1
|
Li J, Lu L, Liu L, Wang C, Xie Y, Li H, Tian L, Yu X. The unique role of bone marrow adipose tissue in ovariectomy-induced bone loss in mice. Endocrine 2024; 83:77-91. [PMID: 37682419 DOI: 10.1007/s12020-023-03504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Accumulation of bone marrow adipose tissue (BMAT) is always seen in osteoporosis induced by estrogen deficiency. Herein, we aimed to investigate the mechanisms and consequences of this phenomenon by establishing a mouse model of osteoporosis caused by ovariectomy (OVX)-mimicked estrogen deficiency. METHODS Micro-CT, osmium tetroxide staining, and histological analyses were performed to examine the changes in bone microstructure, BMAT and white adipose tissue (WAT) in OVX mice compared to sham mice. The osteogenesis and adipogenesis of primary bone marrow stromal cells (BMSCs) isolated from sham and OVX mice were compared in vitro. The molecular phenotypes of BMAT and WAT were determined and compared by quantitative PCR (qPCR). Bone marrow adipocyte-conditioned medium (BMA CM) was prepared from sham or OVX mice for coculture assays, and BMSCs or bone marrow monocytes/macrophages (BMMs) were isolated and subjected to osteoblast and osteoclast differentiation, respectively. Cell staining and qPCR were used to assess the effects of BMAT on bone metabolism. RESULTS OVX-induced estrogen deficiency induced reductions in both cortical and trabecular bone mass along with an expansion of BMAT volume. At the cellular level, loss of estrogen inhibited BMSC osteogenesis and promoted BMSC adipogenesis, whereas addition of estradiol exerted the opposite effects. In response to estrogen deficiency, despite the common proinflammatory molecular phenotype observed in both fat depots, BMAT, unlike WAT, unexpectedly exhibited an increase in adipocyte differentiation and lipolytic activity as well as the maintenance of insulin sensitivity. Importantly, BMAT, but not WAT, presented increased mRNA levels of both BMP receptor inhibitors (Grem1, Chrdl1) and Rankl following OVX. In addition, treatment with BMA CM, especially from OVX mice, suppressed the osteoblast differentiation of BMSCs while favoring the osteoclast differentiation of BMMs. CONCLUSION Our study illustrates that OVX-induced estrogen deficiency results in bone loss and BMAT expansion by triggering imbalance between the osteogenesis and adipogenesis of BMSCs. Furthermore, expanded BMAT, unlike typical WAT, may negatively regulate bone homeostasis through paracrine inhibition of osteoblast-mediated bone formation and promotion of osteoclast-mediated bone resorption.
Collapse
Affiliation(s)
- Jiao Li
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Integrated Traditional Chinese and Western medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Liu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cui Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Li
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Huang F, Liu X, Fu X, Chen Y, Jiang D, Wang T, Hu R, Zou X, Hu H, Liu C. 3D-Printed Bioactive Scaffold Loaded with GW9508 Promotes Critical-Size Bone Defect Repair by Regulating Intracellular Metabolism. Bioengineering (Basel) 2023; 10:bioengineering10050535. [PMID: 37237605 DOI: 10.3390/bioengineering10050535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The process of bone regeneration is complicated, and it is still a major clinical challenge to regenerate critical-size bone defects caused by severe trauma, infection, and tumor resection. Intracellular metabolism has been found to play an important role in the cell fate decision of skeletal progenitor cells. GW9508, a potent agonist of the free fatty acid receptors GPR40 and GPR120, appears to have a dual effect of inhibiting osteoclastogenesis and promoting osteogenesis by regulating intracellular metabolism. Hence, in this study, GW9508 was loaded on a scaffold based on biomimetic construction principles to facilitate the bone regeneration process. Through 3D printing and ion crosslinking, hybrid inorganic-organic implantation scaffolds were obtained after integrating 3D-printed β-TCP/CaSiO3 scaffolds with a Col/Alg/HA hydrogel. The 3D-printed β-TCP/CaSiO3 scaffolds had an interconnected porous structure that simulated the porous structure and mineral microenvironment of bone, and the hydrogel network shared similar physicochemical properties with the extracellular matrix. The final osteogenic complex was obtained after GW9508 was loaded into the hybrid inorganic-organic scaffold. To investigate the biological effects of the obtained osteogenic complex, in vitro studies and a rat cranial critical-size bone defect model were utilized. Metabolomics analysis was conducted to explore the preliminary mechanism. The results showed that 50 μM GW9508 facilitated osteogenic differentiation by upregulating osteogenic genes, including Alp, Runx2, Osterix, and Spp1 in vitro. The GW9508-loaded osteogenic complex enhanced osteogenic protein secretion and facilitated new bone formation in vivo. Finally, the results from metabolomics analysis suggested that GW9508 promoted stem cell differentiation and bone formation through multiple intracellular metabolism pathways, including purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, and taurine and hypotaurine metabolism. This study provides a new approach to address the challenge of critical-size bone defects.
