1
|
Hayashi MAF, Campeiro JD, Yonamine CM. Revisiting the potential of South American rattlesnake Crotalus durissus terrificus toxins as therapeutic, theranostic and/or biotechnological agents. Toxicon 2021; 206:1-13. [PMID: 34896407 DOI: 10.1016/j.toxicon.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
The potential biotechnological and biomedical applications of the animal venom components are widely recognized. Indeed, many components have been used either as drugs or as templates/prototypes for the development of innovative pharmaceutical drugs, among which many are still used for the treatment of human diseases. A specific South American rattlesnake, named Crotalus durissus terrificus, shows a venom composition relatively simpler compared to any viper or other snake species belonging to the Crotalus genus, although presenting a set of toxins with high potential for the treatment of several still unmet human therapeutic needs, as reviewed in this work. In addition to the main toxin named crotoxin, which is under clinical trials studies for antitumoral therapy and which has also anti-inflammatory and immunosuppressive activities, other toxins from the C. d. terrificus venom are also being studied, aiming for a wide variety of therapeutic applications, including as antinociceptive, anti-inflammatory, antimicrobial, antifungal, antitumoral or antiparasitic agent, or as modulator of animal metabolism, fibrin sealant (fibrin glue), gene carrier or theranostic agent. Among these rattlesnake toxins, the most relevant, considering the potential clinical applications, are crotamine, crotalphine and gyroxin. In this narrative revision, we propose to organize and present briefly the updates in the accumulated knowledge on potential therapeutic applications of toxins collectively found exclusively in the venom of this specific South American rattlesnake, with the objective of contributing to increase the chances of success in the discovery of drugs based on toxins.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| | - Joana D Campeiro
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Camila M Yonamine
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
2
|
Katz S, Barbiéri CL, Soler FPM, Soares AM, Chavantes MC, Zamuner SR. Effect of Isolated Proteins from Crotalus Durissus Terrificus Venom on Leishmania (Leishmania) Amazonensis-Infected Macrophages. Protein Pept Lett 2021; 27:718-724. [PMID: 31994997 DOI: 10.2174/0929866527666200129152954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cutaneous and mucocutaneous leishmaniasis are parasitic diseases characterized by skin manifestations. In Brazil, Leishmania (Leishmania) amazonensis is one of the etiological agents of cutaneous leishmaniasis. The therapeutic arsenal routinely employed to treat infected patients is unsatisfactory, especially for pentavalent antimonials, as they are often highly toxic, poorly tolerated and of variable effectiveness. This study aimed to evaluate in vitro the leishmanicidal activity of toxins isolated from Crotalus durissus terrificus venom as a new approach for the treatment of leishmaniasis. METHODS The comparative effects of crotamine, crotoxin, gyrotoxin, convulxin and PLA2 on bone marrow-derived macrophages infected with L. (L.) amazonensis as well as the release of TGF-β from the treated macrophages were studied. RESULTS AND DISCUSSION Crotamine had the strongest inhibitory effect on parasite growth rate (IC50: 25.65±0.52 μg/mL), while convulxin showed the weakest inhibitory effect (IC50: 52.7±2.21 μg/mL). In addition, TGF-β was significantly reduced after the treatment with all toxins evaluated. CONCLUSION The Crotalus durissus terrificus toxins used in this study displayed significant activity against L. (L.) amazonensis, indicating that all of them could be a potential alternative for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Simone Katz
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | - Clara Lúcia Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fernanda Paula Martins Soler
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | | | - Maria Cristina Chavantes
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | - Stella Regina Zamuner
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| |
Collapse
|
3
|
Ferrari CZ, Ribeiro R, Lima AM, Soares AM, Cavalcante WLG, Vieira LB. Gyroxin, a toxin from Crotalus durissus terrificus snake venom, induces a calcium dependent increase in glutamate release in mice brain cortical synaptosomes. Neuropeptides 2020; 83:102081. [PMID: 32839009 DOI: 10.1016/j.npep.2020.102081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Abstract
Gyroxin is a thrombin-like toxin obtained from the venom of the South American rattlesnake, Crotalus durissus terrificus. Literature has reported "gyroxin syndrome" characterized, in mice, as series of aberrant motor behavior, known as barrel rotation, mainly after intraperitoneal administration. Despites several studies, a physiological mechanism of "gyroxin syndrome" are still not completely understood. In this context, alterations on the central nervous system (CNS), especially causing neurotoxic events, are pointed out as likely candidates. Then, we decided to investigate whether gyroxin induces alterations in glutamate release, one of the most important neurotransmitter involved in neurotoxicity. For that, we performed all experiments, in vitro, using a model of mice brain cortical synaptosomes. Notably, our results indicate that the administration of gyroxin on purified presynaptic brain cortical terminals resulted in an extracellular Ca2+- dependent raise in glutamate release. Indeed, our results also showed that gyroxin increases intrasynaptosomal calcium (Ca2+) levels through acting on voltage gated calcium channels (VGCC), specifically N and P/Q subtypes. Moreover, our data show that gyroxin increases exocytosis rate. Interestingly, these data suggest that gyroxin might induce neurotoxicity by increasing glutamate levels. However, future investigations are needed in order to elucidate the nature of the following events.
