1
|
Kamelnia R, Ahmadi-Hamedani M, Darroudi M, Kamelnia E. Improving the stability of insulin through effective chemical modifications: A Comprehensive review. Int J Pharm 2024; 661:124399. [PMID: 38944170 DOI: 10.1016/j.ijpharm.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Insulin, an essential peptide hormone, conjointly regulates blood glucose levels by its receptor and it is used as vital drug to treat diabetes. This therapeutic hormone may undergo different chemical modifications during industrial processes, pharmaceutical formulation, and through its endogenous storage in the pancreatic β-cells. Insulin is highly sensitive to environmental stresses and readily undergoes structural changes, being also able to unfold and aggregate in physiological conditions. Even; small changes altering the structural integrity of insulin may have significant impacts on its biological efficacy to its physiological and pharmacological activities. Insulin analogs have been engineered to achieve modified properties, such as improved stability, solubility, and pharmacokinetics, while preserving the molecular pharmacology of insulin. The casually or purposively strategies of chemical modifications of insulin occurred to improve its therapeutic and pharmaceutical properties. Knowing the effects of chemical modification, formation of aggregates, and nanoparticles on protein can be a new look at the production of protein analogues drugs and its application in living system. The project focused on effects of chemical modifications and nanoparticles on the structure, stability, aggregation and their results in effective drug delivery system, biological activity, and pharmacological properties of insulin. The future challenge in biotechnology and pharmacokinetic arises from the complexity of biopharmaceuticals, which are often molecular structures that require formulation and delivery strategies to ensure their efficacy and safety.
Collapse
Affiliation(s)
- Reyhane Kamelnia
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Mahmood Ahmadi-Hamedani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran.
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Kamelnia
- Department of biology, Faculty of sciences, Mashhad branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
2
|
Panda C, Kumar S, Gupta S, Pandey LM. Insulin fibrillation under physicochemical parameters of bioprocessing and intervention by peptides and surface-active agents. Crit Rev Biotechnol 2024:1-22. [PMID: 39142855 DOI: 10.1080/07388551.2024.2387167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 06/17/2023] [Indexed: 08/16/2024]
Abstract
Even after the centenary celebration of insulin discovery, there prevail challenges concerning insulin aggregation, not only after repeated administration but also during industrial production, storage, transport, and delivery, significantly impacting protein quality, efficacy, and effectiveness. The aggregation reduces insulin bioavailability, increasing the risk of heightened immunogenicity, posing a threat to patient health, and creating a dent in the golden success story of insulin therapy. Insulin experiences various physicochemical and mechanical stresses due to modulations in pH, temperature, ionic strength, agitation, shear, and surface chemistry, during the upstream and downstream bioprocessing, resulting in insulin unfolding and subsequent fibrillation. This has fueled research in the pharmaceutical industry and academia to unveil the mechanistic insights of insulin aggregation in an attempt to devise rational strategies to regulate this unwanted phenomenon. The present review briefly describes the impacts of environmental factors of bioprocessing on the stability of insulin and correlates with various intermolecular interactions, particularly hydrophobic and electrostatic forces. The aggregation-prone regions of insulin are identified and interrelated with biophysical changes during stress conditions. The quest for novel additives, surface-active agents, and bioderived peptides in decelerating insulin aggregation, which results in overall structural stability, is described. We hope this review will help tackle the real-world challenges of insulin aggregation encountered during bioprocessing, ensuring safer, stable, and globally accessible insulin for efficient management of diabetes.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sharad Gupta
- Neurodegeneration and Peptide Engineering Research Lab, Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
3
|
Polańska O, Szulc N, Stottko R, Olek M, Nadwodna J, Gąsior-Głogowska M, Szefczyk M. Challenges in Peptide Solubilization - Amyloids Case Study. CHEM REC 2024; 24:e202400053. [PMID: 39023378 DOI: 10.1002/tcr.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Peptide science has been a rapidly growing research field because of the enormous potential application of these biocompatible and bioactive molecules. However, many factors limit the widespread use of peptides in medicine, and low solubility is among the most common problems that hamper drug development in the early stages of research. Solubility is a crucial, albeit poorly understood, feature that determines peptide behavior. Several different solubility predictors have been proposed, and many strategies and protocols have been reported to dissolve peptides, but none of them is a one-size-fits-all method for solubilization of even the same peptide. In this review, we look for the reasons behind the difficulties in dissolving peptides, analyze the factors influencing peptide aggregation, conduct a critical analysis of solubilization strategies and protocols available in the literature, and give some tips on how to deal with the so-called difficult sequences. We focus on amyloids, which are particularly difficult to dissolve and handle such as amyloid beta (Aβ), insulin, and phenol-soluble modulins (PSMs).
