1
|
Wang X, Liu M, Li Y, Zhou X, Zhang Z, Dong S, Shen M, Wang M, Wang H, Liu L. Development and application of a visualization method for identification of Panax species with LAMP and a DNAzyme. Anal Biochem 2023; 679:115298. [PMID: 37619904 DOI: 10.1016/j.ab.2023.115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Panax ginseng and Panax quinquefolium are two valuable Chinese herbal medicines that should not be mixed because they differ in drug properties and efficacy. The traditional identification method is easily affected by subjective factors and cannot effectively distinguish between ginseng products. This study aimed to develop a new chemical analysis method to visually identify P. ginseng and P. quinquefolium. In this method, a large number of sequences containing G-quadruplex were generated by loop-mediated isothermal amplification, and the combination of G-quadruplex and hemin was used to form deoxyribozyme, which catalyzed the color change of H2O2. Artificial simulation of adulteration experiments revealed that this method could detect more than 20% adulterated P. quinquefolium. Compared with the traditional identification methods, this technology was simpler and more efficient, providing a reference for developing rapid visual identification methods and reagents for P. ginseng and P. quinquefolium.
Collapse
Affiliation(s)
- Xiangjun Wang
- College of Medical Technology, Beihua University, Jilin, 132000, China
| | - Moyi Liu
- College of Medical Technology, Beihua University, Jilin, 132000, China
| | - Ying Li
- College of Medical Technology, Beihua University, Jilin, 132000, China
| | - Xinchen Zhou
- College of Medical Technology, Beihua University, Jilin, 132000, China
| | - Zhuo Zhang
- College of Medical Technology, Beihua University, Jilin, 132000, China
| | - Shuhan Dong
- College of Medical Technology, Beihua University, Jilin, 132000, China
| | - Mingmei Shen
- College of Medical Technology, Beihua University, Jilin, 132000, China
| | - Minghui Wang
- College of Medical Technology, Beihua University, Jilin, 132000, China
| | - Helin Wang
- College of Medical Technology, Beihua University, Jilin, 132000, China
| | - Limei Liu
- College of Medical Technology, Beihua University, Jilin, 132000, China.
| |
Collapse
|
2
|
Zhang Y, Ji Z, Wang X, Cao Y, Pan H. Single-Molecule Study of DNAzyme Reveals Its Intrinsic Conformational Dynamics. Int J Mol Sci 2023; 24:ijms24021212. [PMID: 36674728 PMCID: PMC9864658 DOI: 10.3390/ijms24021212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
DNAzyme is a class of DNA molecules that can perform catalytic functions with high selectivity towards specific metal ions. Due to its potential applications for biosensors and medical therapeutics, DNAzyme has been extensively studied to characterize the relationships between its biochemical properties and functions. Similar to protein enzymes and ribozymes, DNAzymes have been found to undergo conformational changes in a metal-ion-dependent manner for catalysis. Despite the important role the conformation plays in the catalysis process, such structural and dynamic information might not be revealed by conventional approaches. Here, by using the single-molecule fluorescence resonance energy transfer (smFRET) technique, we were able to investigate the detailed conformational dynamics of a uranyl-specific DNAzyme 39E. We observed conformation switches of 39E to a folded state with the addition of Mg2+ and to an extended state with the addition of UO22+. Furthermore, 39E can switch to a more compact configuration with or without divalent metal ions. Our findings reveal that 39E can undergo conformational changes spontaneously between different configurations.
