1
|
Imyanitov EN, Preobrazhenskaya EV, Orlov SV. Current status of molecular diagnostics for lung cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:742-765. [PMID: 38966170 PMCID: PMC11220319 DOI: 10.37349/etat.2024.00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 07/06/2024] Open
Abstract
The management of lung cancer (LC) requires the analysis of a diverse spectrum of molecular targets, including kinase activating mutations in EGFR, ERBB2 (HER2), BRAF and MET oncogenes, KRAS G12C substitutions, and ALK, ROS1, RET and NTRK1-3 gene fusions. Administration of immune checkpoint inhibitors (ICIs) is based on the immunohistochemical (IHC) analysis of PD-L1 expression and determination of tumor mutation burden (TMB). Clinical characteristics of the patients, particularly age, gender and smoking history, significantly influence the probability of finding the above targets: for example, LC in young patients is characterized by high frequency of kinase gene rearrangements, while heavy smokers often have KRAS G12C mutations and/or high TMB. Proper selection of first-line therapy influences overall treatment outcomes, therefore, the majority of these tests need to be completed within no more than 10 working days. Activating events in MAPK signaling pathway are mutually exclusive, hence, fast single-gene testing remains an option for some laboratories. RNA next-generation sequencing (NGS) is capable of detecting the entire repertoire of druggable gene alterations, therefore it is gradually becoming a dominating technology in LC molecular diagnosis.
Collapse
Affiliation(s)
- Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Clinical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
- I.V. Kurchatov Complex for Medical Primatology, National Research Centre “Kurchatov Institute”, 354376 Sochi, Russia
| | - Elena V. Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Clinical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Sergey V. Orlov
- I.V. Kurchatov Complex for Medical Primatology, National Research Centre “Kurchatov Institute”, 354376 Sochi, Russia
- Department of Oncology, I.P. Pavlov St.-Petersburg State Medical University, 197022 St.-Petersburg, Russia
| |
Collapse
|
2
|
Mitiushkina NV, Tiurin VI, Anuskina AA, Bordovskaya NA, Shestakova AD, Martianov AS, Bubnov MG, Shishkina AS, Semina MV, Romanko AA, Kuligina ES, Imyanitov EN. Molecular Analysis of Biliary Tract Cancers with the Custom 3' RACE-Based NGS Panel. Diagnostics (Basel) 2023; 13:3168. [PMID: 37891989 PMCID: PMC10605186 DOI: 10.3390/diagnostics13203168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The technique 3' rapid amplification of cDNA ends (3' RACE) allows for detection of translocations with unknown gene partners located at the 3' end of the chimeric transcript. We composed a 3' RACE-based RNA sequencing panel for the analysis of FGFR1-4 gene rearrangements, detection of activating mutations located within FGFR1-4, IDH1/2, ERBB2 (HER2), KRAS, NRAS, BRAF, and PIK3CA genes, and measurement of the expression of ERBB2, PD-L1, and FGFR1-4 transcripts. This NGS panel was utilized for the molecular profiling of 168 biliary tract carcinomas (BTCs), including 83 intrahepatic cholangiocarcinomas (iCCAs), 44 extrahepatic cholangiocarcinomas (eCCAs), and 41 gallbladder adenocarcinomas (GBAs). The NGS failure rate was 3/168 (1.8%). iCCAs, but not other categories of BTCs, were characterized by frequent FGFR2 alterations (17/82, 20.7%) and IDH1/2 mutations (23/82, 28%). Other potentially druggable events included ERBB2 amplifications or mutations (7/165, 4.2% of all successfully analyzed BTCs) and BRAF p.V600E mutations (3/165, 1.8%). In addition to NGS, we analyzed microsatellite instability (MSI) using the standard five markers and revealed this event in 3/158 (1.9%) BTCs. There were no instances of ALK, ROS1, RET, and NTRK1-3 gene rearrangements or MET exon 14 skipping mutations. Parallel analysis of 47 iCCA samples with the Illumina TruSight Tumor 170 kit confirmed good performance of our NGS panel. In conclusion, targeted RNA sequencing coupled with the 3' RACE technology is an efficient tool for the molecular diagnostics of BTCs.