Collapse
Affiliation(s)
- Oliwia Polańska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Natalia Szulc
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Rafał Stottko
- Faculty of Chemistry, Wrocław University of Science and Technology, Gdanska 7/9, 50-344, Wrocław, Poland
| | - Mateusz Olek
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Traugutta 2, 41-800 Zabrze, Poland
| | - Julita Nadwodna
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
4
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
5
|
Floyd JA, Gillespie AJ, Nightlinger NS, Siska C, Kerwin BA. The Development of a Novel Aflibercept Formulation for Ocular Delivery. J Pharm Sci 2024; 113:366-376. [PMID: 38042344 DOI: 10.1016/j.xphs.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Aflibercept is a recombinant fusion protein that is commercially available for several ocular diseases impacting millions of people worldwide. Here, we use a case study approach to examine alternative liquid formulations for aflibercept for ocular delivery, utilizing different stabilizers, buffering agents, and surfactants with the goal of improving the thermostability to allow for limited storage outside the cold chain. The formulations were developed by studying the effects of pH changes, substituting amino acids for sucrose and salt, and using polysorbate 80 or poloxamer 188 instead of polysorbate 20. A formulation containing acetate, proline, and poloxamer 188 had lower rates of aggregate formation at 4, 30, and 40°C when compared to the marketed commercial formulation containing phosphate, sucrose, sodium chloride, and polysorbate 20. Further studies examining subvisible particles after exposure to a transport stress and long-term stability at 4°C, post-translational modifications by multi-attribute method, purity by reduced and non-reduced capillary electrophoresis, and potency by cell proliferation also demonstrated a comparable or improved stability for the enhanced formulation of acetate, proline, and poloxamer 188. This enhanced stability could enable limited storage outside of the cold chain, allowing for easier distribution in low to middle income countries.
Collapse
Affiliation(s)
- J Alaina Floyd
- Just- Evotec Biologics, 401 Terry Ave N., Seattle, WA 98109, USA.
| | | | | | - Christine Siska
- Just- Evotec Biologics, 401 Terry Ave N., Seattle, WA 98109, USA
| | - Bruce A Kerwin
- Just- Evotec Biologics, 401 Terry Ave N., Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Panda C, Kumar S, Gupta S, Pandey LM. Structural, kinetic, and thermodynamic aspects of insulin aggregation. Phys Chem Chem Phys 2023; 25:24195-24213. [PMID: 37674360 DOI: 10.1039/d3cp03103a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Given the significance of protein aggregation in proteinopathies and the development of therapeutic protein pharmaceuticals, revamped interest in assessing and modelling the aggregation kinetics has been observed. Quantitative analysis of aggregation includes data of gradual monomeric depletion followed by the formation of subvisible particles. Kinetic and thermodynamic studies are essential to gain key insights into the aggregation process. Despite being the medical marvel in the world of diabetes, insulin suffers from the challenge of aggregation. Physicochemical stresses are experienced by insulin during industrial formulation, storage, delivery, and transport, considerably impacting product quality, efficacy, and effectiveness. The present review briefly describes the pathways, mathematical kinetic models, and thermodynamics of protein misfolding and aggregation. With a specific focus on insulin, further discussions include the structural heterogeneity and modifications of the intermediates incurred during insulin fibrillation. Finally, different model equations to fit the kinetic data of insulin fibrillation are discussed. We believe that this review will shed light on the conditions that induce structural changes in insulin during the lag phase of fibrillation and will motivate scientists to devise strategies to block the initialization of the aggregation cascade. Subsequent abrogation of insulin fibrillation during bioprocessing will ensure stable and globally accessible insulin for efficient management of diabetes.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Sachin Kumar
- Viral Immunology Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Sharad Gupta
- Neurodegeneration and Peptide Engineering Research Lab Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
7
|
Maeng J, Lee K. Systemic and brain delivery of antidiabetic peptides through nasal administration using cell-penetrating peptides. Front Pharmacol 2022; 13:1068495. [PMID: 36452220 PMCID: PMC9703138 DOI: 10.3389/fphar.2022.1068495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
The intranasal route has emerged as a promising strategy that can direct delivery of drugs into the systemic circulation because the high-vascularized nasal cavity, among other advantages, avoids the hepatic first-pass metabolism. The nose-to-brain pathway provides a non-invasive alternative to other routes for the delivery of macromolecular therapeutics. A great variety of methodologies has been developed to enhance the efficiency of transepithelial translocation of macromolecules. Among these, the use of cell-penetrating peptides (CPPs), short protein transduction domains (PTDs) that facilitate the intracellular transport of various bioactive molecules, has become an area of extensive research in the intranasal delivery of peptides and proteins either to systemic or to brain compartments. Some CPPs have been applied for the delivery of peptide antidiabetics, including insulin and exendin-4, for treating diabetes and Alzheimer's disease. This review highlights the current status of CPP-driven intranasal delivery of peptide drugs and its potential applicability as a universal vehicle in the nasal drug delivery.