Collapse
Affiliation(s)
- Yiming Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Wenzhou–Kean University, Wenzhou 325060, China
| | - Zongzhou Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Northeastern University, Shenyang 110819, China
| | - Xin Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yi Cao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan 250117, China
- National Laboratory of Solid–State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Hai Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Correspondence:
| |
Collapse
|
3
|
Li X, Yang H, He J, Yang B, Zhao Y, Wu P. Full liberation of 2-Aminopurine with nucleases digestion for highly sensitive biosensing. Biosens Bioelectron 2022; 196:113721. [PMID: 34673482 DOI: 10.1016/j.bios.2021.113721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/05/2023]
Abstract
2-Aminopurine (2-AP), a fluorescent isomer of adenine, is a popular fluorescent tag for DNA-based biosensors. The fluorescence of 2-AP is highly dependent on its microenvironment, i.e., almost non-fluorescent and merely fluorescent in dsDNA and ssDNA, respectively, but can be greatly brightened as mononucleotide. In most 2-AP-based biosensors, DNA transformation from dsDNA to ssDNA was employed, while selective digestion of 2-AP-labeled DNA with nucleases represents an appealing approach for improving the biosensor sensitivity. However, some detailed fundamental information, such as the reason for nuclease digestion, the influence of the labeling site, neighboring bases, or the label number of 2-AP for final signal output, are still largely unknown, which greatly limits the utility of 2-AP-based biosensors. In this work, using both steady- and excited-state fluorescence (lifetime), we demonstrated that nuclease digestion resulted in almost full liberation of 2-AP mononucleotides, and was free from labeling site and neighboring bases. Furthermore, we also found that nuclease digestion could lead to multiplexed sensitivity from increasing number of 2-AP labelling, but was not achievable for the conventional biosensors without full liberation of 2-AP. Considering the popularity of 2-AP in biosensing and other related applications, the above obtained information in sensitivity boosting is fundamentally important for future design of 2-AP-based biosensors.
Collapse
Affiliation(s)
- Xianming Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jialun He
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Wu
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
4
|
A Novel Colorimetric Nano Aptasensor for Ultrasensitive Detection of Aflatoxin B1 Based on the Exonuclease III-Assisted Signal Amplification Approach. Foods 2021; 10:foods10112568. [PMID: 34828849 PMCID: PMC8625208 DOI: 10.3390/foods10112568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
The detection of aflatoxin B1 (AFB1) has recently garnered much attention on the issue of food safety. In this study, a novel and sensitive aptasensor towards AFB1 is proposed using an Exonuclease III (Exo III)-integrated signal amplification strategy. This reported sensing strategy is regulated by aptamer-functionalized nanobeads that can target AFB1; furthermore, complementary DNA (cDNA) strands can lock the immobilized aptamer strands, preventing the signal amplification function of Exo III in the absence of AFB1. The presence of AFB1 triggers the displacement of cDNA, which will then activate the Exo III-integrated signal amplification procedure, resulting in the generation of a guanine (G)-rich sequence to form a G-4/hemin DNAzyme, which can catalyze the substrate of ABTS to produce a green color. Using this method, a practical detection limit of 0.0032 ng/mL and a dynamic range of detection from 0.0032 to 50 ng/mL were obtained. Additionally, the practical application of the established sensing method for AFB1 in complex matrices was demonstrated through recovery experiments. The recovery rate and relative standard deviations (RSD) in three kinds of cereal samples ranged from 93.83% to 111.58%, and 0.82% to 7.20%, respectively, which were comparable with or better than previously reported methods.
Collapse
|
5
|
Heddinga MH, Müller J. Incorporation of a metal-mediated base pair into an ATP aptamer - using silver(I) ions to modulate aptamer function. Beilstein J Org Chem 2020; 16:2870-2879. [PMID: 33299485 PMCID: PMC7705865 DOI: 10.3762/bjoc.16.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
For the first time, a metal-mediated base pair has been used to modulate the affinity of an aptamer towards its target. In particular, two artificial imidazole 2’-deoxyribonucleosides (Im) were incorporated into various positions of an established ATP-binding aptamer (ATP, adenosine triphosphate), resulting in the formation of three aptamer derivatives bearing Im:Im mispairs with a reduced ATP affinity. A fluorescence spectroscopy assay and a binding assay with immobilized ATP were used to evaluate the aptamer derivatives. Upon the addition of one Ag(I) ion per mispair, stabilizing Im–Ag(I)–Im base pairs were formed. As a result, the affinity of the aptamer derivative towards ATP is restored again. The silver(I)-mediated base-pair formation was particularly suitable to modulate the aptamer function when the Im:Im mispairs (and hence the resulting metal-mediated base pairs) were located close to the ATP-binding pocket of the aptamer. Being able to trigger the aptamer function opens new possibilities for applications of oligonucleotides.
