1
|
Vania L, Morris G, Otgaar TC, Bignoux MJ, Bernert M, Burns J, Gabathuse A, Singh E, Ferreira E, Weiss SFT. Patented therapeutic approaches targeting LRP/LR for cancer treatment. Expert Opin Ther Pat 2019; 29:987-1009. [PMID: 31722579 DOI: 10.1080/13543776.2019.1693543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The ubiquitously expressed 37 kDa/67 kDa high-affinity laminin receptor (laminin receptor precursor/laminin receptor, LRP/LR) is a protein found to play several roles within cells. The receptor is located in the nucleus, cytosol and the cell surface. LRP/LR mediates cell proliferation, cell adhesion and cell differentiation. As a result, it is seen to enhance tumor angiogenesis as well as invasion and adhesion, key steps in the metastatic cascade of cancer. Recent findings have shown that LRP/LR is involved in the maintenance of cell viability through apoptotic evasion, allowing for tumor progression. Thus, several patented therapeutic approaches targeting the receptor for the prevention and treatment of cancer have emerged.Areas covered: The several roles that LRP/LR plays in cancer progression as well as an overview of the current therapeutic patented strategies targeting LRP/LR and cancer to date.Expert opinion: Small molecule inhibitors, monoclonal antibodies and small interfering RNAs might act used as powerful tools in preventing tumor angiogenesis and metastasis through the induction of apoptosis and telomere erosion in several cancers. This review offers an overview of the roles played by LRP/LR in cancer progression, while providing novel patented approaches targeting the receptor as potential therapeutic routes for the treatment of cancer as well as various other diseases.
Collapse
Affiliation(s)
- Leila Vania
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Gavin Morris
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Martin Bernert
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Jessica Burns
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Anne Gabathuse
- Wits Commercial Enterprise, The Commercial Development Hub, Johannesburg, Republic of South Africa
| | - Elvira Singh
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| |
Collapse
|