Collapse
Affiliation(s)
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
8
|
Physicochemical factors of bioprocessing impact the stability of therapeutic proteins. Biotechnol Adv 2022; 55:107909. [DOI: 10.1016/j.biotechadv.2022.107909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 02/06/2023]
|
9
|
Darussalam EY, Peterfi O, Deckert-Gaudig T, Roussille L, Deckert V. pH-dependent disintegration of insulin amyloid fibrils monitored with atomic force microscopy and surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119672. [PMID: 33852991 DOI: 10.1016/j.saa.2021.119672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 05/11/2023]
Abstract
Aggregation of insulin into amyloid fibrils is characterized by the conversion of the native secondary structure of the peptide into an enriched ß-sheet conformation. In vitro, the growth or disintegration of amyloid fibrils can be influenced by various external factors such as pH, temperature etc. While current studies mainly focus on the influence of environmental conditions on the growth process of insulin fibrils, the present study investigates the effect of pH changes on the morphology and secondary structure of mature fibrils. In the experiments, insulin is fibrillated at pH 2.5 and the grown mature fibrils are suspended in pH 4-7 solutions. The obtained structures are analyzed by atomic force microscopy (AFM) and surface-enhanced Raman spectroscopy (SERS). Initially grown mature fibrils from pH 2.5 solutions show a long and intertwined morphology. Increasing the solution pH initiates the gradual disintegration of the filamentous morphology into unordered aggregates. These observations are supported by SERS experiments, where the spectra of the mature fibrils show mainly a β-pleated sheet conformation, while the amide I band region of the amorphous aggregates indicate exclusively α-helix/unordered structures. The results demonstrate that no complex reagent is required for the disintegration of insulin fibrils. Simply regulating the pH of the environment induces local changes in the protonation state within the peptide chains. This effectively disrupts the well-ordered β-sheet structure network based on hydrogen bonds.
Collapse
Affiliation(s)
- Erwan Y Darussalam
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Orsolya Peterfi
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Tanja Deckert-Gaudig
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Ludovic Roussille
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany; Institute of Quantum Science and Engineering, Texas A&M University, College Station, TX 77843-4242, USA.
| |
Collapse
|
10
|
N-Acetylated-L-arginine (NALA) is an enhanced protein aggregation suppressor under interfacial stresses and elevated temperature for protein liquid formulations. Int J Biol Macromol 2020; 166:654-664. [PMID: 33137385 DOI: 10.1016/j.ijbiomac.2020.10.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Even though arginine hydrochloride has been recognized as a protein aggregation suppressor in the biopharmaceutical industry, its use has been questioned due to decreasing transition unfolding temperatures (Tm). Four compounds were designed to enhance the role of arginine by changing the length of the carbon chain with removal or N-acetylation of α-amino group. Biophysical properties were observed by differential scanning calorimetry (DSC), dynamic light scattering (DLS), size-exclusion chromatography (SEC), and flow imaging (FI). N-Acetyl-L-arginine (NALA) performed the best at minimizing decrease in Tm with arginine at different pH. NALA also demonstrated relatively higher colloidal stability than arginine hydrochloride, especially in the acidic pH, thereby reducing agitation stress of IgG. Moreover, NALA exhibited a cooperative effect with commercially used glycine buffer for IVIG to maintain the monomer contents with almost no change and suppressed larger particle formation after agitation with heat. The study concludes that the decreasing Tm of proteins by arginine hydrochloride is due to amide group in the α-carbon chain. Moreover, chemical modification on the group compared to removing it will be a breakthrough of arginine's limitations and optimize storage stability of protein therapeutics.
