1
|
Cao Z, Gao W, Gu T, Huo W, Zhang Y, Zhang Y, Xu Q, Chen G. The specificity protein 3 ( SP3) gene in ducks ( Anas platyrhynchos): cloning, characterization and expression during viral infection. Anim Biotechnol 2020; 32:676-682. [PMID: 32180490 DOI: 10.1080/10495398.2020.1740240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Specificity Protein 3 (SP3) is a newly identified regulator of tumor growth and invasiveness in humans. In this study, we identified and characterized the function of duck SP3 (duSP3). The full-length cDNA sequence of the duSP3 gene was cloned via rapid amplification of cDNA ends. It contained 2468 nucleotides, including a 111 base pair (bp) 5'-untranslated region (UTR), 215 bp 3'-UTR, and 2142 bp open reading frame (ORF), which encoded a 713 amino acid (AA) strongly conserved with Avian SP3. Tissue specificity analysis demonstrated that duSP3 was constitutively expressed in the eight tissues tested: liver, spleen, lung, heart, kidney, thymus, breast, and leg; and low expression levels were observed in all tissues, except the spleen and thymus. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that duSP3 expression rapidly increased in vitro after stimulation with both the hepatitis virus (DHV-1) and polyriboinosinic polyribocytidylic acid (poly(I:C)). However, the expression under these treatments varied in kidney and liver tissues; in the liver, duSP3 increased significantly at 36 h after the DHV-1 treatment and peaked at 72 h after poly(I:C) stimulation. These results suggested that SP3 may play a positive role in immune responses against viral infections in ducks.
Collapse
Affiliation(s)
- Zhengfeng Cao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Wen Gao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Tiantian Gu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Weiran Huo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Yu Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
2
|
Ye W, Lin R, Chen X, Chen J, Chen R, Xie X, Deng Y, Wen J. T-2 toxin upregulates the expression of human cytochrome P450 1A1 (CYP1A1) by enhancing NRF1 and Sp1 interaction. Toxicol Lett 2019; 315:77-86. [PMID: 31470059 DOI: 10.1016/j.toxlet.2019.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/09/2019] [Accepted: 08/24/2019] [Indexed: 01/11/2023]
Abstract
T-2 toxin is a major pollutant in crops and feedstuffs. Due to its high toxicity in a variety of organisms, T-2 toxin is of great concern as a threat to humans and to animal breeding. Overexpression of CYP1A1 may contribute to carcinogenesis, and CYP1A1 may be a promising target for the prevention and treatment of human malignancies. Therefore, it is essential to understand the regulatory mechanism by which T-2 toxin induces CYP1A1 expression in human cells. In this study, we confirmed that T-2 toxin (100 ng/mL) induced the expression of CYP1A1 in HepG2 cells through NRF1 and Sp1 bound to the promoter instead of through the well-recognized Aromatic hydrocarbon receptors (AhR). In cells treated with T-2 toxin, Sp1, but not NRF1, was significantly upregulated. However, T-2 toxin apparently promoted the interaction between NRF1 and Sp1 proteins, as revealed by IP analysis. Furthermore, in T-2 toxin-treated HepG2 cells, nuclear translocation of NRF1 was enhanced, while knockdown of Sp1 ablated NRF1 nuclear enrichment. Our results revealed that the upregulation of CYP1A1 by T-2 toxin in HepG2 cells depended on enhanced interaction between Sp1 and NRF1. This finding suggests the tumorigenic features of T-2 toxin might be related to the CYP1A1, which provides new insights to understand the toxicological effect of T-2 toxin.
Collapse
Affiliation(s)
- Wenchu Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Xiaoxuan Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Jiongjie Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Xuan Xie
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| |
Collapse
|
3
|
Cheng Y, Zhu W, Ding C, Niu Q, Wang H, Yan Y, Sun J. IRF7 Is Involved in Both STING and MAVS Mediating IFN-β Signaling in IRF3-Lacking Chickens. THE JOURNAL OF IMMUNOLOGY 2019; 203:1930-1942. [PMID: 31366714 DOI: 10.4049/jimmunol.1900293] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
IFN regulatory factor (IRF) 3 has been identified as the most critical regulator of both RNA and DNA virus-induced IFN production in mammals. However, ambiguity exists in research on chicken IRFs; in particular IRF3 seems to be missing in chickens, making IFN regulation in chickens unclear. In this study, we comprehensively investigated the potential IFN-related IRFs in chickens and showed that IRF7 is the most critical IFN-β regulator in chickens. With a chicken IRF7 (chIRF7) knockout DF-1 cell line, we conducted a series of experiments to demonstrate that chIRF7 is involved in both chicken STING (chSTING)- and chicken MAVS (chMAVS)-mediated IFN-β regulation in response to DNA and RNA viral infections, respectively. We further examined the mechanisms of chIRF7 activation by chSTING. We found that chicken TBK1 (chTBK1) is indispensable for chIRF7 activation by chSTING as well as that chSTING interacts with both chIRF7 and chTBK1 to function as a scaffold in chIRF7 activation by chTBK1. More interestingly, we discovered that chSTING mediates the activation of chIRF7 through a conserved SLQxSyS motif. In short, we confirmed that although IRF3 is missing in chickens, they employ IRF7 to reconstitute corresponding IFN signaling to respond to both DNA and RNA viral infections. Additionally, we uncovered a mechanism of chIRF7 activation by chSTING. The results will enrich and deepen our understanding of the regulatory mechanisms of the chicken IFN system.
