1
|
Mitra A, Mitra A, Sarkar N. Differential effects of DTT on HEWL amyloid fibrillation and fibril morphology at different pH. Biophys Chem 2023; 294:106962. [PMID: 36716681 DOI: 10.1016/j.bpc.2023.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Proteins can transform from their native state to a state having fibrillar aggregates characterized by cross β sheet structure. The fibrillar aggregates are known as amyloid and have been linked to several disorders. Disulfide bonds in proteins are one of the important factors that determine the propensity of aggregation. Hen Egg White Lysozyme (HEWL) was used by us as a model protein to decipher the role disulfide bonds play in the amyloid fibril formation and fibril morphology by using Dithiothreitol (DTT) as reducing agent at pH 2.7 and pH 7.4. We found that DTT can have different effects on HEWL amyloid depending on pH and the buffer used for preparing the amyloid fibrils. Our studies highlight the critical role of non-native disulfide bonds in amyloidogenesis and how disruption of these bonds can greatly affect the fibrillation process. Overall, these studies throw light on the fibrillation mechanism and can be explored further in designing effective inhibitors against amyloidosis.
Collapse
Affiliation(s)
- Aranyak Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
2
|
Handa T, Kundu D, Dubey VK. Perspectives on evolutionary and functional importance of intrinsically disordered proteins. Int J Biol Macromol 2022; 224:243-255. [DOI: 10.1016/j.ijbiomac.2022.10.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
3
|
Anti-aggregation effect of Ascorbic Acid and Quercetin on aggregated Bovine Serum Albumin Induced by Dithiothreitol: Comparison of Turbidity and Soluble Protein Fraction Methods. JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.4.129-134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies on the anti-aggregation of dithiothreitol (DTT) induced - protein is generally determined by the fraction soluble (non-aggregated) protein. While the turbidity method is commonly used in studies of anti-aggregation, in which protein is induced by heat, in this study, both methods are compared in observing the anti-aggregation activity of ascorbic acid and quercetin toward bovine serum albumin induced by DTT. The DTT is a reducing agent for protein disulfide bonds and capable of inducing protein aggregation at physiological pH and temperature. The work was performed by the formation of Bovine Serum Albumin (BSA) aggregates induced by DTT under physiological conditions, which are pH 7.4 and 37°C. The aggregated protein profile was observed using the turbidity method at the end of incubation and measuring the difference of concentration between the fraction of soluble protein before and after incubation. The measurement was carried out using a spectrophotometer UV-Vis. The results indicate that both methods show similar inhibition profiles. The potential inhibition of ascorbic acid (AA) toward BSA protein aggregation induced by DTT increased along with incubation time. While quercetin shows the highest inhibition at 12 hours but decreased at 18 hours, this study reveals that both methods can observe the anti-aggregation activity of ascorbic acid and quercetin.
Collapse
|
4
|
Balobanov V, Chertkova R, Egorova A, Dolgikh D, Bychkova V, Kirpichnikov M. The Kinetics of Amyloid Fibril Formation by de Novo Protein Albebetin and Its Mutant Variants. Biomolecules 2020; 10:E241. [PMID: 32033353 PMCID: PMC7072675 DOI: 10.3390/biom10020241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 11/17/2022] Open
Abstract
Engineering of amyloid structures is one of the new perspective areas of protein engineering. Studying the process of amyloid formation can help find ways to manage it in the interests of medicine and biotechnology. One of the promising candidates for the structural basis of artificial functional amyloid fibrils is albebetin (ABB), an artificial protein engineered under the leadership of O.B. Ptitsyn. Various aspects of the amyloid formation of this protein and some methods for controlling this process are investigated in this paper. Four stages of amyloid fibrils formation by this protein from the first non-fibrillar aggregates to mature fibrils and large micron-sized complexes have been described in detail. Dependence of albebetin amyloids formation on external conditions and some mutations also have been described. The introduction of similar point mutations in the two structurally identical α-β-β motifs of ABB lead to different amiloidogenesis kinetics. The inhibitory effect of a disulfide bond and high pH on amyloid fibrils formation, that can be used to control this process, was shown. The results of this work are a good basis for the further design and use of ABB-based amyloid constructs.