Collapse
Affiliation(s)
- Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Vladislav I. Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Aleksandra A. Anuskina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Natalia A. Bordovskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Anna D. Shestakova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Aleksandr S. Martianov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Mikhail G. Bubnov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Anna S. Shishkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Maria V. Semina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Aleksandr A. Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
| | - Ekaterina S. Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (N.V.M.); (N.A.B.); (A.S.S.); (M.V.S.); (A.A.R.); (E.S.K.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| |
Collapse
|
3
|
Romanko AA, Mulkidjan RS, Tiurin VI, Saitova ES, Preobrazhenskaya EV, Krivosheyeva EA, Mitiushkina NV, Shestakova AD, Belogubova EV, Ivantsov AO, Iyevleva AG, Imyanitov EN. Cost-Efficient Detection of NTRK1/2/3 Gene Fusions: Single-Center Analysis of 8075 Tumor Samples. Int J Mol Sci 2023; 24:14203. [PMID: 37762506 PMCID: PMC10531831 DOI: 10.3390/ijms241814203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The majority of NTRK1, NTRK2, and NTRK3 rearrangements result in increased expression of the kinase portion of the involved gene due to its fusion to an actively transcribed gene partner. Consequently, the analysis of 5'/3'-end expression imbalances is potentially capable of detecting the entire spectrum of NTRK gene fusions. Archival tumor specimens obtained from 8075 patients were subjected to manual dissection of tumor cells, DNA/RNA isolation, and cDNA synthesis. The 5'/3'-end expression imbalances in NTRK genes were analyzed by real-time PCR. Further identification of gene rearrangements was performed by variant-specific PCR for 44 common NTRK fusions, and, whenever necessary, by RNA-based next-generation sequencing (NGS). cDNA of sufficient quality was obtained in 7424/8075 (91.9%) tumors. NTRK rearrangements were detected in 7/6436 (0.1%) lung carcinomas, 11/137 (8.0%) pediatric tumors, and 13/851 (1.5%) adult non-lung malignancies. The highest incidence of NTRK translocations was observed in pediatric sarcomas (7/39, 17.9%). Increased frequency of NTRK fusions was seen in microsatellite-unstable colorectal tumors (6/48, 12.5%), salivary gland carcinomas (5/93, 5.4%), and sarcomas (7/143, 4.9%). None of the 1293 lung carcinomas with driver alterations in EGFR/ALK/ROS1/RET/MET oncogenes had NTRK 5'/3'-end expression imbalances. Variant-specific PCR was performed for 744 tumors with a normal 5'/3'-end expression ratio: there were no rearrangements in 172 EGFR/ALK/ROS1/RET/MET-negative lung cancers and 125 pediatric tumors, while NTRK3 fusions were detected in 2/447 (0.5%) non-lung adult malignancies. In conclusion, this study describes a diagnostic pipeline that can be used as a cost-efficient alternative to conventional methods of NTRK1-3 analysis.