Collapse
Affiliation(s)
- Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, People's Republic of China; and
| | - Wenxian Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, People's Republic of China; and
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, People's Republic of China
| | - Qiaona Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, People's Republic of China; and
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, People's Republic of China; and
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, People's Republic of China; and
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, People's Republic of China; and
| |
Collapse
|
4
|
McRae KM, Rowe SJ, Baird HJ, Bixley MJ, Clarke SM. Genome-wide association study of lung lesions and pleurisy in New Zealand lambs. J Anim Sci 2019; 96:4512-4520. [PMID: 30099550 PMCID: PMC6247835 DOI: 10.1093/jas/sky323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Pneumonia is an important issue for sheep production, leading to reduced growth rate and a predisposition to pleurisy. The objective of this study was to identify loci associated with pneumonic lesions and pleurisy in New Zealand progeny test lambs. The lungs from 3,572 progeny-test lambs were scored for presence and severity of pneumonic lesions and pleurisy at slaughter. Animals were genotyped using the Illumina Ovine Infinium HD SNP BeadChip (606,006 markers). The heritability of lung lesion score and pleurisy were calculated using the genomic relationship matrix, and genome-wide association analyses were conducted using EMMAX and haplotype trend regression. At slaughter, 35% of lambs had pneumonic lesions, with 9% showing lesions on more than half of any individual lobe. The number of lambs recorded as having pleurisy by the processing plants was 9%. Heritability estimates for pneumonic lesions and pleurisy scores adjusted for heteroscedasticity (CPSa and PLEURa) were 0.16 (± 0.03) and 0.05 (± 0.02), respectively. Five single-nucleotide polymorphisms (SNPs) were significantly associated with pneumonic lesions at the genome-wide level, and additional 37 SNPs were suggestively significant. Four SNPs were significantly associated with pleurisy, with an additional 11 SNPs reaching the suggestive level of significance. There were no regions that overlapped between the 2 traits. Multiple SNPs were in regions that contained genes involved in either the DNA damage response or the innate immune response, including several that had previously been reported to have associations with respiratory disease. Both EMMAX and HTR analyses of pleurisy data showed a significant peak on chromosome 2, located downstream from the transcription factor SP3. SP3 activates or suppresses the expression of numerous genes, including several genes with known functions in the immune system. This study identified several SNPs associated with genes involved in both the innate immune response and the response to DNA damage that are associated with pneumonic lesions and pleurisy in lambs at slaughter. Additionally, the identification in sheep of several SNPs within genes that have previously been associated with the respiratory system in cattle, pigs, rats, and mice indicates that there may be common pathways that underlie the response to invasion by respiratory pathogens in multiple species.
Collapse
|
5
|
MacDowell KS, Pinacho R, Leza JC, Costa J, Ramos B, García-Bueno B. Differential regulation of the TLR4 signalling pathway in post-mortem prefrontal cortex and cerebellum in chronic schizophrenia: Relationship with SP transcription factors. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:481-492. [PMID: 28803924 DOI: 10.1016/j.pnpbp.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
Abstract
Alterations in innate immunity may underlie the pathophysiology of schizophrenia (SZ). Toll-like receptor-4 (TLR4) is a master element of innate immunity. The specificity proteins (SPs), transcription factors recently implicated in SZ, are putative regulatory agents of this. This work was aimed at describing alterations in the TLR4 signalling pathway in postmortem brain prefrontal cortex (PFC) and cerebellum (CB) of 16 chronic SZ patients and 14 controls. The possible association of TLR4 pathway with SP1 and SP4 and SZ negative symptomatology is explored. In PFC, TLR4/myeloid differentiation factor 88 (MyD88)/inhibitory subunit of nuclear factor kappa B alpha (IκBα) protein levels were lower in SZ patients, while nuclear transcription factor-κB (NFκB) activity, cyclooxygenase-2 (COX-2) expression and the lipid peroxidation index malondialdehyde (MDA) appeared increased. The pattern of changes in CB is opposite, except for COX-2 expression that remained augmented and MDA levels unaltered. Network interaction analysis showed that TLR4/MyD88/IκBα/NFκB/COX-2 pathway was coupled in PFC and uncoupled in CB. SP4 co-expressed with TLR4 and NFκB in PFC and both SP1 and SP4 co-expressed with NFκB in CB. In PFC, correlation analysis found an inverse relationship between NFκB and negative symptoms. In summary, we found brain region-specific alterations in the TLR4 signalling pathway in chronic SZ, in which SP transcription factors could participate at different levels. Further studies are required to elucidate the regulatory mechanisms of innate immunity in SZ and its relationship with symptoms.