Collapse
Affiliation(s)
- C Z Ferrari
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - R Ribeiro
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - A M Lima
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia e Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - A M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos da Amazônia Ocidental, LaBioProt, Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia e Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Centro Universitário São Lucas, UniSL, Porto Velho, RO, Brazil
| | - W L G Cavalcante
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - L B Vieira
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Sørensen CV, Knudsen C, auf dem Keller U, Kalogeropoulos K, Gutiérrez-Jiménez C, Pucca MB, Arantes EC, Bordon KCF, Laustsen AH. Do Antibiotics Potentiate Proteases in Hemotoxic Snake Venoms? Toxins (Basel) 2020; 12:toxins12040240. [PMID: 32283690 PMCID: PMC7232225 DOI: 10.3390/toxins12040240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/02/2022] Open
Abstract
Antibiotics are often administered with antivenom following snakebite envenomings in order to avoid secondary bacterial infections. However, to this date, no studies have evaluated whether antibiotics may have undesirable potentiating effects on snake venom. Herein, we demonstrate that four commonly used antibiotics affect the enzymatic activities of proteolytic snake venom toxins in two different in vitro assays. Similar findings in vivo could have clinical implications for snakebite management and require further examination.
Collapse
Affiliation(s)
- Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (C.V.S.); (C.K.); (U.a.d.K.); (K.K.); (C.G.-J.); (M.B.P.)
| | - Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (C.V.S.); (C.K.); (U.a.d.K.); (K.K.); (C.G.-J.); (M.B.P.)
- BioPorto Diagnostics A/S, DK-2900 Hellerup, Denmark
| | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (C.V.S.); (C.K.); (U.a.d.K.); (K.K.); (C.G.-J.); (M.B.P.)
| | - Konstantinos Kalogeropoulos
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (C.V.S.); (C.K.); (U.a.d.K.); (K.K.); (C.G.-J.); (M.B.P.)
| | - Cristina Gutiérrez-Jiménez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (C.V.S.); (C.K.); (U.a.d.K.); (K.K.); (C.G.-J.); (M.B.P.)
| | - Manuela B. Pucca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (C.V.S.); (C.K.); (U.a.d.K.); (K.K.); (C.G.-J.); (M.B.P.)
- Medical School, Federal University of Roraima, Boa Vista BR-69310-000, Brazil
| | - Eliane C. Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto BR-14040-903, Brazil; (E.C.A.); (K.C.F.B.)
| | - Karla C. F. Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto BR-14040-903, Brazil; (E.C.A.); (K.C.F.B.)
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (C.V.S.); (C.K.); (U.a.d.K.); (K.K.); (C.G.-J.); (M.B.P.)