Collapse
|
11
|
Bae HD, Lee JS, Pyun H, Kim M, Lee K. Optimization of formulation for enhanced intranasal delivery of insulin with translationally controlled tumor protein-derived protein transduction domain. Drug Deliv 2019; 26:622-628. [PMID: 31210056 PMCID: PMC6586149 DOI: 10.1080/10717544.2019.1628119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intranasal delivery of insulin is an alternative approach to treat diabetes, as it enables higher patient compliance than conventional therapy with subcutaneously injected insulin. However, the use of intranasal delivery of insulin is limited for insulin’s hydrophilicity and vulnerability to enzymatic degradation. This limitation makes optimization of formulation intranasal insulin for commercial purpose indispensable. This study evaluated bioavailability (BA) of various formulations of insulin intranasally delivered with protein transduction domain (PTD) derived from translationally controlled tumor protein. The therapeutic efficacy of newly formulated intranasal insulin + PTD was compared in vivo studies with normal and alloxan-induced diabetic rats, to those of free insulin and subcutaneously injected insulin. BA of insulin in two new formulations was, respectively, 60.71% and 45.81% of subcutaneously injected insulin, while the BA of free insulin was only 3.34%. Histological analysis of tissues, lactate dehydrogenase activity in nasal fluid, and biochemical analysis of sera revealed no detectable topical or systemic toxicity in rats and mice. Furthermore, stability analysis of newly formulated insulin + PTD to determine the optimal conditions for storage revealed that when stored at 4 °C, the delivery capacity of insulin was maintained up to 7 d. These results suggest that the new formulations of intranasal insulin are suitable for use in diabetes therapy and are easier to administer.
Collapse
Affiliation(s)
- Hae-Duck Bae
- a Graduate School of Pharmaceutical Sciences, College of Pharmacy , Ewha Woman's University , Seoul , Korea
| | - Ji-Sun Lee
- a Graduate School of Pharmaceutical Sciences, College of Pharmacy , Ewha Woman's University , Seoul , Korea
| | - Haejun Pyun
- a Graduate School of Pharmaceutical Sciences, College of Pharmacy , Ewha Woman's University , Seoul , Korea
| | - Moonhee Kim
- a Graduate School of Pharmaceutical Sciences, College of Pharmacy , Ewha Woman's University , Seoul , Korea
| | - Kyunglim Lee
- a Graduate School of Pharmaceutical Sciences, College of Pharmacy , Ewha Woman's University , Seoul , Korea
| |
Collapse
|
12
|
Prudkin-Silva C, Pérez OE, Martínez KD, Barroso da Silva FL. Combined Experimental and Molecular Simulation Study of Insulin–Chitosan Complexation Driven by Electrostatic Interactions. J Chem Inf Model 2019; 60:854-865. [DOI: 10.1021/acs.jcim.9b00814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cecilia Prudkin-Silva
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Pabellón 2, Buenos Aires CP 1428, Argentina
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Pabellón 2, Buenos Aires CP 1428, Argentina
| | - Karina D. Martínez
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigación Científica y Técnicas de la República Argentina, ITAPROQ-CONICET, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires CP 1428, Argentina
| | - Fernando L. Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-903 Brazil
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
13
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
14
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
15
|
Silva CP, Martínez JH, Martínez KD, Farías ME, Leskow FC, Pérez OE. Proposed molecular model for electrostatic interactions between insulin and chitosan. Nano-complexation and activity in cultured cells. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Kara DA, Borzova VA, Markossian KA, Kleymenov SY, Kurganov BI. A change in the pathway of dithiothreitol-induced aggregation of bovine serum albumin in the presence of polyamines and arginine. Int J Biol Macromol 2017; 104:889-899. [DOI: 10.1016/j.ijbiomac.2017.06.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/27/2022]
|
17
|
Abstract
Chemical chaperones including arginine and its derivatives are widely used by biochemists working on the design of agents, which are able to efficiently suppress protein aggregation. To elucidate the mechanisms of anti-aggregation activity of chemical chaperones, methods based on registration of the increment in light scattering intensity must be supplemented with methods for direct detection of the portion of aggregated protein (γagg). For this purpose asymmetric flow field-flow fractionation was used in the present work. It was shown that heat-induced aggregation of bovine serum albumin (BSA) followed the kinetics of the reaction of the second order (0.1 M sodium phosphate buffer, pH 7.0, 70 °C). It was proposed to use Rhvs γagg plots to characterize the aggregation pathway (Rh is the hydrodynamic radius of the protein aggregates, which was calculated from the dynamic light scattering data). The changes in the shape of Rhvs γagg plots in the presence of arginine, arginine amide and arginine ethyl ester are indicative of the changes in the aggregation pathway of BSA aggregation. A conclusion has been made that larger aggregates are formed in the presence of arginine hydrochloride and its derivatives.