Collapse
Affiliation(s)
- Marius H Heddinga
- Institut für Anorganische und Analytische Chemie & Cells in Motion Interfaculty Center, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie & Cells in Motion Interfaculty Center, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| |
Collapse
|
6
|
Guo X, Li M, Zhao R, Yang Y, Wang R, Wu F, Jia L, Zhang Y, Wang L, Qu Z, Wang F, Zhu Y, Hao R, Zhang X, Song H. Structural and positional impact on DNAzyme-based electrochemical sensors for metal ions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102035. [DOI: 10.1016/j.nano.2019.102035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
|
7
|
He Y, Chen D, Huang PJJ, Zhou Y, Ma L, Xu K, Yang R, Liu J. Misfolding of a DNAzyme for ultrahigh sodium selectivity over potassium. Nucleic Acids Res 2019; 46:10262-10271. [PMID: 30215808 PMCID: PMC6212836 DOI: 10.1093/nar/gky807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023] Open
Abstract
Herein, the excellent Na+ selectivity of a few RNA-cleaving DNAzymes was exploited, where Na+ can be around 3000-fold more effective than K+ for promoting catalysis. By using a double mutant based on the Ce13d DNAzyme, and by lowering the temperature, increased 2-aminopurine (2AP) fluorescence was observed with addition of both Na+ and K+. The fluorescence increase was similar for these two metals at below 10 mM, after which K+ took a different pathway. Since 2AP probes its local base stacking environment, K+ can be considered to induce misfolding. Binding of both Na+ and K+ was specific, since single base mutations could fully inhibit 2AP fluorescence for both metals. The binding thermodynamics was measured by temperature-dependent experiments revealing enthalpy-driven binding for both metals and less coordination sites compared to G-quadruplex DNA. Cleavage activity assays indicated a moderate cleavage activity with 10 mM K+, while further increase of K+ inhibited the activity, also supporting its misfolding of the DNAzyme. For comparison, a G-quadruplex DNA was also studied using the same system, where Na+ and K+ led to the same final state with only around 8-fold difference in Kd. This study provides interesting insights into strategies for discriminating Na+ and K+.
Collapse
Affiliation(s)
- Yanping He
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yibo Zhou
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kexin Xu
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
8
|
Gu L, Saran R, Yan W, Huang PJJ, Wang S, Lyu M, Liu J. Reselection Yielding a Smaller and More Active Silver-Specific DNAzyme. ACS OMEGA 2018; 3:15174-15181. [PMID: 31458180 PMCID: PMC6643755 DOI: 10.1021/acsomega.8b02039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/31/2018] [Indexed: 05/11/2023]
Abstract
Ag10c is a recently reported RNA-cleaving DNAzyme obtained from in vitro selection. Its cleavage activity selectively requires Ag+ ions, and thus it has been used as a sensor for Ag+ detection. However, the previous selection yielded very limited information regarding its sequence requirement, since only ∼0.1% of the population in the final library were related to Ag10c and most other sequences were inactive. In this work, we performed a reselection by randomizing the 19 important nucleotides in Ag10c in such a way that a purine has an equal chance of being A or G, whereas a pyrimidine has an equal chance of being T or C. The round 3 library of the reselection was carefully analyzed and a statistic understanding of the relative importance of each nucleotide was obtained. At the same time, a more active mutant was identified, containing two mutated nucleotides. Further analysis indicated new base pairs leading to an enzyme with smaller catalytic loops but with ∼200% activity of the original Ag10c, and also excellent selectivity for Ag+. Therefore, a more active mutant of Ag10c was obtained and further truncations were successfully performed, which might be better candidates for developing new biosensors for silver. A deeper biochemical understanding was also obtained using this reselection method.