Collapse
Affiliation(s)
- Karina S MacDowell
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain
| | - Raquel Pinacho
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Juan C Leza
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain
| | - Joan Costa
- Banc de Teixits Neurologics, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, 08830 Barcelona, Spain; Parc Sanitari Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Belén Ramos
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain; Dept. de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Wang LL, Zhou LB, Shu J, Li NN, Zhang HW, Jin R, Zhuang LL, Zhou GP. Up-regulation of IRF-3 expression through GATA-1 acetylation by histone deacetylase inhibitor in lung adenocarcinoma A549 cells. Oncotarget 2017; 8:75943-75951. [PMID: 29100282 PMCID: PMC5652676 DOI: 10.18632/oncotarget.18371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/21/2017] [Indexed: 11/30/2022] Open
Abstract
Interferon regulatory factor 3 (IRF-3) is an important transcription factor for interferon genes. Although its functional activation by viral infection has been widely explicated, the regulatory mechanism of IRF-3 gene expression in cancer cells is poorly understood. In this study, we demonstrated treatment of lung adenocarcinoma A549 cells with trichostatin A (TSA) and valproic acid (VPA), two different classes of histone deacetylase inhibitors, strongly stimulated IRF-3 gene expression. Truncated and mutated IRF-3 promoter indicated that a specific GATA-1 element was responsible for TSA-induced activation of IRF-3 promoter. Chromatin immunoprecipitation and electrophoretic mobility shift assay showed that TSA treatment increased the binding affinity of GATA-1 to IRF-3 promoter. Using immunoprecipitation assay and immunoblotting, we demonstrated that TSA increased the level of acetylated GATA-1 in A549 cells. In summary, our study implied that TSA enhanced IRF-3 gene expression through increased GATA-1 recruitment to IRF-3 promoter and the acetylation level of GATA-1 in lung adenocarcinoma A549 cells.
Collapse
Affiliation(s)
- Lu-Lu Wang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lan-Bo Zhou
- Grade 2013 Clinical Class 7, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jin Shu
- Department of Pediatric Respiration, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Nan-Nan Li
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hui-Wen Zhang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li-Li Zhuang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
7
|
Wang LL, Chen ZS, Zhou WD, Shu J, Wang XH, Jin R, Zhuang LL, Hoda MA, Zhang H, Zhou GP. Down-regulated GATA-1 up-regulates interferon regulatory factor 3 in lung adenocarcinoma. Sci Rep 2017; 7:2551. [PMID: 28566697 PMCID: PMC5451405 DOI: 10.1038/s41598-017-02700-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022] Open
Abstract
Interferon regulatory factor 3 (IRF-3) is widely known for its prompt response against viral infection by activating the interferon system. We previously reported that E2F1, Sp1 and Sp3 regulated transcriptional activity of IRF-3. Recently, different expression patterns of IRF-3 were found in lung cancer, leading to the alternation of the immunomodulatory function in tumorigenesis. However, the mechanism of transcriptional regulation of IRF-3 in lung cancer has not been extensively studied. Here, we investigated the characterization of IRF-3 promoter and found that GATA-1 bound to a specific domain of IRF-3 promoter in vitro and in vivo. We found elevated IRF-3 and decreased GATA-1 gene expression in lung adenocarcinoma in Oncomine database. Additionally, higher IRF-3 gene expression was observed in human lung adenocarcinoma, accompanied by aberrant GATA-1 protein expression. We further analyzed the relationship of GATA-1 and IRF-3 expression in lung adenocarcinoma cell lines and found that inhibition of GATA-1 by siRNA increased the promoter activity, mRNA and protein levels of IRF-3, while over-expression of GATA-1 down-regulated IRF-3 gene expression. Taken together, we conclude that reduced GATA-1 could be responsible for the upregulation of IRF-3 in lung adenocarcinoma cells through binding with a specific domain of IRF-3 promoter.
