1
|
Cho U, Cha HJ, Kim HJ, Min SK, Kim HK, Jung HR, Park G, Kim JE. FLI-1 is expressed in a wide variety of hematolymphoid neoplasms: a special concern in the differential diagnosis. Clin Exp Med 2024; 24:18. [PMID: 38280044 PMCID: PMC10821826 DOI: 10.1007/s10238-023-01284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/07/2023] [Indexed: 01/29/2024]
Abstract
Friend Leukemia Virus Integration 1 (FLI-1) is a member of E26 transformation-specific family of transcription factors that participates in hematopoietic and vascular endothelial cell development. Immunohistochemical detection of FLI-1 has been widely used to diagnose vascular tumors or, more evidently, Ewing's sarcoma. However, the expression pattern of FLI-1 in hematolymphoid neoplasms remains unclear. Therefore, in this study, we aimed to investigate the expression of FLI-1 in these tumors, focusing on high-grade lesions, which presents a diagnostic challenge by mimicking Ewing's sarcoma. We evaluated the expression FLI-1 in various types of lymphoid and plasmacytic tumors, including 27 plasmablastic lymphomas, 229 diffuse large B-cell lymphomas, 22 precursor T- or B-lymphoblastic lymphomas, 24 angioimmunoblastic-type nodal T-follicular helper cell lymphomas, 52 peripheral T-cell lymphomas, NOS, 18 Burkitt lymphomas, 18 non-gastric lymphomas of mucosa-associated lymphoid tissue, 38 chronic lymphocytic leukemia/small lymphocytic lymphomas, 15 mantle cell lymphomas, 23 gastric MALT lymphomas, 50 plasma cell myelomas, and 38 follicular lymphomas. We calculated the H-scores of FLI-1 immunostaining, ranging from 0 to 200, and used the scores to analyze the clinicopathological significance of FLI-1 statistically. FLI-1 was expressed to varying degrees in all types of hematological tumors. FLI-1 expression was detected in 84.1% of patients (466/554). FLI-1 was highly expressed in precursor T- or B-lymphoblastic lymphomas. Follicular lymphomas exhibited low FLI-1 expression. In plasmablastic lymphoma, 85.2% of the patients were focally positive for FLI-1. FLI-1 expression did not correlate with clinicopathological variables, such as demographic data or disease stage, in patients with plasmablastic lymphoma and diffuse large B-cell lymphoma. However, FLI-1 overexpression was associated with poorer overall survival in patients with plasmablastic lymphoma. This study demonstrates that FLI-1 is expressed in various hematolymphoid neoplasms. FLI-1 expression can lead to diagnostic confusion, especially in small blue round cell tumors, such as lymphoblastic lymphoma, plasmablastic lymphoma, and plasma cell myeloma, when distinguishing tumors positive for CD99 and CD56 without CD3, CD20, or CD45. Our findings also suggested the possibility of FLI-1 as a potential prognostic biomarker for plasmablastic lymphoma.
Collapse
Affiliation(s)
- Uiju Cho
- Department of Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Jeong Cha
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Hyun Jung Kim
- Department of Pathology, Sanggye Paik Hospital, Inje University, Seoul, Republic of Korea
| | - Soo Kee Min
- Department of Pathology, Chung-ang University Gwangmyeong Hospital, Gwangmyeong, Republic of Korea
| | - Hee Kyung Kim
- Department of Pathology, Soonchunhyang University Hospital, Bucheon, Republic of Korea
| | - Hye Ra Jung
- Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Gyeongsin Park
- Department of Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Ji Eun Kim
- Department of Pathology, Seoul National University Boramae Hospital, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
2
|
Chai Z, Wu J, Qi Z, Liu Y, Lv Y, Zhang Y, Yu Z, Jiang C, Liu Z. Molecular characterizations and functional roles of NANOG in early development of porcine embryos. Gene 2024; 892:147856. [PMID: 37778417 DOI: 10.1016/j.gene.2023.147856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Nanog homeobox (NANOG) is the gateway to the pluripotent ground state in mouse embryonic stem cells and early embryos. However, understanding of the molecular signatures and functional characteristics of porcine NANOG remains limited. In this study, we analyzed the gene structure and sequence characteristics of porcine NANOG and found that the porcine NANOG gene is localized on chromosome 5, while NANOG sequence on chromosome 1 is the processed pseudogene. We explored the expression pattern of NANOG in porcine early embryos by immunofluorescence staining and Realtime-PCR and RNA-seq, the results showed that transcription of porcine NANOG commences at the 4-cell stage, while expression of the NANOG protein is initially observed in the inner cell mass of blastocysts. Furthermore, we identified a NANOG splicing variant in porcine early embryos, which maintain the overall structure of the original NANOG mRNA, except for a deletion of 38 base pairs in the second exon. To further investigate the function of NANOG in early embryo development in pigs, we employed siRNA-mediated deletion of the two specific transcripts on porcine zygotes. The results showed that blastocyst rate was significantly reduced after NANOG deleting. A significant decrease in the expression of DNA methylation-related gene DNMT3B was also observed in D3 embryo from the NANOG deleting group. In conclusion, the porcine NANOG gene, accompanied by a single-exon processed pseudogene, exhibits two transcripts and plays a pivotal role in the development of early-stage embryos.