Collapse
Affiliation(s)
- Fangli Huang
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xihong Fu
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Dong Jiang
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Tingxuan Wang
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Rongcheng Hu
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Chun Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Yan X, Fan D, Pi Y, Zhang Y, Fu P, Zhang H. ERα/β/DMP1 axis promotes trans-differentiation of chondrocytes to bone cells through GSK-3β/β-catenin pathway. J Anat 2022; 240:1152-1161. [PMID: 35081258 PMCID: PMC9119614 DOI: 10.1111/joa.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Estrogen-induced premature closing of the growth plate in the long bones is a major cause of short stature after premature puberty. Recent studies have found that chondrocytes can directly trans-differentiate into osteoblasts in the process of endochondral bone formation, which indicates that cartilage formation and osteogenesis may be a continuous biological process. However, whether estrogen promotes the direct trans-differentiation of chondrocytes into osteoblasts remains largely unknown. Chondrocytes were treated with different concentrations of 17β-estradiol, and Alizarin Red staining and alkaline phosphatase activity assay were used to detected osteogenesis. Specific short hairpin RNA and tamoxifen were used to block the estrogen receptor (ER) pathway and osteogenic marker genes and downstream gene expression were detected using real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry staining. The findings showed that 17β-estradiol promoted the chondrocyte osteogenesis in vitro, even at high concentrations. In addition, blocking of the ERα/β pathway inhibited the trans-differentiation of chondrocytes into osteogenic cells. Furthermore, we found that dentin matrix protein 1 (DMP1), which is a direct downstream molecular of ER, was involved in 17β-estradiol/ER pathway-regulated osteogenesis. As well, glycogen synthase kinase-3 beta (GSK-3β)/β-catenin signal pathway also participates in ERα/β/DMP1-regulated chondrocyte osteogenesis. The GSK-3β/β-catenin signal pathway was involved in ERα/β/DMP1-regulated chondrocyte osteogenesis. These findings suggest that ER/DMP1/GSK-3β/β-catenin plays a vital role in estrogen regulation of chondrocyte osteogenesis and provide a therapeutic target for short stature caused by epiphyseal fusion.
Collapse
Affiliation(s)
- Xue Yan
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Deng‐Yun Fan
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ya‐Lei Pi
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ya‐Nan Zhang
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Peng‐Jiu Fu
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Hui‐Feng Zhang
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
4
|
Liu Z, Yang J. Uncarboxylated osteocalcin promotes osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells by activating the Erk-Smad/β-catenin signalling pathways. Cell Biochem Funct 2019; 38:87-96. [PMID: 31674048 DOI: 10.1002/cbf.3457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/03/2019] [Accepted: 10/13/2019] [Indexed: 01/06/2023]
Abstract
Uncarboxylated osteocalcin (unOc) is an osteoblast-derived hormone with multiple regulatory functions. Osteocalcin knockdown delays the maturation of mineral species and downregulates the expression of osteogenic-specific genes in human mesenchymal stromal cells. However, the underlying mechanisms remain unclear. Here, we investigated the effects of unOc on the osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (BMSCs) and discovered that unOc promoted osteogenic differentiation of BMSCs, which was characterized by increases in alkaline phosphatase (ALP) activity, type I collagen (COLI) production, calcified nodule formation, and expression of osteogenic-specific genes including the osterix, runt-related transcription factor 2 (Runx2), ALP, and COLI genes. Further experiments indicated that unOc promoted the osteogenic differentiation of BMSCs via activation of the Erk-Smad/β-catenin signalling pathways. SIGNIFICANCE OF THE STUDY: Osteoporosis is associated with the osteogenic differentiation of BMSCs. In recent years, the role of unOc function as an endocrine hormone has received much attention. In this study, we reported for the first time that unOc promoted the osteogenic differentiation of mouse BMSCs through Erk-Smad/β-catenin signalling pathway. Our results highlight the importance of unOc as a hormone in promoting the osteogenic differentiation of BMSCs, indicating that this hormone may be beneficial in treatments for osteoporosis and fracture healing.