Collapse
Affiliation(s)
- Vitalii Balobanov
- Institute of Protein Research, Pushchino, Moscow 142290, Russia (V.B.)
| | - Rita Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya st. 16/10, Moscow 117997, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow 117312, Russia
| | - Anna Egorova
- Institute of Protein Research, Pushchino, Moscow 142290, Russia (V.B.)
| | - Dmitry Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya st. 16/10, Moscow 117997, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie gory, 1/12, Moscow 119899, Russia
| | | | - Mikhail Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya st. 16/10, Moscow 117997, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie gory, 1/12, Moscow 119899, Russia
| |
Collapse
|
5
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
6
|
Proline functionalized gold nanoparticles modulates lysozyme fibrillation. Colloids Surf B Biointerfaces 2019; 174:401-408. [DOI: 10.1016/j.colsurfb.2018.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022]
|
7
|
Das A, Basak P, Pramanick A, Majumder R, Pal D, Ghosh A, Guria M, Bhattacharyya M, Banik SP. Trehalose mediated stabilisation of cellobiase aggregates from the filamentous fungus Penicillium chrysogenum. Int J Biol Macromol 2019; 127:365-375. [PMID: 30658143 DOI: 10.1016/j.ijbiomac.2019.01.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
Abstract
Extracellular fungal cellobiases develop large stable aggregates by reversible concentration driven interaction. In-vitro addition of trehalose resulted in bigger cellobiase assemblies with increased stability against heat and dilution induced dissociation. In presence of 0.1 M trehalose, the size of aggregates increased from 344 nm to 494 nm. The increase in size was also observed in zymography of cellobiase. Activation energy of the trehalose stabilised enzyme (Ea = 220.9 kJ/mol) as compared to control (Ea = 257.734 kJ/mol), suggested enhanced thermostability and also showed increased resistance to chaotropes. Purified cellobiase was found to contain 196.27 μg of sugar/μg of protein. It was proposed that presence of glycan on protein's surface impedes and delays trehalose docking. Consequently, self-association of cellobiase preceded coating by trehalose leading to stabilisation of bigger cellobiase aggregates. In unison with the hypothesis, ribosylated BSA failed to get compacted by trehalose and developed into bigger aggregates with average size increasing from 210 nm to 328 nm. Wheat Germ Lectin, in presence of trehalose, showed higher molecular weight assemblies in DLS, native-PAGE and fluorescence anisotropy. This is the first report of cross-linking independent stabilisation of purified fungal glycosidases providing important insights towards understanding the aggregation and stability of glycated proteins.
Collapse
Affiliation(s)
- Ahana Das
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India
| | - Pijush Basak
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India
| | - Arnab Pramanick
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India
| | - Rajib Majumder
- School of Life Science and Biotechnology, Department of Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Debadrita Pal
- Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM 88003, United States of America
| | - Avishek Ghosh
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India
| | - Manas Guria
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Maitree Bhattacharyya
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India.
| | - Samudra Prosad Banik
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India.
| |
Collapse
|
8
|
Ridgway Z, Zhang X, Wong AG, Abedini A, Schmidt AM, Raleigh DP. Analysis of the Role of the Conserved Disulfide in Amyloid Formation by Human Islet Amyloid Polypeptide in Homogeneous and Heterogeneous Environments. Biochemistry 2018; 57:3065-3074. [PMID: 29697253 DOI: 10.1021/acs.biochem.8b00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is a hormone secreted from β-cells in the Islets of Langerhans in response to the same stimuli that lead to insulin secretion. hIAPP plays an adaptive role in glucose homeostasis but misfolds to form insoluble, fibrillar aggregates in type II diabetes that are associated with the disease. Along the misfolding pathway, hIAPP forms species that are toxic to β-cells, resulting in reduced β-cell mass. hIAPP contains a strictly conserved disulfide bond between residues 2 and 7, which forms a small loop at the N-terminus of the molecule. The loop is located outside of the cross β-core in all models of the hIAPP amyloid fibrils. Mutations in this region are rare, and the disulfide loop plays a role in receptor binding; however, the contribution of this region to the aggregation of hIAPP is not well understood. We define the role of the disulfide by analyzing a collection of analogues that remove the disulfide, by mutation of Cys to Ser, by reduction and modification of the Cys residues, or by deletion of the first seven residues. The cytotoxic properties of hIAPP are retained in the Cys to Ser disulfide-free mutant. Removal of the disulfide bond accelerates amyloid formation in all constructs, both in solution and in the presence of model membranes. Removal of the disulfide weakens the ability of hIAPP to induce leakage of vesicles consisting of POPS and POPC. Smaller effects are observed with vesicles that contain 40 mol % cholesterol, although N-terminal truncation still reduces the extent of leakage.