Collapse
Affiliation(s)
- Lu-Lu Wang
- Dpartment of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng-Sen Chen
- Department of Urology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wen-Di Zhou
- Dpartment of Pediatrics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Jin Shu
- Department of Pediatric Respiration, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xiao-Hua Wang
- Dpartment of Pediatrics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Rui Jin
- Dpartment of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li-Li Zhuang
- Dpartment of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mir Alireza Hoda
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Hao Zhang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Guo-Ping Zhou
- Dpartment of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
8
|
Involvement of GATA1 and Sp3 in the activation of the murine STING gene promoter in NIH3T3 cells. Sci Rep 2017; 7:2090. [PMID: 28522827 PMCID: PMC5437032 DOI: 10.1038/s41598-017-02242-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
Stimulator of Interferon Gene (STING) is a key mediator of innate immune signaling. STING plays a pivotal role in the pathogenesis of many diseases including infectious diseases, auto-immune diseases and cancer. Many studies have been carried out recently in the field of STING-regulated pathway, however, rarely of transcriptional mechanisms. To characterize the murine STING (mSTING) promoter, we cloned a series of different nucleotide sequences of the 5′-flanking region of the mSTING gene. Transient transfection of promoter-reporter recombinant plasmids and luciferase assay illustrated the region (−77/+177) relative to the transcription start site (TSS) of the mSTING gene was sufficient for full promoter activity. This region contains GATA1, IK2, Sp1/Sp3 and STAT putative transcription factor binding sites. Mutation of GATA1 or Sp1/Sp3 sites led to obvious decrease of the mSTING promoter activity. Overexpression of GATA1 and Sp3 enhanced the mSTING promoter activity, whereas knockdown of GATA1 and Sp3 by a siRNA strategy significantly reduced the transcription activity. Chromatin immunoprecipitation assays demonstrated that GATA1 and Sp3 interact with the mSTING promoter in vivo. These results provided the first analysis of mSTING promoter and demonstrated that transcription factor GATA1 and Sp3 positively regulate the basal transcription of the mSTING gene.
Collapse
|
9
|
Shu J, Wang XH, Zhou LB, Jiang CM, Yang WX, Jin R, Wang LL, Zhou GP. Expression of interferon regulatory factor 5 is regulated by the Sp1 transcription factor. Mol Med Rep 2016; 14:2815-22. [PMID: 27484157 DOI: 10.3892/mmr.2016.5565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 07/20/2016] [Indexed: 11/05/2022] Open
Abstract
The transcription factor, interferon regulatory factor 5 (IRF5), is important in the induction of type I interferon, proinflammatory cytokines and chemokines, and is involved in autoimmune diseases and tumourigenesis. However, the mechanisms underlying the transcriptional regulation of wild‑type IRF5 remain to be fully elucidated. The present study was primarily designed to clarify whether specificity protein 1 (Sp1) was involved in the regulation of IRF5. Initially, the IRF5 promoter region was cloned and its promoter activity was examined using Hela and HEK 293 cells. Deletion analyses revealed that the region spanning ‑179 to +62 was the minimal promoter of IRF5. Bioinformatics analyses showed that this region contained three putative Sp1 binding sites, and mutational analyses revealed that all the Sp1 sites contributed to transcriptional activity. Secondly, the overexpression of Sp1 was found to increase the activity of the IRF5 promoter and the mRNA level of IRF5, determined using reporter gene assays and polymerase chain reaction analysis, respectively. By contrast, treatment with mithramycin and Sp1 small interfering RNA significantly reduced the activity of the IRF5 promoter and the mRNA level of IRF5. Finally, the results of an electrophoretic mobility shift assay and a chromatin immunoprecipitation assay demonstrated that Sp1 bound to the promoter region of IRF5 in vitro and in vivo. These results suggested that the Sp1 transcription factor is the primary determinant for activating the basal transcription of the IRF5.