Collapse
Affiliation(s)
- Lide Gu
- College
of Marine Life and Fisheries and Jiangsu Key Laboratory of Marine
Bioresources and Environment, Huaihai Institute
of Technology, Lianyungang 222005, P. R. China
- Marine
Resources Development Institute of Jiangsu, Lianyungang 222005, P. R. China
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Wanli Yan
- College
of Marine Life and Fisheries and Jiangsu Key Laboratory of Marine
Bioresources and Environment, Huaihai Institute
of Technology, Lianyungang 222005, P. R. China
- Marine
Resources Development Institute of Jiangsu, Lianyungang 222005, P. R. China
| | - Po-Jung Jimmy Huang
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shujun Wang
- College
of Marine Life and Fisheries and Jiangsu Key Laboratory of Marine
Bioresources and Environment, Huaihai Institute
of Technology, Lianyungang 222005, P. R. China
- Marine
Resources Development Institute of Jiangsu, Lianyungang 222005, P. R. China
| | - Mingsheng Lyu
- College
of Marine Life and Fisheries and Jiangsu Key Laboratory of Marine
Bioresources and Environment, Huaihai Institute
of Technology, Lianyungang 222005, P. R. China
- Marine
Resources Development Institute of Jiangsu, Lianyungang 222005, P. R. China
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- E-mail: (M.L.)
| | - Juewen Liu
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- E-mail: (J.L.)
| |
Collapse
|
9
|
Zhou W, Ding J, Liu J. Splitting a DNAzyme enables a Na +-dependent FRET signal from the embedded aptamer. Org Biomol Chem 2018; 15:6959-6966. [PMID: 28792040 DOI: 10.1039/c7ob01709j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, a few Na+-specific RNA-cleaving DNAzymes have been reported, and a Na+ aptamer was identified from the NaA43 and Ce13d DNAzymes. These DNAzymes and the embedded aptamer have been used for Na+ detection. In this work, we studied the Na+-dependent folding of the Ce13d DNAzyme using fluorescence resonance energy transfer (FRET). When a FRET donor and an acceptor were respectively labeled at the ends of the DNAzyme, Na+ failed to induce an obvious end-to-end distance change, suggesting a rigid global structure. To relax this rigidity, the Ce13d DNAzyme was systematically split at various sites on both the enzyme and the substrate strands. The Na+ binding activity of the split structures was characterized by 2-aminopurine fluorescence, enzymatic activity, Tb3+-sensitized luminescence, and DMS footprinting. Among the various constructs, the only one that retained Na+ binding was the split at the cleavage site, and this construct was further labeled with two dyes near the split site. This FRET result showed Na+-dependent folding with a Kd of 26 mM Na+. This study provides important structural information related to Na+ binding to this new aptamer, which might also be useful for future work in biosensor design.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | | | | |
Collapse
|
10
|
Abstract
Nucleic acid enzymes require metal ions for activity, and many recently discovered enzymes can use multiple metals, either binding to the scissile phosphate or also playing an allosteric role.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Juewen Liu
- Department of Chemistry
- Water Institute, and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
11
|
Peracchi A, Bonaccio M, Credali A. Local conformational changes in the 8–17 deoxyribozyme core induced by activating and inactivating divalent metal ions. Org Biomol Chem 2017; 15:8802-8809. [DOI: 10.1039/c7ob02001e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Placing 2-aminopurine at position 15 of the 8–17 DNAzyme allows the detection of a specific metal-induced conformational change, apparently coupled to the activation of catalysis.
Collapse
Affiliation(s)
- Alessio Peracchi
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| | - Maria Bonaccio
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| | - Alfredo Credali
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| |
Collapse
|