Collapse
Affiliation(s)
- Zachary Ridgway
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Xiaoxue Zhang
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Amy G Wong
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine , New York University School of Medicine , New York , New York 10016 , United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine , New York University School of Medicine , New York , New York 10016 , United States
| | - Daniel P Raleigh
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States.,Laufer Center for Quantitative Biology , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
9
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
10
|
Das A, Basak P, Pattanayak R, Kar T, Majumder R, Pal D, Bhattacharya A, Bhattacharyya M, Banik SP. Trehalose induced structural modulation of Bovine Serum Albumin at ambient temperature. Int J Biol Macromol 2017; 105:645-655. [DOI: 10.1016/j.ijbiomac.2017.07.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
|
11
|
Kuo CT, Chen YL, Hsu WT, How SC, Cheng YH, Hsueh SS, Liu HS, Lin TH, Wu JW, Wang SSS. Investigating the effects of erythrosine B on amyloid fibril formation derived from lysozyme. Int J Biol Macromol 2017; 98:159-168. [DOI: 10.1016/j.ijbiomac.2017.01.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
|
12
|
Ajmal MR, Chaturvedi SK, Zaidi N, Alam P, Zaman M, Siddiqi MK, Nusrat S, Jamal MS, Mahmoud MH, Badr G, Khan RH. Biophysical insights into the interaction of hen egg white lysozyme with therapeutic dye clofazimine: modulation of activity and SDS induced aggregation of model protein. J Biomol Struct Dyn 2016; 35:2197-2210. [PMID: 27400444 DOI: 10.1080/07391102.2016.1211552] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study details the binding process of clofazimine to hen egg white lysozyme (HEWL) using spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), and molecular docking techniques. Clofazimine binds to the protein with binding constant (Kb) in the order of 1.57 × 104 at 298 K. Binding process is spontaneous and exothermic. Molecular docking results suggested the involvement of hydrogen bonding and hydrophobic interactions in the binding process. Bacterial cell lytic activity in the presence of clofazimine increased to more than 40% of the value obtained with HEWL only. Interaction of the drug with HEWL induced ordered secondary structure in the protein and molecular compaction. Clofazimine also effectively inhibited the sodium dodecyl sulfate (SDS) induced amyloid formation in HEWL and caused disaggregation of preformed fibrils, reinforcing the notion that there is involvement of hydrophobic interactions and hydrogen bonding in the binding process of clofazimine with HEWL and clofazimine destabilizes the mature fibrils. Further, TEM images confirmed that fibrillar species were absent in the samples where amyloid induction was performed in the presence of clofazimine. As clofazimine is a drug less explored for the inhibition of fibril formation of the proteins, this study reports the inhibition of SDS-induced amyloid formation of HEWL by clofazimine, which will help in the development of clofazimine-related molecules for the treatment of amyloidosis.
Collapse
Affiliation(s)
- Mohammad Rehan Ajmal
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh 202002 , India
| | - Sumit Kumar Chaturvedi
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh 202002 , India
| | - Nida Zaidi
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh 202002 , India
| | - Parvez Alam
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh 202002 , India
| | - Masihuz Zaman
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh 202002 , India
| | | | - Saima Nusrat
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh 202002 , India
| | - Mohammad Sarwar Jamal
- b King Fahd Medical Research Center , King Abdulaziz University , P.O. Box: 80216, Jeddah 21589 , Saudi Arabia
| | - Mohamed H Mahmoud
- c Deanship of Scientific Research , King Saud University , Riyadh , Saudi Arabia.,d Food Science and Nutrition Department , National Research Center , Dokki, Cairo , Egypt
| | - Gamal Badr
- e Faculty of Science, Zoology Department , Assiut University , Assiut 71516 , Egypt
| | - Rizwan Hasan Khan
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh 202002 , India
| |
Collapse
|
13
|
Wineman-Fisher V, Tudorachi L, Nissim E, Miller Y. The removal of disulfide bonds in amylin oligomers leads to the conformational change of the ‘native’ amylin oligomers. Phys Chem Chem Phys 2016; 18:12438-42. [DOI: 10.1039/c6cp01196a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Removal of the Cys2–Cys7 disulfide bonds in amylin oligomers decreases polymorphism and induces cross-β structures in the N-termini.