Collapse
|
18
|
Duvoor C, Dendi VS, Marco A, Shekhawat NS, Chada A, Ravilla R, Musham CK, Mirza W, Chaudhury A. Commentary: ATP: The crucial component of secretory vesicles: Accelerated ATP/insulin exocytosis and prediabetes. Front Physiol 2017; 8:53. [PMID: 28210227 PMCID: PMC5288386 DOI: 10.3389/fphys.2017.00053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/19/2017] [Indexed: 02/03/2023] Open
Affiliation(s)
- Chitharanjan Duvoor
- Department of Endocrinology and Internal Medicine, University of Arkansas for Medical SciencesLittle Rock, AR, USA; GIM FoundationLittle Rock, AR, USA
| | - Vijaya S Dendi
- GIM FoundationLittle Rock, AR, USA; Department of Internal Medicine and Hospital Medicine, Christus Trinity Mother Frances HospitalTyler, TX, USA
| | - Asween Marco
- GIM FoundationLittle Rock, AR, USA; Department of Policy, University of Arkansas for Little RockLittle Rock, AR, USA
| | - Nawal S Shekhawat
- GIM FoundationLittle Rock, AR, USA; Tutwiler ClinicTutwiler, MS, USA
| | - Aditya Chada
- GIM FoundationLittle Rock, AR, USA; Department of Pulmonary and Critical Care Medicine, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - Rahul Ravilla
- GIM FoundationLittle Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - Chaitanya K Musham
- GIM FoundationLittle Rock, AR, USA; St. Vincent Infirmary (Catholic Health Initiative)Little Rock, AR, USA
| | | | | |
Collapse
|
19
|
Bemporad F, Ramazzotti M. From the Evolution of Protein Sequences Able to Resist Self-Assembly to the Prediction of Aggregation Propensity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:1-47. [PMID: 28109326 DOI: 10.1016/bs.ircmb.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Folding of polypeptide chains into biologically active entities is an astonishingly complex process, determined by the nature and the sequence of residues emerging from ribosomes. While it has been long believed that evolution has pressed genomes so that specific sequences could adopt unique, functional three-dimensional folds, it is now clear that complex protein machineries act as quality control system and supervise folding. Notwithstanding that, events such as erroneous folding, partial folding, or misfolding are frequent during the life of a cell or a whole organism, and they can escape controls. One of the possible outcomes of this misbehavior is cross-β aggregation, a super secondary structure which represents the hallmark of self-assembled, well organized, and extremely ordered structures termed amyloid fibrils. What if evolution would have not taken into account such possibilities? Twenty years of research point toward the idea that, in fact, evolution has constantly supervised the risk of errors and minimized their impact. In this review we tried to survey the major findings in the amyloid field, trying to describe what the real pitfalls of protein folding are-from an evolutionary perspective-and how sequence and structural features have evolved to balance the need for perfect, dynamic, functionally efficient structures, and the detrimental effects implicit in the dangerous process of folding. We will discuss how the knowledge obtained from these studies has been employed to produce computational methods able to assess, predict, and discriminate the aggregation properties of protein sequences.
Collapse
Affiliation(s)
- F Bemporad
- Università degli Studi di Firenze, Firenze, Italy.
| | - M Ramazzotti
- Università degli Studi di Firenze, Firenze, Italy.
| |
Collapse
|
20
|
Interaction between dietary bioactive peptides of short length and bile salts in submicellar or micellar state. Food Chem 2016; 209:114-22. [DOI: 10.1016/j.foodchem.2016.04.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/17/2016] [Accepted: 04/13/2016] [Indexed: 11/30/2022]
|
21
|
Minton AP. Recent applications of light scattering measurement in the biological and biopharmaceutical sciences. Anal Biochem 2016; 501:4-22. [PMID: 26896682 PMCID: PMC5804501 DOI: 10.1016/j.ab.2016.02.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Makeeva VF, Kurganov BI. Checking for reversibility of aggregation of UV-irradiated glycogen phosphorylase b under crowding conditions. Int J Biol Macromol 2016; 86:829-39. [DOI: 10.1016/j.ijbiomac.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
|