Collapse
Affiliation(s)
- Aleksandr A. Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Rimma S. Mulkidjan
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Vladislav I. Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Evgeniya S. Saitova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Elena V. Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Elena A. Krivosheyeva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Anna D. Shestakova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Evgeniya V. Belogubova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Alexandr O. Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Aglaya G. Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| |
Collapse
|
4
|
Tiurin VI, Preobrazhenskaya EV, Mitiushkina NV, Romanko AA, Anuskina AA, Mulkidjan RS, Saitova ES, Krivosheyeva EA, Kharitonova ED, Shevyakov MP, Tryakin IA, Aleksakhina SN, Venina AR, Sokolova TN, Martianov AS, Shestakova AD, Ivantsov AO, Iyevleva AG, Imyanitov EN. Rapid and Cost-Efficient Detection of RET Rearrangements in a Large Consecutive Series of Lung Carcinomas. Int J Mol Sci 2023; 24:10530. [PMID: 37445709 DOI: 10.3390/ijms241310530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
RET-kinase-activating gene rearrangements occur in approximately 1-2% of non-small-cell lung carcinomas (NSCLCs). Their reliable detection requires next-generation sequencing (NGS), while conventional methods, such as immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) or variant-specific PCR, have significant limitations. We developed an assay that compares the level of RNA transcripts corresponding to 5'- and 3'-end portions of the RET gene; this test relies on the fact that RET translocations result in the upregulation of the kinase domain of the gene and, therefore, the 5'/3'-end expression imbalance. The present study included 16,106 consecutive NSCLC patients, 14,449 (89.7%) of whom passed cDNA quality control. The 5'/3'-end unbalanced RET expression was observed in 184 (1.3%) tumors, 169 of which had a sufficient amount of material for the identification of translocation variants. Variant-specific PCR revealed RET rearrangements in 155/169 (91.7%) tumors. RNA quality was sufficient for RNA-based NGS in 10 cases, 8 of which carried exceptionally rare or novel (HOOK1::RET and ZC3H7A::RET) RET translocations. We also applied variant-specific PCR for eight common RET rearrangements in 4680 tumors, which emerged negative upon the 5'/3'-end unbalanced expression test; 33 (0.7%) of these NSCLCs showed RET fusion. While the combination of the analysis of 5'/3'-end RET expression imbalance and variant-specific PCR allowed identification of RET translocations in approximately 2% of consecutive NSCLCs, this estimate approached 120/2361 (5.1%) in EGFR/KRAS/ALK/ROS1/BRAF/MET-negative carcinomas. RET-rearranged tumors obtained from females, but not males, had a decreased level of expression of thymidylate synthase (p < 0.00001), which is a known predictive marker of the efficacy of pemetrexed. The results of our study provide a viable alternative for RET testing in facilities that do not have access to NGS due to cost or technical limitations.
Collapse
Affiliation(s)
- Vladislav I Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Elena V Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Natalia V Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Aleksandr A Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Aleksandra A Anuskina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Rimma S Mulkidjan
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Evgeniya S Saitova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Elena A Krivosheyeva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Elena D Kharitonova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Mikhail P Shevyakov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Ilya A Tryakin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Aigul R Venina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Tatiana N Sokolova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Aleksandr S Martianov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Anna D Shestakova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
| | - Alexandr O Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| |
Collapse
|
5
|
Liu Y, Cheng W, Xin H, Liu R, Wang Q, Cai W, Peng X, Yang F, Xin H. Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy. Cancer Nanotechnol 2023; 14:28. [PMID: 37009262 PMCID: PMC10042676 DOI: 10.1186/s12645-023-00174-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality. As a heterogeneous disease, it has different subtypes and various treatment modalities. In addition to conventional surgery, radiotherapy and chemotherapy, targeted therapy and immunotherapy have also been applied in the clinics. However, drug resistance and systemic toxicity still cannot be avoided. Based on the unique properties of nanoparticles, it provides a new idea for lung cancer therapy, especially for targeted immunotherapy. When nanoparticles are used as carriers of drugs with special physical properties, the nanodrug delivery system ensures the accuracy of targeting and the stability of drugs while increasing the permeability and the aggregation of drugs in tumor tissues, showing good anti-tumor effects. This review introduces the properties of various nanoparticles including polymer nanoparticles, liposome nanoparticles, quantum dots, dendrimers, and gold nanoparticles and their applications in tumor tissues. In addition, the specific application of nanoparticle-based drug delivery for lung cancer therapy in preclinical studies and clinical trials is discussed.