Collapse
Affiliation(s)
- Vered Wineman-Fisher
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beér Sheva 84105
- Israel
- Ilse Katz Institute for Nanoscale Science and Technology
| | | | - Einav Nissim
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beér Sheva 84105
- Israel
- Ilse Katz Institute for Nanoscale Science and Technology
| | - Yifat Miller
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beér Sheva 84105
- Israel
- Ilse Katz Institute for Nanoscale Science and Technology
| |
Collapse
|
14
|
Chaves S, Pera LM, Avila CL, Romero CM, Baigori M, Morán Vieyra FE, Borsarelli CD, Chehin RN. Towards efficient biocatalysts: photo-immobilization of a lipase on novel lysozyme amyloid-like nanofibrils. RSC Adv 2016. [DOI: 10.1039/c5ra19590j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Photoimmobilization of enzymes on an amyloid-like fibrillar scaffold.
Collapse
Affiliation(s)
- Silvina Chaves
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT, and Instituto de Química Biológica “Dr Bernabé Bloj”
- Facultad de Bioquímica
- Química y Farmacia
- UNT
| | - Licia M. Pera
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)
- San Miguel de Tucumán
- Argentina
- Facultad de Bioquímica
- Química, Farmacia
| | - Cesar Luis Avila
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT, and Instituto de Química Biológica “Dr Bernabé Bloj”
- Facultad de Bioquímica
- Química y Farmacia
- UNT
| | - Cintia M. Romero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)
- San Miguel de Tucumán
- Argentina
- Facultad de Bioquímica
- Química, Farmacia
| | - Mario Baigori
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)
- San Miguel de Tucumán
- Argentina
- Facultad de Bioquímica
- Química, Farmacia
| | - F. Eduardo Morán Vieyra
- Instituto de Bionanotecnología
- INBIONATEC-CONICET
- Universidad Nacional de Santiago del Estero (UNSE)
- Santiago del Estero
- Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología
- INBIONATEC-CONICET
- Universidad Nacional de Santiago del Estero (UNSE)
- Santiago del Estero
- Argentina
| | - Rosana N. Chehin
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT, and Instituto de Química Biológica “Dr Bernabé Bloj”
- Facultad de Bioquímica
- Química y Farmacia
- UNT
| |
Collapse
|
15
|
Quinopeptide formation associated with the disruptive effect of epigallocatechin-gallate on lysozyme fibrils. Int J Biol Macromol 2015; 78:389-95. [DOI: 10.1016/j.ijbiomac.2015.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/02/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023]
|
16
|
Evidence of two oxidation states of copper during aggregation of hen egg white lysozyme (HEWL). Int J Biol Macromol 2015; 76:1-9. [DOI: 10.1016/j.ijbiomac.2015.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
|
17
|
Yang M, Dutta C, Tiwari A. Disulfide-bond scrambling promotes amorphous aggregates in lysozyme and bovine serum albumin. J Phys Chem B 2015; 119:3969-81. [PMID: 25689578 DOI: 10.1021/acs.jpcb.5b00144] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Disulfide bonds are naturally formed in more than 50% of amyloidogenic proteins, but the exact role of disulfide bonds in protein aggregation is still not well-understood. The intracellular reducing agents and/or improper use of antioxidants in extracellular environment can break proteins disulfide bonds, making them unstable and prone to misfolding and aggregation. In this study, we report the effect of disulfide-reducing agent dithiothreitol (DTT) on hen egg white lysozyme (lysozyme) and bovine serum albumin (BSA) aggregation at pH 7.2 and 37 °C. BSA and lysozyme proteins treated with disulfide-reducing agents form very distinct amorphous aggregates as observed by scanning electron microscope. However, proteins with intact disulfide bonds were stable and did not aggregate over time. BSA and lysozyme aggregates show unique but measurable differences in 8-anilino-1-naphthalenesulfonic acid (ANS) and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) fluorescence, suggesting a loose and flexible aggregate structure for lysozyme but a more compact aggregate structure for BSA. Scrambled disulfide-bonded protein aggregates were observed by nonreducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for both proteins. Similar amorphous aggregates were also generated using a nonthiol-based reducing agent, tris(2-carboxyethyl)phosphine (TCEP), at pH 7.2 and 37 °C. In summary, formation of distinct amorphous aggregates by disulfide-reduced BSA and lysozyme suggests an alternate pathway for protein aggregation that may be relevant to several proteins.