Collapse
Affiliation(s)
- Zhuang Chai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Jing Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Zicheng Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Yan Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Yanjiao Lv
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Yuting Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Zhuoran Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Chaoqian Jiang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Vaidya M, Smith J, Field M, Sugaya K. Analysis of regulatory sequences in exosomal DNA of NANOGP8. PLoS One 2023; 18:e0280959. [PMID: 36696426 PMCID: PMC9876286 DOI: 10.1371/journal.pone.0280959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
Exosomes participate in intercellular communication by transporting functionally active molecules. Such cargo from the original cells comprising proteins, micro-RNA, mRNA, single-stranded (ssDNA) and double-stranded DNA (dsDNA) molecules pleiotropically transforms the target cells. Although cancer cells secrete exosomes carrying a significant level of DNA capable of modulating oncogene expression in a recipient cell, the regulatory mechanism is unknown. We have previously reported that cancer cells produce exosomes containing NANOGP8 DNA. NANOGP8 is an oncogenic paralog of embryonic stem cell transcription factor NANOG and does not express in cells since it is a pseudogene. However, in this study, we evaluated NANOGP8 expression in glioblastoma multiforme (GBM) tissue from a surgically removed brain tumor of a patient. Significantly higher NANOGP8 transcription was observed in GBM cancer stem cells (CSCs) than in GBM cancer cells or neural stem cells (NSCs), despite identical sequences of NANOGP8-upstream genomic region in all the cell lines. This finding suggests that upstream genomic sequences of NANOGP8 may have environment-dependent promoter activity. We also found that the regulatory sequences upstream of exosomal NANOGP8 GBM DNA contain multiple core promoter elements, transcription factor binding sites, and segments of human viruses known for their oncogenic role. The exosomal sequence of NANOGP8-upstream GBM DNA is different from corresponding genomic sequences in CSCs, cancer cells, and NSCs as well as from the sequences reported by NCBI. These sequence dissimilarities suggest that exosomal NANOGP8 GBM DNA may not be a part of the genomic DNA. Exosomes possibly acquire this DNA from other sources where it is synthesized by an unknown mechanism. The significance of exosome-bestowed regulatory elements in the transcription of promoter-less retrogene such as NANOGP8 remains to be determined.
Collapse
Affiliation(s)
- Manjusha Vaidya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Melvin Field
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
- AdventHealth Cancer Institute, Orlando, FL, United States of America
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
- * E-mail:
| |
Collapse
|
4
|
Rincón-Riveros A, De la Peña J, Rubiano W, Olivella F, Martinez-Agüero M, Villegas VE. Primary Breast Angiosarcoma: Comparative Transcriptome Analysis. Int J Mol Sci 2022; 23:ijms232416032. [PMID: 36555675 PMCID: PMC9781631 DOI: 10.3390/ijms232416032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Primary breast angiosarcoma, with de novo appearance and not associated with exposure to radiation or lymphedema, is a rare pathology representing less than 0.05% of the neoplasms related to this organ. The pathology is characterized by its aggressiveness, poor prognosis, and difficulties in its differential diagnosis. This article reports the case of a 55-year-old white woman with no family history of cancer, with a rapidly growing mass in the left mammary gland that ulcerates and bleeds. It is confirmed as primary breast angiosarcoma by immunostaining in the tumor tissue for CD31, CD34, and FLI-1. In addition, a sample of neoplastic and healthy tissues is collected from the patient for RNA sequencing; the results are contrasted with a tissue sample from a patient with Luminal A subtype of breast cancer, as well as data from other cases of angiosarcoma available in public databases. These findings revealed a genetic profile associated with the immune and inflammatory response in the patient's sample when compared to available angiosarcoma data; these molecular patterns are consistent with other recent studies. Due to the rarity of the disease, the studies carried out on each patient contribute to the expanding knowledge of the etiology and molecular pathways that are still partially known and continue to be the subject of research. Aside from a comparative transcriptome study, this article aims to provide an update on the state of knowledge about this disease.