Collapse
Affiliation(s)
- Zhongsheng Liu
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jianhong Yang
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Pineda-Peña EA, Martínez-Pérez Y, Galicia-Moreno M, Navarrete A, Segovia J, Muriel P, Favari L, Castañeda-Hernández G, Chávez-Piña AE. Participation of the anti-inflammatory and antioxidative activity of docosahexaenoic acid on indomethacin-induced gastric injury model. Eur J Pharmacol 2018; 818:585-592. [DOI: 10.1016/j.ejphar.2017.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
|
6
|
Sui BD, Hu CH, Liu AQ, Zheng CX, Xuan K, Jin Y. Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions. Biomaterials 2017; 196:18-30. [PMID: 29122279 DOI: 10.1016/j.biomaterials.2017.10.046] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/21/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
Restoration of extensive bone loss and defects remain as an unfulfilled challenge in modern medicine. Given the critical contributions to bone homeostasis and diseases, mesenchymal stem cells (MSCs) have shown great promise to jumpstart and facilitate bone healing, with immense regenerative potential in both pharmacology-based endogenous MSC rescue/mobilization in skeletal diseases and emerging application of MSC transplantation in bone tissue engineering and cytotherapy. However, efficacy of MSC-based bone regeneration was not always achieved; particularly, fulfillment of MSC-mediated bone healing in diseased microenvironments of host comorbidities remains as a major challenge. Indeed, impacts of diseased microenvironments on MSC function rely not only on the dynamic regulation of resident MSCs by surrounding niche to convoy pathological signals of bone, but also on the profound interplay between transplanted MSCs and recipient components that mediates and modulates therapeutic effects on skeletal conditions. Accordingly, novel solutions have recently been developed, including improving resistance of MSCs to diseased microenvironments, recreating beneficial microenvironments to guarantee MSC-based regeneration, and usage of subcellular vesicles of MSCs in cell-free therapies. In this review, we summarize state-of-the-art knowledge regarding applications and challenges of MSC-mediated bone healing, further offering principles and effective strategies to optimize MSC-based bone regeneration in aging and diseases.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
7
|
Skubis A, Sikora B, Zmarzły N, Wojdas E, Mazurek U. Adipose-derived stem cells: a review of osteogenesis differentiation. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/fobio-2016-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review article provides an overview on adipose-derived stem cells (ADSCs) for implications in bone tissue regeneration. Firstly this article focuses on mesenchymal stem cells (MSCs) which are object of interest in regenerative medicine. Stem cells have unlimited potential for self-renewal and develop into various cell types. They are used for many therapies such as bone tissue regeneration. Adipose tissue is one of the main sources of mesenchymal stem cells (MSCs). Regenerative medicine intends to differentiate ADSC along specific lineage pathways to effect repair of damaged or failing organs. For further clinical applications it is necessary to understand mechanisms involved in ADSCs proliferation and differentiation. Second part of manuscript based on osteogenesis differentiation of stem cells. Bones are highly regenerative organs but there are still many problems with therapy of large bone defects. Sometimes there is necessary to make a replacement or expansion new bone tissue. Stem cells might be a good solution for this especially ADSCs which manage differentiate into osteoblast in in vitro and in vivo conditions.