Collapse
Affiliation(s)
- Yifan Liu
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenxu Cheng
- grid.410654.20000 0000 8880 6009Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Jingzhou, 434023 Hubei China
| | - HongYi Xin
- The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Guangdong, 524400 China
- grid.410560.60000 0004 1760 3078The Doctoral Scientific Research Center, People’s Hospital of Lianjiang, Affiliated to Guangdong Medical University, Guangdong, 524400 China
| | - Ran Liu
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Qinqi Wang
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Wenqi Cai
- grid.49470.3e0000 0001 2331 6153Xinzhou Traditional Chinese Medicine Hospital, Zhongnan Hospital of Wuhan University (Xinzhou), Hubei, 430000 China
| | - Xiaochun Peng
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
| | - Fuyuan Yang
- grid.410654.20000 0000 8880 6009Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
| | - HongWu Xin
- grid.410654.20000 0000 8880 6009Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023 Hubei China
- grid.410654.20000 0000 8880 6009Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023 Hubei China
- grid.443353.60000 0004 1798 8916Research Center of Molecular Medicine, Medical College of Chifeng University, Inner Mongolian Autonomous Region, Chifeng, 024000 China
| |
Collapse
|
6
|
Xu L, Wang F, Luo F. MET-targeted therapies for the treatment of non-small-cell lung cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:1013299. [PMID: 36387098 PMCID: PMC9646943 DOI: 10.3389/fonc.2022.1013299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/17/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Dysregulation of the mesenchymal epithelial transition (MET) pathway contributes to poor clinical outcomes in patients with non-small cell lung cancer (NSCLC). Numerous clinical trials are currently investigating several therapies based on modulation of the MET pathway. OBJECTIVES This study aimed to systematically evaluate the activity and safety of MET inhibitors in patients with NSCLC. METHODS We searched PubMed, Embase, and the Cochrane Library from inception to June 02, 2022. The objective response rate (ORR) and disease control rate (DCR) were extracted as the main outcomes and pooled using the weighted mean proportion with fixed- or random-effects models in cases of significant heterogeneity (I 2>50%). Safety analysis was performed based on adverse events reported in all studies. RESULTS Eleven studies (882 patients) were included in the meta-analysis. The pooled ORR was 28.1% (95% confidence interval [CI], 0.223-0.354), while the pooled DCR was 69.1% (95% CI, 0.631-0.756). ORRs were higher for tepotinib (44.7% [95% CI, 0.365-0.530]) and savolitinib (42.9% [95% CI, 0.311-0.553]) than for other types of MET inhibitors. Patients with NSCLC with exon 14 skipping exhibited higher ORRs (39.3% (95% CI, 0.296-0.522)) and DCRs (77.8% (95% CI, 0.714-0.847)) than those with MET protein overexpression or amplification. Intracranial response rate and intracranial disease control rates were 40.1% (95% CI, 0.289-0.556) and 95.4% (95% CI, 0.892-0.100), respectively. Adverse events were mild (grade 1 to 2) in 87.2% of patients. Common adverse events above grade 3 included lower extremity edema (3.5% [95% CI, 0.027-0.044]), alanine aminotransferase (ALT) elevation (2.4% [95% CI, 0.014-0.033]), and lipase elevation (2.2% [95% CI, 0.016-0.031]). CONCLUSION MET inhibitors, which exhibited a satisfactory safety profile in the current study, may become a new standard of care for addressing MET dysregulation in patients with advanced or metastatic NSCLC, and even in those with brain metastases, particularly tepotinib, savolitinib and capmatinib. Further randomized trials are required to establish standard predictive biomarkers for MET therapies and to compare the effects of different MET inhibitors in NSCLC with MET dysregulation.