- Correspondence:
| |
Collapse
|
5
|
Wiezel GA, Bordon KC, Silva RR, Gomes MS, Cabral H, Rodrigues VM, Ueberheide B, Arantes EC. Subproteome of Lachesis muta rhombeata venom and preliminary studies on LmrSP-4, a novel snake venom serine proteinase. J Venom Anim Toxins Incl Trop Dis 2019; 25:e147018. [PMID: 31131000 PMCID: PMC6521711 DOI: 10.1590/1678-9199-jvatitd-1470-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/02/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Lachesis muta rhombeata is one of the venomous snakes of
medical importance in Brazil whose envenoming is characterized by local and
systemic effects which may produce even shock and death. Its venom is mainly
comprised of serine and metalloproteinases, phospholipases A2 and
bradykinin-potentiating peptides. Based on a previously reported
fractionation of L. m. rhombeata venom (LmrV), we decided
to perform a subproteome analysis of its major fraction and investigated a
novel component present in this venom. Methods: LmrV was fractionated through molecular exclusion chromatography and the main
fraction (S5) was submitted to fibrinogenolytic activity assay and
fractionated by reversed-phase chromatography. The N-terminal sequences of
the subfractions eluted from reversed-phase chromatography were determined
by automated Edman degradation. Enzyme activity of LmrSP-4 was evaluated
upon chromogenic substrates for thrombin (S-2238), plasma kallikrein
(S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and
Factor Xa (S-2222) and upon fibrinogen. All assays were carried out in the
presence or absence of possible inhibitors. The fluorescence resonance
energy transfer substrate Abz-KLRSSKQ-EDDnp was used to determine the
optimal conditions for LmrSP-4 activity. Molecular mass of LmrSP-4 was
determined by MALDI-TOF and digested peptides after trypsin and Glu-C
treatments were analyzed by high resolution MS/MS using different
fragmentation modes. Results: Fraction S5 showed strong proteolytic activity upon fibrinogen. Its
fractionation by reversed-phase chromatography gave rise to 6 main fractions
(S5C1-S5C6). S5C1-S5C5 fractions correspond to serine proteinases whereas
S5C6 represents a C-type lectin. S5C4 (named LmrSP-4) had its N-terminal
determined by Edman degradation up to the 53rd amino acid residue
and was chosen for characterization studies. LmrSP-4 is a fibrinogenolytic
serine proteinase with high activity against S-2302, being inhibited by PMSF
and benzamidine, but not by 1,10-phenantroline. In addition, this enzyme
exhibited maximum activity within the pH range from neutral to basic and
between 40 and 50 °C. About 68% of the LmrSP-4 primary structure was
covered, and its molecular mass is 28,190 Da. Conclusions: Novel serine proteinase isoforms and a lectin were identified in LmrV.
Additionally, a kallikrein-like serine proteinase that might be useful as
molecular tool for investigating bradykinin-involving process was isolated
and partially characterized.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Karla Cf Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ronivaldo R Silva
- Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, SP, Brazil
| | - Mário Sr Gomes
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Av. Pará, 1720, 38400-902, Uberlândia, MG, Brazil.,Department of Chemical and Physical, State University of Southwest Bahia, Rua José Moreira Sobrinho, até 873 874, 45506-210, Jequié, BA, Brazil
| | - Hamilton Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Veridiana M Rodrigues
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Av. Pará, 1720, 38400-902, Uberlândia, MG, Brazil
| | - Beatrix Ueberheide
- Proteomics Resource Center, New York University Langone Medical Center, 430 East 29th St., 10016, New York City, USA
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Costa CRC, Belchor MN, Rodrigues CFB, Toyama DDO, de Oliveira MA, Novaes DP, Toyama MH. Edema Induced by a Crotalus durissus terrificus Venom Serine Protease (Cdtsp 2) Involves the PAR Pathway and PKC and PLC Activation. Int J Mol Sci 2018; 19:ijms19082405. [PMID: 30111691 PMCID: PMC6121655 DOI: 10.3390/ijms19082405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/21/2022] Open
Abstract
Snake venom serine proteases (SVSPs) represent an essential group of enzymatic toxins involved in several pathophysiological effects on blood homeostasis. Some findings suggest the involvement of this class of enzymatic toxins in inflammation. In this paper, we purified and isolated a new gyroxin isoform from the Crotalus durissus terrificus (Cdt) venom, designated as Cdtsp 2, which showed significant proinflammatory effects in a murine model. In addition, we performed several studies to elucidate the main pathway underlying the edematogenic effect induced by Cdtsp 2. Enzymatic assays and structural analysis (primary structure analysis and three-dimensional modeling) were closely performed with pharmacological assays. The determination of edematogenic activity was performed using Cdtsp 2 isolated from snake venom, and was applied to mice treated with protein kinase C (PKC) inhibitor, phospholipase C (PLC) inhibitor, dexamethasone (Dexa), antagonists for protease-activated receptors (PARs), or saline (negative control). Additionally, we measured the levels of cyclooxygenase 2 (COX-2), malondialdehyde (MDA), and prostaglandin E2 (PGE2). Cdtsp 2 is characterized by an approximate molecular mass of 27 kDa, an isoelectric point (pI) of 4.5, and significant fibrinolytic activity, as well as the ability to hydrolyze Nα-benzoyl-l-arginine 4-nitroanilide (BAPNA). Its primary and three-dimensional structures revealed Cdtsp 2 as a typical snake venom serine protease that induces significant edema via the metabolism of arachidonic acid (AA), involving PARs, PKC, PLC, and COX-2 receptors, as well as inducing a significant increase in MDA levels. Our results showed that Cdtsp 2 is a serine protease with significant enzymatic activity, and it may be involved in the degradation of PAR1 and PAR2, which activate PLC and PKC to mobilize AA, while increasing oxidative stress. In this article, we provide a new perspective for the role of SVSPs beyond their effects on blood homeostasis.