Collapse
Affiliation(s)
- Mu Yang
- Department of Chemistry, Michigan Technological University , Houghton, Michigan 49931, United States
| | | | | |
Collapse
|
18
|
Takai E, Uda K, Yoshida T, Zako T, Maeda M, Shiraki K. Cysteine inhibits the fibrillisation and cytotoxicity of amyloid-β 40 and 42: implications for the contribution of the thiophilic interaction. Phys Chem Chem Phys 2014; 16:3566-72. [PMID: 24413447 DOI: 10.1039/c3cp54245a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhibitors of amyloid fibril formation have been at the centre of intense research efforts for the prevention of amyloidosis. Here, we hypothesise that a specific non-covalent interaction, the thiophilic interaction between the side chain of an aromatic residue in a polypeptide and a sulphur atom of the compound, effectively inhibits amyloid fibril formation. Fluorescence spectroscopy and transmission electron microscopy revealed that sulphur compounds, particularly Cys, inhibit the fibrillisation of amyloid-β 1-40 (Aβ40) and 1-42 (Aβ42). Interestingly, aggregates of Aβ40 and Aβ42 induced by Cys were less cytotoxic than those induced by catechin, which is the most typical inhibitor of amyloid fibril formation. Because the essential amino acid, Cys, is an abundant molecule in the blood and cytosol, our data provide a new basis for the prevention of amyloid-related diseases and the elucidation of the mechanism of these diseases.
Collapse
Affiliation(s)
- Eisuke Takai
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Crowded milieu prevents fibrillation of hen egg white lysozyme with retention of enzymatic activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:8-16. [DOI: 10.1016/j.jphotobiol.2014.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022]
|
20
|
Ghosh S, Pandey NK, Banerjee P, Chaudhury K, Nagy NV, Dasgupta S. Copper(II) directs formation of toxic amorphous aggregates resulting in inhibition of hen egg white lysozyme fibrillation under alkaline salt-mediated conditions. J Biomol Struct Dyn 2014; 33:991-1007. [PMID: 24806136 DOI: 10.1080/07391102.2014.921864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hen egg white lysozyme (HEWL) adopts a molten globule-like state at high pH (~12.75) and is found to form amyloid fibrils at alkaline pH. Here, we report that Cu(II) inhibits self-association of HEWL at pH 12.75 both at 37 and 65 °C. A significant reduction in Thioflavin T fluorescence intensity, attenuation in β-sheet content and reduction in hydrophobic exposure were observed with increasing Cu(II) stoichiometry. Electron paramagnetic resonance spectroscopy suggests a 4N type of coordination pattern around Cu(II) during fibrillation. Cu(II) is also capable of altering the cytotoxicity of the proteinaceous aggregates. Fibrillar species of diverse morphology were found in the absence of Cu(II) with the generation of amorphous aggregates in the presence of Cu(II), which are more toxic compared to the fibrils alone.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- a Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , India
| | | | | | | | | | | |
Collapse
|
21
|
Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. J Bacteriol 2014; 196:1505-13. [PMID: 24488317 DOI: 10.1128/jb.01363-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis biofilm formation relies on the assembly of a fibrous scaffold formed by the protein TasA. TasA polymerizes into highly stable fibers with biochemical and morphological features of functional amyloids. Previously, we showed that assembly of TasA fibers requires the auxiliary protein TapA. In this study, we investigated the roles of TapA sequences from the C-terminal and N-terminal ends and TapA cysteine residues in its ability to promote the assembly of TasA amyloid-like fibers. We found that the cysteine residues are not essential for the formation of TasA fibers, as their replacement by alanine residues resulted in only minor defects in biofilm formation. Mutating sequences in the C-terminal half had no effect on biofilm formation. However, we identified a sequence of 8 amino acids in the N terminus that is key for TasA fiber formation. Strains expressing TapA lacking these 8 residues were completely defective in biofilm formation. In addition, this TapA mutant protein exhibited a dominant negative effect on TasA fiber formation. Even in the presence of wild-type TapA, the mutant protein inhibited fiber assembly in vitro and delayed biofilm formation in vivo. We propose that this 8-residue sequence is crucial for the formation of amyloid-like fibers on the cell surface, perhaps by mediating the interaction between TapA or TapA and TasA molecules.