Collapse
Affiliation(s)
- Andrés Rincón-Riveros
- Bioinformatics and Systems Biology Group, Universidad Nacional de Colombia, Bogotá 111221, Colombia
- Correspondence: (A.R.-R.); (V.E.V.); Tel.: +57-1-6012-418800 (ext. 281) (A.R.-R.); +57-1-6012-976200 (ext. 4029) (V.E.V.)
| | - Jairo De la Peña
- Servicio de Mastología, Hospital Universitario Mayor Méderi, Bogotá 111411, Colombia
| | - Wilson Rubiano
- Servicio de Mastología, Hospital Universitario Mayor Méderi, Bogotá 111411, Colombia
| | - Fabio Olivella
- Servicio de Mastología, Hospital Universitario Mayor Méderi, Bogotá 111411, Colombia
| | - María Martinez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia
| | - Victoria E. Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia
- Correspondence: (A.R.-R.); (V.E.V.); Tel.: +57-1-6012-418800 (ext. 281) (A.R.-R.); +57-1-6012-976200 (ext. 4029) (V.E.V.)
| |
Collapse
|
5
|
Levy AS, Sakellakis A, Luther E, Morell AA, Rosenberg A, Saad AG, Ivan M, Komotar RJ. Concurrent intraventricular intracranial myxoid mesenchymal tumor and ependymoma in a long-term Ewing sarcoma survivor. Neuropathology 2022; 42:534-539. [PMID: 35734886 DOI: 10.1111/neup.12844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022]
Abstract
Intracranial myxoid mesenchymal tumor, FET::CREB fusion positive is a rare, recently described central nervous system neoplasm. It is characterized by EWSR1::CREB family transcription factor fusion, typically arises in children and adolescents, and is locally aggressive even after gross total resection. Currently, there are little data available to guide management and gauge long-term prognosis. Furthermore, there have been no reports of these lesions occurring simultaneously with other intracranial neoplasms or in patients with a history of malignancy. Here we describe the first case of a very unusual patient with intracranial myxoid mesenchymal tumor of the right lateral ventricle with a concurrent fourth ventricular ependymoma who had a remote history of Ewing sarcoma of the right fibula.
Collapse
Affiliation(s)
- Adam S Levy
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ana Sakellakis
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Evan Luther
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alexis A Morell
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrew Rosenberg
- Department of Pathology, University of Miami Health System, Miami, Florida, USA
| | - Ali G Saad
- Department of Pathology, University of Miami Health System, Miami, Florida, USA
| | - Michael Ivan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Sylvester Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Ricardo J Komotar
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Sylvester Cancer Center, University of Miami Health System, Miami, Florida, USA
| |
Collapse
|
6
|
Epigenetic Application of ATAC-Seq Based on Tn5 Transposase Purification Technology. Genet Res (Camb) 2022; 2022:8429207. [PMID: 36062065 PMCID: PMC9388308 DOI: 10.1155/2022/8429207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Assays of transposase accessible chromatin sequencing (ATAC-seq) is an efficient assay to investigate chromatin accessibility, which depends on the activity of a robust Tn5 transposase to fragment the genome while cutting in the sequencing adapters. Methods We propose reliable approaches for purifying hyperactive Tn5 transposase by chitin magnetic bead sorting. Double-stranded DNA of J76 cells and 293T cells were digested and subjected to tagmentation as test samples with Tn5 transposase, and libraries were established and sequenced. Sequencing data was then analyzed for peak calling, GO enrichment, and motif analysis. Results We report a set of rapid, efficient, and low-cost methods for ATAC-seq library construction and data analysis, through large-scale and rapid sequencing. These methods can provide a reference for the study of epigenetic regulation of gene expression.
Collapse
|
7
|
Li L, Yu J, Cheng S, Peng Z, Ben-David Y, Luo H. Transcription factor Fli-1 as a new target for antitumor drug development. Int J Biol Macromol 2022; 209:1155-1168. [PMID: 35447268 DOI: 10.1016/j.ijbiomac.2022.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
The transcription factor Friend leukemia virus integration 1 (Fli-1) belonging to the E26 Transformation-Specific (ETS) transcription factor family is not only expressed in normal cells such as hematopoietic stem cells and vascular endothelial cells, but also abnormally expressed in various malignant tumors including Ewing sarcoma, Merkel cell sarcoma, small cell lung carcinoma, benign or malignant hemangioma, squamous cell carcinoma, adenocarcinoma, bladder cancer, leukemia, and lymphoma. Fli-1 binds to the promoter or enhancer of the target genes and participates in a variety of physiological and pathological processes of tumor cells, including cell growth, proliferation, differentiation, and apoptosis. The expression of Fli-1 gene is related to the specific biological functions and characteristics of the tissue in which it is located. In tumor research, Fli-1 gene is used as a specific marker for the occurrence, metastasis, efficacy, and prognosis of tumors, thus, a potential new target for tumor diagnosis and treatment. These studies indicated that Fli-1 may be a specific candidate for antitumor drug development. Recent studies identified small molecules regulating Fli-1 thanks to our screened strategy of natural products and their derivatives. Therefore, in this review, the advanced research on Fli-1 as a target for antitumor drug development is analyzed in different cancers. The inhibitors and agonists of Fli-1 that regulate its expression are introduced and their clinical applications in the treatment of cancer, thus providing new therapeutic strategies.
Collapse
Affiliation(s)
- Lanlan Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; College of Pharmacy, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Zhilin Peng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P.R. China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Science, Guiyang 550014, P.R. China.
| |
Collapse
|