1
|
Zhu H, Wang K, Du W, Cao H, Zhong Q, Yin S, Zhong J, Li F. H3K9 acetylation modification and TLR9 immune regulation mechanism in patients after anti-HBV treatment. Medicine (Baltimore) 2022; 101:e32431. [PMID: 36596032 PMCID: PMC9803445 DOI: 10.1097/md.0000000000032431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To improve the curative effect of anti-hepatitis B virus (HBV) drugs, methods such as thymosin and entecavir combination have become a focus of clinical investigation. The aim of this retrospective experimental study was to explore the potential mechanism of action of thymosin a1 (Ta1) combined with entecavir in the treatment of HBV infection. A total of 28 patients with chronic hepatitis B, 29 patients treated with thymosin a1 and entecavir combination, and 15 healthy individuals were enrolled in this study. RT-qPCR was conducted to evaluate the mRNA levels of TLR9 in peripheral blood mononuclear cells (PBMCs). The serum level of TLR9 protein was analyzed by ELISA. The binding of TLR9 gene to the protein H3K9Ac in PBMCs was assessed by chromatin immunoprecipitation, and serum inflammatory factors were detected by Luminex technology. The expression levels of TLR9 mRNA and serum TLR9 protein in patients with HBV infection were significantly lower than those in subjects in the control group before treatment but increased after treatment with the Ta1 and entecavir combination. Moreover, the acetylation protein H3K9Ac was significantly bound to the promoter region of the TLR9 gene in patients with HBV infection treated with the Ta1 and entecavir combination compared to that in patients with HBV infection without treatment. Furthermore, the expression levels of interleukin 6 (IL-6), interleukin 12 (IL-12), interferon gamma, and necrosis factor alpha in patients with HBV infection after the combination treatment were slightly decreased compared to those in patients with HBV infection without treatment. In conclusion, the histone acetylation modification of TLR9 was significantly improved in patients with HBV infection after treatment with the Ta1 and entecavir combination, which elevated the expression of TLR9 at the mRNA and protein levels and further regulated the expression of IL-6, IL-12, and other cytokines.
Collapse
Affiliation(s)
- Haipeng Zhu
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
- * Correspondence: Hai-Peng Zhu, Department of Infectious Diseases, Dongguan People’s Hospital, Dongguan, Guangdong 523059, P.R. China (e-mail: )
| | - Ke Wang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Wei Du
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| | - Huanhuan Cao
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| | - Qingyang Zhong
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| | - Sichun Yin
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| | - Jianbo Zhong
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| | - Fawu Li
- Department of Infectious Diseases, the Dongguan People’s Hospital, Dongguan, Guangdong, P.R. China
| |
Collapse
|
2
|
Peng R, Xu C, Zheng H, Lao X. Modified Thymosin Alpha 1 Distributes and Inhibits the Growth of Lung Cancer in Vivo. ACS OMEGA 2020; 5:10374-10381. [PMID: 32426594 PMCID: PMC7226852 DOI: 10.1021/acsomega.0c00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Targeted therapy of tumors is an effective method for treating cancer. Thymosin alpha 1 (Tα1), a hormone that contains 28 amino acids, is already approved for cancer treatment. However, its clinical application is limited because of the lack of tumor targeting. Considering that RGD can specifically bind to integrin, the anticancer drug can have a targeted therapeutic effect on tumors when it combines with a peptide containing an RGD sequence. We produced a polypeptide, Tα1-RGDR, by binding Tα1 to RGDR. The RGDR can combine with the αvβ3 and NRP-1 domains, which are highly expressed on the surface of the tumor, to achieve the effect of tumor targeting. This work aimed to investigate the difference of antitumor activity and tumor targeting between Tα1 modified by RGDR and Tα1 by using H460 and LLC tumor models. Results showed that Tα1-RGDR had remarkable antitumor effects, and its tumor targeting was better than that of Tα1. Hence, Tα1-RGDR is a promising antitumor drug.
Collapse
Affiliation(s)
- Renhao Peng
- Department of Life Science and Technology, China Pharmaceutical University, 211199 Nanjing, P. R. China
| | - Caoying Xu
- Department of Life Science and Technology, China Pharmaceutical University, 211199 Nanjing, P. R. China
| | - Heng Zheng
- Department of Life Science and Technology, China Pharmaceutical University, 211199 Nanjing, P. R. China
| | - Xingzhen Lao
- Department of Life Science and Technology, China Pharmaceutical University, 211199 Nanjing, P. R. China
| |
Collapse
|
3
|
Costantini C, Bellet MM, Pariano M, Renga G, Stincardini C, Goldstein AL, Garaci E, Romani L. A Reappraisal of Thymosin Alpha1 in Cancer Therapy. Front Oncol 2019; 9:873. [PMID: 31555601 PMCID: PMC6742685 DOI: 10.3389/fonc.2019.00873] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Thymosin alpha1 (Tα1), an endogenous peptide first isolated from the thymic tissue in the mid-sixties, has gained considerable attention for its immunostimulatory activity that led to its application to diverse pathological conditions, including cancer. Studies in animal models and human patients have shown promising results in different types of malignancies, especially when Tα1 was used in combination with other chemo- and immune therapies. For this reason, the advancements in our knowledge on the adjuvant role of Tα1 have moved in parallel with the development of novel cancer therapies in a way that Tα1 was integrated to changing paradigms and protocols, and tested for increased efficacy and safety. Cancer immunotherapy has recently experienced a tremendous boost following the development and clinical application of immune checkpoint inhibitors. By unleashing the full potential of the adaptive immune response, checkpoint inhibitors were expected to be very effective against tumors, but it soon became clear that a widespread and successful application was not straightforward and shortcomings in efficacy and safety clearly emerged. This scenario led to the development of novel concepts in immunotherapy and the design of combination protocols to overcome these limitations, thus opening up novel opportunities for Tα1 application. Herein, we summarize in a historical perspective the use of Tα1 in cancer, with particular reference to melanoma, hepatocellular carcinoma and lung cancer. We will discuss the current limitations of checkpoint inhibitors in clinical practice and the mechanisms at the basis of a potential application of Tα1 in combination protocols.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marina M Bellet
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Allan L Goldstein
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Enrico Garaci
- University San Raffaele and IRCCS San Raffaele, Rome, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|