Collapse
Affiliation(s)
- Caroline R C Costa
- Institute of Biosciences, Coastal Campus, BIOMOLPEP, São Paulo State University (UNESP), 11330-900 São Paulo, Brazil.
| | - Mariana Novo Belchor
- Institute of Biosciences, Coastal Campus, BIOMOLPEP, São Paulo State University (UNESP), 11330-900 São Paulo, Brazil.
| | | | - Daniela de Oliveira Toyama
- Institute of Biosciences, Coastal Campus, BIOMOLPEP, São Paulo State University (UNESP), 11330-900 São Paulo, Brazil.
| | - Marcos A de Oliveira
- Institute of Biosciences, Coastal Campus, LABIMES, São Paulo State University (UNESP), 11330-900 São Paulo, Brazil.
| | - Danielle P Novaes
- Institute of Biosciences, Coastal Campus, BIOMOLPEP, São Paulo State University (UNESP), 11330-900 São Paulo, Brazil.
| | - Marcos Hikari Toyama
- Institute of Biosciences, Coastal Campus, BIOMOLPEP, São Paulo State University (UNESP), 11330-900 São Paulo, Brazil.
| |
Collapse
|
7
|
de Oliveira LA, Ferreira RS, Barraviera B, de Carvalho FCT, de Barros LC, Dos Santos LD, Pimenta DC. Crotalus durissus terrificus crotapotin naturally displays preferred positions for amino acid substitutions. J Venom Anim Toxins Incl Trop Dis 2017; 23:46. [PMID: 29209361 PMCID: PMC5704381 DOI: 10.1186/s40409-017-0136-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022] Open
Abstract
Background Classically, Crotalus durissus terrificus (Cdt) venom can be described, according to chromatographic criteria, as a simple venom, composed of four major toxins, namely: gyroxin, crotamine, crotoxin and convulxin. Crotoxin is a non-covalent heterodimeric neurotoxin constituted of two subunits: an active phospholipase A2 and a chaperone protein, termed crotapotin. This molecule is composed of three peptide chains connected by seven disulfide bridges. Naturally occurring variants/isoforms of either crotoxin or crotapotin itself have already been reported. Methods The crude Cdt venom was separated by using RP-HPLC and the toxins were identified by mass spectrometry (MS). Crotapotin was purified, reduced and alkylated in order to separate the peptide chains that were further analyzed by mass spectrometry and de novo peptide sequencing. Results The RP-HPLC profile of the isolated crotapotin chains already indicated that the α chain would present isoforms, which was corroborated by the MS and tandem mass spectrometry analyses. Conclusion It was possible to observe that the Cdt crotapotin displays a preferred amino acid substitution pattern present in the α chain, at positions 31 and 40. Moreover, substitutions could also be observed in β and γ chains (one for each). The combinations of these four different peptides, with the already described chains, would produce ten different crotapotins, which is compatible to our previous observations for the Cdt venom.
Collapse
Affiliation(s)
- Laudicéia Alves de Oliveira
- Postgraduate Program in Tropical Diseases, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP Brazil
| | - Rui Seabra Ferreira
- Postgraduate Program in Tropical Diseases, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP Brazil.,Center for the Studies of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP Brazil
| | - Benedito Barraviera
- Postgraduate Program in Tropical Diseases, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP Brazil.,Center for the Studies of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP Brazil
| | | | - Luciana Curtolo de Barros
- Center for the Studies of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP Brazil
| | - Lucilene Delazari Dos Santos
- Postgraduate Program in Tropical Diseases, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP Brazil.,Center for the Studies of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP Brazil
| | - Daniel Carvalho Pimenta
- Postgraduate Program in Tropical Diseases, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP Brazil.,Laboratory of Biochemistry and Biophysics, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
8
|
Enzyme specificity and effects of gyroxin, a serine protease from the venom of the South American rattlesnake Crotalus durissus terrificus, on protease-activated receptors. Toxicon 2014; 79:64-71. [DOI: 10.1016/j.toxicon.2013.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/09/2013] [Accepted: 12/19/2013] [Indexed: 11/21/2022]
|