1
|
Wang Y, Qian H, Shao X, Zhang H, Liu S, Pan J, Xue W. Multimodal convolutional neural networks based on the Raman spectra of serum and clinical features for the early diagnosis of prostate cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122426. [PMID: 36787677 DOI: 10.1016/j.saa.2023.122426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
We collected surface-enhanced Raman spectroscopy (SERS) data from the serum of 729 patients with prostate cancer or benign prostatic hyperplasia (BPH), corresponding to their pathological results, and built an artificial intelligence-assisted diagnosis model based on a convolutional neural network (CNN). We then evaluated its value in diagnosing prostate cancer and predicting the Gleason score (GS) using a simple cross-validation method. Our CNN model based on the spectral data for prostate cancer diagnosis revealed an accuracy of 85.14 ± 0.39%. After adjusting the model with patient age and prostate specific antigen (PSA), the accuracy of the multimodal CNN was up to 88.55 ± 0.66%. Our multimodal CNN for distinguishing low-GS/high-GS and GS = 3 + 3/GS = 3 + 4 revealed accuracies of 68 ± 0.58% and 77 ± 0.52%, respectively.
Collapse
Affiliation(s)
- Yan Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongyang Qian
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Heng Zhang
- Shanghai Institute for Advanced Communication and Data Science, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Shupeng Liu
- Shanghai Institute for Advanced Communication and Data Science, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
2
|
Li X, Nakayama K, Goto T, Kimura H, Akamatsu S, Hayashi Y, Fujita K, Kobayashi T, Shimizu K, Nonomura N, Ogawa O, Inoue T. High level of phosphatidylcholines/lysophosphatidylcholine ratio in urine is associated with prostate cancer. Cancer Sci 2021; 112:4292-4302. [PMID: 34328656 PMCID: PMC8486217 DOI: 10.1111/cas.15093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022] Open
Abstract
The altered levels of phospholipids (PLs) and lysophospholipids (LPLs) in prostate cancer (CaP) and benign tissues in our previous findings prompted us to explore PLs and LPLs as potential biomarkers for CaP. Urinary lipidomics has attracted increasing attention in clinical diagnostics and prognostics for CaP. In this study, 31 prostate tissues obtained from radical prostatectomy were assessed using high‐resolution matrix‐assisted laser desorption/ionization imaging mass spectrometry (HR‐MALDI‐IMS). Urine samples were collected after digital rectal examination (DRE), and urinary lipids were extracted using the acidified Bligh‐Dyer method. The discovery set comprised 75 patients with CaP and 44 with benign prostatic hyperplasia (BPH) at Kyoto University Hospital; the validation set comprised 74 patients with CaP and 59 with BPH at Osaka University Hospital. Urinary lipidomic screening was performed using MALDI time‐of‐flight MS (MALDI‐TOF/MS). The levels of urinary lysophosphatidylcholine (LPC) and phosphatidylcholines (PCs) were compared between the CaP and BPH groups. The (PC [34:2] + PC [34:1])/LPC (16:0) ratio was significantly higher (P < .001) in CaP tissues than in benign epithelial tissues. The urinary PCs/LPC ratio was significantly higher (P < .001) in the CaP group than in the BPH group in the discovery and validation sets.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Nakayama
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroko Kimura
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urology, Kindai University Faculty of Medicine, Higashi-Osaka, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Shimizu
- Clinical Research Center for Medical Equipment Development, Kyoto University Hospital, Kyoto, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
3
|
Wolrab D, Jirásko R, Chocholoušková M, Peterka O, Holčapek M. Oncolipidomics: Mass spectrometric quantitation of lipids in cancer research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Zhang H, Wang L, Hou Z, Ma H, Mamtimin B, Hasim A, Sheyhidin I. Metabolomic profiling reveals potential biomarkers in esophageal cancer progression using liquid chromatography-mass spectrometry platform. Biochem Biophys Res Commun 2017; 491:119-125. [DOI: 10.1016/j.bbrc.2017.07.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
|
5
|
Guéant JL. One carbon metabolism, a complex metabolic network involved in pathomechanisms of inherited disorders, birth defects and age-related pathologies. Biochimie 2016; 126:1-2. [DOI: 10.1016/j.biochi.2016.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|