Collapse
|
8
|
Philippe C, Wauquier F, Landrier JF, Bonnet L, Miot-Noirault E, Rochefort GY, Sadoine J, Asrih M, Jornayvaz FR, Bernalier A, Coxam V, Wittrant Y. GPR40 mediates potential positive effects of a saturated fatty acid enriched diet on bone. Mol Nutr Food Res 2016; 61. [PMID: 27611773 DOI: 10.1002/mnfr.201600219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/29/2016] [Accepted: 09/02/2016] [Indexed: 01/13/2023]
Abstract
SCOPE The stimulation of the free fatty acid receptor G-protein coupled receptor (GPR) 40 by GW9508 prevents bone loss by inhibiting osteoclast activity, both in vitro and in vivo. Here, we questioned whether the stimulation of the GPR40 receptor by dietary fatty acids may lead to the same beneficial effect on bone. METHODS AND RESULTS We investigated (i) the impact of a fatty acid enriched diet (high-fat diet [HFD]) on bone health in C57/BL6 female mice depending on (ii) the estrogen status (ovariectomy) and (iii) the genotype (GPR40+/+ or GPR40-/- ). Bone mineral density (BMD), body composition, weight, inflammation and bone remodeling parameters were monitored. HFD decreased BMD in HFD-SH-GPR40+/+ mice but OVX failed to further impact BMD in HFD-OVX-GPR40+/+ mice, while additional bone loss was observed in HFD-OVX-GPR40-/- animals. These data suggest that when stimulated by fatty acid enriched diets GPR40 contributes to counteract ovariectomy-induced bone alteration. The sparing effect is supported by the modulation of both the osteoprotegerin/receptor activator of nuclear factor kappa-B ligand (OPG/RANKL) ratio in blood stream and the expression level of inflammatory markers in adipose tissues. Bone preservation by GPR40 stimulation is dependent on the presence of long-chain saturated fatty acids. CONCLUSION GPR40 contributes to counter ovariectomy-induced bone loss in a context of saturated fatty acid enrichment.
Collapse
Affiliation(s)
- Claire Philippe
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France.,Equipe Alimentation, Squelette et Métabolismes, Unité de Nutrition Humaine, Centre de Recherche INRA Auvergne Rhône Alpes, Site de Theix, 63122 Saint Genés Champanelle, France
| | - Fabien Wauquier
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France.,Equipe Alimentation, Squelette et Métabolismes, Unité de Nutrition Humaine, Centre de Recherche INRA Auvergne Rhône Alpes, Site de Theix, 63122 Saint Genés Champanelle, France
| | - Jean-François Landrier
- INRA, UMR1260, Nutriments Lipidiques et Prévention des Maladies Métaboliques, Marseille, France.,Faculté de Médecine, Université de la Méditerranée Aix-Marseille 1 et 2, Marseille, France
| | - Lauriane Bonnet
- INRA, UMR1260, Nutriments Lipidiques et Prévention des Maladies Métaboliques, Marseille, France.,Faculté de Médecine, Université de la Méditerranée Aix-Marseille 1 et 2, Marseille, France
| | - Elisabeth Miot-Noirault
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France.,INSERM, UMR990, IMTV, Clermont-Ferrand, France
| | - Gaël Y Rochefort
- EA 2496 Pathologie, Imagerie et Biothérapies Orofaciales, UFR Odontologie, Université Paris Descartes and PIPA, PRES Sorbonne Paris Cité, Montrouge, France
| | - Jérémy Sadoine
- EA 2496 Pathologie, Imagerie et Biothérapies Orofaciales, UFR Odontologie, Université Paris Descartes and PIPA, PRES Sorbonne Paris Cité, Montrouge, France
| | - Mohamed Asrih
- Service d'Endocrinologie, Diabétologie et Métabolisme, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - François R Jornayvaz
- Service d'Endocrinologie, Diabétologie et Métabolisme, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Véronique Coxam
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France.,Equipe Alimentation, Squelette et Métabolismes, Unité de Nutrition Humaine, Centre de Recherche INRA Auvergne Rhône Alpes, Site de Theix, 63122 Saint Genés Champanelle, France
| | - Yohann Wittrant
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France.,Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France.,Equipe Alimentation, Squelette et Métabolismes, Unité de Nutrition Humaine, Centre de Recherche INRA Auvergne Rhône Alpes, Site de Theix, 63122 Saint Genés Champanelle, France
