physical properties as well as to improve the production for industrial application. The purpose of this study was to clone a nattokinase gene from Bacillus subtilis strain VTCC-DVN-12-01, enhance its production in B. subtilis WB800, which is deficient in eight extracellular proteases and characterize its physicochemical properties for potential application in organic synthesis and detergent production. Results A gene coding for the nattokinase (Nk) from B. subtilis strain VTCC-DVN-12-01 consisted of an ORF of 1146 nucleotides, encoding a pre-pro-protein enzyme (30-aa pre-signal peptide, 76-aa pro-peptide and 275-aa mature protein with a predicted molecular mass of 27.7 kDa and pI 6.6). The nattokinase showed 98-99% identity with other nattokinases/subtilisins from B. subtilis strains in GenBank. Nk was expressed in B. subtilis WB800 under the control of acoA promoter at a high level of 600 mg protein per liter culture medium which is highest yield of proteins expressed in any extracellular-protease-deficient B. subtilis system till date. Nk was purified to homogeneity with 3.25 fold purification, a specific activity of 12.7 U/mg, and a recovery of 54.17%. The purified Nk was identified by MALDI-TOF mass spectrometry through three peptides, which showed 100% identity to corresponding peptides of the B. subtilis nattokinase (CAC41625). An optimal activity for Nk was observed at 65°C and pH 9. The nattokinase was stable at temperature up to 50°C and in pH range of 5–11 and retained more than 85% of its initial activity after incubation for 1 h. Mg2+ activated Nk up to 162% of its activity. The addition of Triton X-100, Tween 20, and Tween 80 showed an activation of Nk up to 141% of its initial activity but SDS strongly inhibited. The enzyme was highly resistant to organic solvents. Conclusions Our findings demonstrated that an eight-protease-gene-deficient Bacillus subtilis WB800 could overproduce the nattokinase from B. subtilis VTCC-DVN-12-01. Due to high resistance to detergents and organic solvents of this nattokinase, it could be potentially applied in organic synthesis and detergent production.
Collapse
Affiliation(s)
- Thao Thi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Distr, Caugiay, Hanoi 10600, Vietnam.
| | | | | |
Collapse
|
16
|
Sola-Carvajal A, García-García MI, Sánchez-Carrón G, García-Carmona F, Sánchez-Ferrer Á. Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: New insights into the bacterial SDR sorbitol dehydrogenases family. Biochimie 2012; 94:2407-15. [DOI: 10.1016/j.biochi.2012.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 06/15/2012] [Indexed: 11/17/2022]
|
17
|
Singh SK, Singh SK, Tripathi VR, Garg SK. Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.05.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|