Mandeep, Liu H, Shukla P. Synthetic Biology and Biocomputational Approaches for Improving Microbial Endoglucanases toward Their Innovative Applications.
ACS OMEGA 2021;
6:6055-6063. [PMID:
33718696 PMCID:
PMC7948214 DOI:
10.1021/acsomega.0c05744]
[Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2023]
Abstract
Microbial endoglucanases belonging to the β-1-4 glycosyl hydrolase family are useful enzymes due to their vast industrial applications in pulp and paper industries and biorefinery. They convert lignocellulosic substrates to soluble sugars and help in the biodegradation process. Various biocomputational tools can be utilized to understand the catalytic activity, reaction kinetics, complexity of active sites, and chemical behavior of enzyme complexes in reactions. This might be helpful in increasing productivity and cost reduction in industries. The present review gives an overview of some interesting aspects of enzyme design, including computational techniques such as molecular dynamics simulation, homology modeling, mutational analysis, etc., toward enhancing the quality of these enzymes. Moreover, the review also covers the aspects of synthetic biology, which could be helpful in faster and reliable development of useful enzymes with desired characteristics and applications. Finally, the review also deciphers the utilization of endoglucanases in biodegradation and emphasizes the use of diversified protein engineering tools and the modification of metabolic pathways for enzyme engineering.
Collapse