| |
Collapse
|
9
|
Sui BD, Hu CH, Zheng CX, Jin Y. Microenvironmental Views on Mesenchymal Stem Cell Differentiation in Aging. J Dent Res 2016; 95:1333-1340. [PMID: 27302881 DOI: 10.1177/0022034516653589] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging is characterized by common environmental changes, such as hormonal, immunologic, and metabolic disorders. These pathologic factors impair the capability of mesenchymal stem cells (MSCs) to generate and maintain functionalized tissue components, contributing to age-related tissue degeneration (e.g., osteoporosis). However, in organismal aging, whether the microenvironmental signals induce common or differential MSC compromise and how they interact at the molecular level in mediating the functional decline of MSCs are not fully understood. In this review, we discuss the respective contribution of microenvironmental pathologic factors to age-related MSC dysfunction-particularly, the shifted differentiation from osteoblasts to adipocytes of bone marrow-derived MSCs. The authors summarize recent works regarding mechanisms underlying MSC-biased differentiation under altered microenvironments, which involve the activation of key signaling pathways, intracellular oxidative stress, and posttranscriptional regulations. In addition, we compare the differential influences of systemic and local microenvironments on MSC differentiation based on our findings. The authors also propose strategies to rescue differentiation disorders of MSCs in aging via modulating microenvironments, by using signaling modulators, anti-inflammatory agents, antioxidants, and metabolic regulators and by promoting mobilization of systemic MSCs to local injury sites. The authors hope that these insights contribute to MSC-based organismal aging research and treatments.
Collapse
Affiliation(s)
- B D Sui
- 1 State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China.,2 Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - C H Hu
- 1 State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China.,2 Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - C X Zheng
- 1 State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China.,2 Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Y Jin
- 1 State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China.,2 Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| |
Collapse
|
10
|
Tang XL, Wang CN, Zhu XY, Ni X. Rosiglitazone inhibition of calvaria-derived osteoblast differentiation is through both of PPARγ and GPR40 and GSK3β-dependent pathway. Mol Cell Endocrinol 2015; 413:78-89. [PMID: 26116229 DOI: 10.1016/j.mce.2015.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/20/2015] [Accepted: 06/10/2015] [Indexed: 01/17/2023]
Abstract
Rosiglitazone (RSG) can cause bone loss, however the mechanisms remain largely unknown. This study aims to investigate the effects of RSG on differentiation and mineralization of osteoblasts using primary cultured mouse fetal calvaria-derived osteoblasts as a model, and elucidate the receptor and signaling pathways responsible for these effects. We found that RSG suppressed the differentiation and mineralization of calvaria-derived osteoblasts. Peroxisome proliferators-activated receptor γ (PPARγ) siRNA significantly reversed the inhibitory effect of RSG on osteogenic differentiation. The expression of G protein-coupled receptor (GPR) 40 was suppressed during differentiation, but was increased by RSG treatment. GPR40 siRNA significantly reversed the inhibitory effect of RSG on osteogenesis. RSG activated glycogen synthase kinase (GSK)-3β, which in turn decreased β-catenin expression. RSG-induced GSK3β activation was mediated through both PPARγ and GPR40. These results suggest that both PPARγ and GRP40 are required for RSG-induced inhibition of mouse calvaria osteoblast differentiation, which is mediated through GSK3β-dependent pathway.