Collapse
Affiliation(s)
- Jin Shu
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Hua Wang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lan-Bo Zhou
- 2013 Clinical Class 7, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chun-Ming Jiang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei-Xia Yang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lu-Lu Wang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
10
|
Xu HG, Liu L, Gao S, Jin R, Ren W, Zhou GP. Cloning and characterizing of the murine IRF-3 gene promoter region. Immunol Res 2016; 64:969-77. [DOI: 10.1007/s12026-015-8780-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Mohanty AK, Datta A, Venkatraj V. Using the message passing algorithm on discrete data to detect faults in boolean regulatory networks. Algorithms Mol Biol 2014. [DOI: 10.1186/s13015-014-0020-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Abstract
An important problem in the study of cancer is the understanding of the heterogeneous nature of the cell population. The clonal evolution of the tumor cells results in the tumors being composed of multiple subpopulations. Each subpopulation reacts differently to any given therapy. This calls for the development of novel (regulatory network) models, which can accommodate heterogeneity in cancerous tissues. In this paper, we present a new approach to model heterogeneity in cancer. We model heterogeneity as an ensemble of deterministic Boolean networks based on prior pathway knowledge. We develop the model considering the use of qPCR data. By observing gene expressions when the tissue is subjected to various stimuli, the compositional breakup of the tissue under study can be determined. We demonstrate the viability of this approach by using our model on synthetic data, and real-world data collected from fibroblasts.
Collapse
|
13
|
Zhang G, Zhang Z, Liu Z. Interferon regulation factor-3 is a critical regulator of the mature of dendritic cells from mice. Scand J Immunol 2013; 77:13-20. [PMID: 23033912 DOI: 10.1111/sji.12005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/24/2012] [Indexed: 12/19/2022]
Abstract
Interferon regulatory factor-3 (IRF-3) plays an important role in virus and double-stranded RNA-mediated induction of type I interferon and RANTES (regulated on activation normal T cell expressed and secreted), DNA damage signalling, tumour suppression and virus-induced apoptosis. IRF-3 had recently been shown to contribute to T-cell activation in response to pathogens, which implicated an extensive immunological role for IRF-3. Dendritic cells (DCs) played critical roles as professional APCs in the development of immune responses. However, it was unclear whether IRF-3 had any effect on phenotype or function of DCs. In this study, it was shown that IRF-3 acted as a promoter of DC maturation. The level of IRF-3 expression was transiently upregulated and accumulated in the nucleus in TNF-α-induced immune maturation of mice DC cells. Knockdown of IRF-3 by small interfering RNA in DC cells resulted in both phenotypic and functional immaturation, even without TNF-α treatment. Overall, our data demonstrated for the first time that IRF-3 was a critical regulator of mice DC maturation.
Collapse
Affiliation(s)
- G Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | |
Collapse
|
14
|
Weiling H, Xiaowen Y, Chunmei L, Jianping X. Function and evolution of ubiquitous bacterial signaling adapter phosphopeptide recognition domain FHA. Cell Signal 2013. [DOI: 10.1016/j.cellsig.2012.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Zhao WF, Wang HB, Xie B, Hu LJ, Xu LH, Kuang BH, Li MZ, Zhang X. Sp1 and Sp3 are involved in the full transcriptional activity of centromere protein H in human nasopharyngeal carcinoma cells. FEBS J 2012; 279:2714-26. [PMID: 22682030 DOI: 10.1111/j.1742-4658.2012.08654.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The overexpression of centromere protein H (CENPH), one of the fundamental components of the human active kinetochore, has been shown to be closely associated with human cancers. However, the mechanism of its transcriptional regulation has not been reported. The aim of the present study was to investigate the regulatory elements for the transcriptional regulation of CENPH in nasopharyngeal carcinoma cells. To characterize the CENPH promoter and identify regulatory elements, we cloned 1015 bp (-975/+40 bp) of the 5'-flanking region of the CENPH gene from immortalized normal nasopharyngeal epithelial cells (Bmi-1/NPEC). Functional analysis established a minimal region (-140/-87 bp) involved in the regulation of human CENPH promoter activity. Through site-directed mutagenesis, a transactivation assay, chromatin immunoprecipitation, and electrophoretic mobility shift assay, we found that the Sp1/Sp3 transcription factors could bind to the CENPH promoter in vitro and in vivo, and that they regulated CENPH promoter activation in human nasopharyngeal carcinoma cells. Furthermore, Sp1 and Sp3 were highly expressed in nasopharyngeal carcinoma cells. Knockdown of Sp1 and Sp3 by small interfering RNA or inhibition of Sp1 and Sp3 activity by mithramycin A decreased CENPH mRNA expression, whereas the exogenous expression of Sp1 and Sp3 upregulated CENPH mRNA expression. Taken together, our results indicate that Sp1 and Sp3 bind to the CENPH minimal promoter and function as a regulator of the transcription of CENPH in human nasopharyngeal carcinomas.
Collapse
Affiliation(s)
- Wei-feng Zhao
- State Key Laboratory of Oncology in South China, SunYat-sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|