Collapse
|
22
|
Takai E, Uda K, Matsushita S, Shikiya Y, Yamada Y, Shiraki K, Zako T, Maeda M. Cysteine inhibits amyloid fibrillation of lysozyme and directs the formation of small worm-like aggregates through non-covalent interactions. Biotechnol Prog 2014; 30:470-8. [DOI: 10.1002/btpr.1866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/30/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Eisuke Takai
- Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8573 Japan
| | - Ken Uda
- Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8573 Japan
| | - Shuhei Matsushita
- Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8573 Japan
| | - Yui Shikiya
- Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8573 Japan
| | - Yoichi Yamada
- Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8573 Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8573 Japan
| | - Tamotsu Zako
- Bioengineering Laboratory; RIKEN, 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Mizuo Maeda
- Bioengineering Laboratory; RIKEN, 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
23
|
马 保. Dithiothreitol Inhibits the Amyloid Fibril Formation of β-Lactoglobulin. Biophysics (Nagoya-shi) 2014. [DOI: 10.12677/biphy.2014.24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
24
|
Ghosh S, Pandey NK, Sen S, Tripathy DR, Dasgupta S. Binding of hen egg white lysozyme fibrils with nucleic acids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:52-60. [DOI: 10.1016/j.jphotobiol.2013.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|
25
|
Li Y, Yan J, Zhang X, Huang K. Disulfide bonds in amyloidogenesis diseases related proteins. Proteins 2013; 81:1862-73. [DOI: 10.1002/prot.24338] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Li
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Juan Yan
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Xin Zhang
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Kun Huang
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
- Centre for Biomedicine Research; Wuhan Institute of Biotechnology; Wuhan Hubei People's Republic of China 430074
| |
Collapse
|
26
|
Sarkar N, Dubey VK. Exploring critical determinants of protein amyloidogenesis: a review. J Pept Sci 2013; 19:529-36. [DOI: 10.1002/psc.2539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/03/2013] [Accepted: 06/17/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Nandini Sarkar
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Rourkela Odisha 769008 India
| | - Vikash Kumar Dubey
- Department of Biotechnology; Indian Institute of Technology Guwahati; Guwahati Assam 781039 India
| |
Collapse
|
27
|
Hirano A, Yoshikawa H, Matsushita S, Yamada Y, Shiraki K. Adsorption and disruption of lipid bilayers by nanoscale protein aggregates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:3887-3895. [PMID: 22276744 DOI: 10.1021/la204717c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanoparticles taken into biological systems can have biological impacts through their interactions with cell membranes, accompanied by protein adsorption onto the nanoparticle surfaces, forming a so-called protein corona. Our current research aims to demonstrate that nanoscale protein aggregates behave like such nanoparticles with regard to the interaction with lipid membranes. In this study, the adsorption and disruption of the lipid membranes by protein aggregates were investigated using amyloid fibrils and nanoscale thermal aggregates of lysozyme. Both types of protein aggregates had disruptive effects on the negatively charged liposomes, similar to polycationic nanoparticles. Interestingly, adsorption of liposomes on the amyloid fibrils preceding disruption occurred even if the net charge of the liposome was zero, suggesting the importance of hydrophobic interactions in addition to electrostatic interactions. The results of the present study provide new insights into the biological impacts of nanoparticles in vivo.
Collapse
Affiliation(s)
- Atsushi Hirano
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | |
Collapse
|