Collapse
Affiliation(s)
- Xiao-Lu Tang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Chang-Nan Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Yan Zhu
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| | - Xin Ni
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
11
|
Gao B, Huang Q, Jie Q, Lu WG, Wang L, Li XJ, Sun Z, Hu YQ, Chen L, Liu BH, Liu J, Yang L, Luo ZJ. GPR120: A bi-potential mediator to modulate the osteogenic and adipogenic differentiation of BMMSCs. Sci Rep 2015; 5:14080. [PMID: 26365922 PMCID: PMC4568495 DOI: 10.1038/srep14080] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022] Open
Abstract
Free fatty acids display diverse effects as signalling molecules through GPCRs in addition to their involvement in cellular metabolism. GPR120, a G protein-coupled receptor for long-chain unsaturated fatty acids, has been reported to mediate adipogenesis in lipid metabolism. However, whether GPR120 also mediates osteogenesis and regulates BMMSCs remain unclear. In this study, we showed that GPR120 targeted the bi-potential differentiation of BMMSCs in a ligand dose-dependent manner. High concentrations of TUG-891 (a highly selective agonist of GPR120) promoted osteogenesis via the Ras-ERK1/2 cascade, while low concentrations elevated P38 and increased adipogenesis. The fine molecular regulation of GPR120 was implemented by up-regulating different integrin subunits (α1, α2 and β1; α5 and β3). The administration of high doses of TUG-891 rescued oestrogen-deficient bone loss in vivo, further supporting an essential role of GPR120 in bone metabolism. Our findings, for the first time, showed that GPR120-mediated cellular signalling determines the bi-potential differentiation of BMMSCs in a dose-dependent manner. Additionally, the induction of different integrin subunits was involved in the cytoplasmic regulation of a seesaw-like balance between ERK and p38 phosphorylation. These findings provide new hope for developing novel remedies to treat osteoporosis by adjusting the GPR120-mediated differentiation balance of BMMSCs.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Qiang Huang
- Lanzhou General Hospital of Lanzhou Military Command, Lanzhou Gansu, 730050, People's Republic of China
| | - Qiang Jie
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Wei-Guang Lu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Long Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xiao-Jie Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Zhen Sun
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Ya-Qian Hu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Li Chen
- KMEB, Molecular Endocrinology, Campusvej 55, DK-5230 Odense M, Denmark
| | - Bao-Hua Liu
- Health Science Center, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060, People's Republic of China
| | - Jian Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Zhuo-Jing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
12
|
Heo HR, Chen L, An B, Kim KS, Ji J, Hong SH. Hormonal regulation of hematopoietic stem cells and their niche: a focus on estrogen. Int J Stem Cells 2015; 8:18-23. [PMID: 26019751 PMCID: PMC4445706 DOI: 10.15283/ijsc.2015.8.1.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
Self-renewal and differentiation are hallmarks of stem cells and controlled by various intrinsic and extrinsic factors. Increasing evidence indicates that estrogen (E2), the primary female sex hormone, is involved in regulating the proliferation and lineage commitment of adult and pluripotent stem cells as well as modulating the stem cell niche. Thus, a detailed understanding of the role of E2 in behavior of stem cells may help to improve their therapeutic potential. Recently, it has been reported that E2 promotes cell cycle activity of hematopoietic stem and progenitor cells and induces them to megakaryocyte-erythroid progenitors during pregnancy. This study paves the way towards a previously unexplored endocrine mechanism that controls stem cell behavior. In this review, we will focus on the scientific findings regarding the regulatory effects of E2 on the hematopoietic system including its microenvironment.
Collapse
Affiliation(s)
- Hye-Ryeon Heo
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Li Chen
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Borim An
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul, Korea
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea ; Stem Cell Institute, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
13
|
Wauquier F, Léotoing L, Philippe C, Spilmont M, Coxam V, Wittrant Y. Pros and cons of fatty acids in bone biology. Prog Lipid Res 2015; 58:121-45. [PMID: 25835096 DOI: 10.1016/j.plipres.2015.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/06/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022]
Abstract
Despite the growing interest in deciphering the causes and consequences of obesity-related disorders, the mechanisms linking fat intake to bone behaviour remain unclear. Since bone fractures are widely associated with increased morbidity and mortality, most notably in elderly and obese people, bone health has become a major social and economic issue. Consistently, public health system guidelines have encouraged low-fat diets in order to reduce associated complications. However, from a bone point of view, mechanisms linking fat intake to bone alteration remain quite controversial. Thus, after more than a decade of dedicated studies, this timely review offers a comprehensive overview of the relationships between bone and fatty acids. Using clinical evidences as a starting-point to more complex molecular elucidation, this work highlights the complexity of the system and reveals that bone alteration that cannot be solved simply by taking ω-3 pills. Fatty acid effects on bone metabolism can be both direct and indirect and require integrated investigations. Furthermore, even at the level of a single cell, one fatty acid is able to trigger several different independent pathways (receptors, metabolites…) which may all have a say in the final cellular metabolic response.
Collapse
Affiliation(s)
- Fabien Wauquier
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Laurent Léotoing
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Claire Philippe
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Mélanie Spilmont
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Véronique Coxam
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Yohann Wittrant
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France.
| |
Collapse
|