Collapse
Affiliation(s)
- Linrui Xu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Faping Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Mitiushkina NV, Romanko AA, Preobrazhenskaya EV, Tiurin VI, Ermachenkova TI, Martianov AS, Mulkidjan RS, Sokolova TN, Kholmatov MM, Bizin IV, Ivantsov AO, Yatsuk OS, Zaitseva OA, Iyevleva AG, Kuligina ES, Imyanitov EN. Comprehensive evaluation of the test for 5'-/3'-end mRNA unbalanced expression as a screening tool for ALK and ROS1 fusions in lung cancer. Cancer Med 2022; 11:3226-3237. [PMID: 35322575 PMCID: PMC9468436 DOI: 10.1002/cam4.4686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/02/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background Despite the progress in the development of next‐generation sequencing (NGS), diagnostic PCR assays remain to be utilized in clinical routine due to their simplicity and low cost. Tests for 5′‐/3′‐end mRNA unbalanced expression can be used for variant‐independent detection of translocations, however, many technical aspects of this methodology require additional investigations. Methods Known ALK/ROS1 fusions and 5′‐/3′‐end unbalanced expression were analyzed in 2009 EGFR mutation‐negative non‐small cell lung cancer (NSCLC) samples with RT‐PCR tests, which were optimized for the use with FFPE‐derived RNA. Results Variant‐specific PCR tests for 4 common ALK and 15 common ROS1 translocations detected 115 (5.7%) and 44 (2.2%) rearrangements, respectively. Virtually all samples with common ALK fusions demonstrated some level of 5′/3′ mRNA ends unbalanced expression, and 8 additional NSCLCs with rare ALK fusions were further identified by PCR or NGS among 48 cases selected based on ALK expression measurements. Interestingly, NSCLCs with unbalanced 5′‐/3′‐end ALK expression but without identified ALK translocations had elevated frequency of RAS mutations (21/40, 53%) suggesting the role of RAS activation in the alternative splicing of ALK gene. In contrast to ALK, only a minority of ROS1 translocation‐positive cases demonstrated unbalanced gene expression, with both 5′‐ and 3′‐end mRNA expression being elevated in most of the samples with translocations. Surprisingly, high ROS1 expression level was also found to be characteristic for NSCLCs with activating mutations in other tyrosine kinases such as EGFR, ALK, or MET. Conclusions Comprehensive ALK analysis can be performed by the test for 5′‐/3′‐end unbalanced expression with minimal risk of missing an ALK rearrangement. In contrast, the use of the test for 5′‐/3′‐end unbalanced expression for the detection of ROS1 fusions is complicated; hence, the utilization of variant‐specific PCR assays for ROS1 testing is preferable.
Collapse
Affiliation(s)
- Natalia V Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Alexandr A Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Elena V Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | - Vladislav I Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Tatiana I Ermachenkova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Alexandr S Martianov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | - Rimma S Mulkidjan
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Tatiana N Sokolova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Maksim M Kholmatov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Ilya V Bizin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Alexandr O Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | - Olga S Yatsuk
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Olga A Zaitseva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia
| | - Ekatherina Sh Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, Russia.,Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, Russia.,Department of Oncology, I.P. Pavlov St.-Petersburg State Medical University, St.-Petersburg, Russia
| |
Collapse
|
8
|
Shi M, Ma J, Feng M, Liang L, Chen H, Wang T, Xie Z. Novel MET exon 14 skipping analogs characterized in non-small cell lung cancer patients: A case study. Cancer Genet 2021; 256-257:62-67. [PMID: 33905998 DOI: 10.1016/j.cancergen.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/25/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
MET exon 14 skipping (METex14) is a validated oncogenic driver in lung cancer and MET tyrosine kinase inhibitors are now available as effective clinical treatments. The majority of known METex14 alterations are typical donor/acceptor splicing or ubiquitination site mutations. Herein, two new METex14 variants were detected in two patients with lung adenocarcinoma by targeted next generation sequencing (NGS). Reverse transcription (RT)-based analysis confirmed that these mutations led to MET exon 14 skipping. Our analysis provided evidence for possible targeted therapy options for patients carrying these MET mutations or similar METex14 analogs.
Collapse
Affiliation(s)
- Minke Shi
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Jing Ma
- Department of Data System, 3D Medicines Inc., Shanghai, China
| | - Meilin Feng
- Department of Data System, 3D Medicines Inc., Shanghai, China
| | - Lei Liang
- Department of Research and Development, 3D Medicines Inc., Shanghai, China
| | - Hongyuan Chen
- Department of Research and Development, 3D Medicines Inc., Shanghai, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, China.
| | - Zhenghua Xie
- Department of Research and Development, 3D Medicines Inc., Shanghai, China.
| |
Collapse
|
9
|
Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit Rev Oncol Hematol 2020; 157:103194. [PMID: 33316418 DOI: 10.1016/j.critrevonc.2020.103194] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular testing has become a mandatory component of the non-small cell lung cancer (NSCLC) management. The detection of EGFR, BRAF and MET mutations as well as the analysis of ALK, ROS1, RET and NTRK translocations have already been incorporated in the NSCLC diagnostic standards, and the inhibitors of these kinases are in routine clinical use. There are emerging biomarkers, e.g., KRAS G12C substitutions and HER2 activating alterations, which are likely to enter NSCLC guidelines upon the approval of the corresponding drugs. In addition to genetic examination, NSCLCs are usually subjected to the analysis of PD-L1 protein expression in order to direct the use of immune checkpoint inhibitors. Comprehensive NSCLC testing for multiple predictive markers requires the analysis of distinct biological molecules (DNA, RNA, proteins) and, therefore, the involvement of different analytical platforms (PCR, DNA sequencing, immunohistochemistry, FISH). There are ongoing efforts aimed at the integration of multiple NSCLC molecular assays into a single diagnostic pipeline.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 195067, Russia.
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia
| | - Evgeny V Levchenko
- Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 195067, Russia; Department of Thoracic Oncology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| |
Collapse
|
10
|
Strickland MR, Jänne PA. Devil in the detail: MET overexpression fails as surrogate marker for MET exon 14 splice site mutations in NSCLC. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1612. [PMID: 33437811 PMCID: PMC7791198 DOI: 10.21037/atm-20-4253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 11/06/2022]
Affiliation(s)
| | - Pasi A Jänne
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Imyanitov EN, Ivantsov AO, Tsimafeyeu IV. Harmonization of Molecular Testing for Non-Small Cell Lung Cancer: Emphasis on PD-L1. Front Oncol 2020; 10:549198. [PMID: 33102215 PMCID: PMC7554524 DOI: 10.3389/fonc.2020.549198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/14/2020] [Indexed: 12/23/2022] Open
Abstract
Comprehensive molecular testing plays a critical role in the choice of treatment for non-small lung cell cancer (NSCLC). The analysis of druggable alterations in EGFR, BRAF, MET, KRAS, ALK, ROS1, RET and NTRK1/2/3 genes is more or less standardized and can be achieved using a single diagnostic platform, e.g., next generation sequencing (NGS) or polymerase chain reaction (PCR). In contrast to above targets, PD-L1 testing requires the use of immunohistochemistry (IHC). There are multiple PD-L1 IHC assays, which utilize distinct antibodies and detection systems. These PD-L1 tests are tailored to distinct drugs, often rely on different thresholds and scoring guidelines, and are characterized by incomplete inter-laboratory and inter-observer reproducibility. Several studies evaluated the performance of PD-L1 RNA expression tests, as PCR-based RNA analysis is compatible with other NSCLC molecular testing platforms, can be performed in a semi-automated manner, and has a potential for proper standardization. These investigations revealed a correlation between PD-L1 protein and RNA expression; however, there were NSCLCs demonstrating decent amounts of PD-L1 transcript in the absence of PD-L1 IHC staining. Clinical studies are required to evaluate, which of the two PD-L1 testing approaches, i.e., RNA or protein expression measurement, has a better predictive value.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, Saint Petersburg, Russia
| | - Alexandr O Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, Saint Petersburg, Russia
| | | |
Collapse
|