1
|
Maltseva D, Kirillov I, Zhiyanov A, Averinskaya D, Suvorov R, Gubani D, Kudriaeva A, Belogurov A, Tonevitsky A. Incautious design of shRNAs for stable overexpression of miRNAs could result in generation of undesired isomiRs. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195046. [PMID: 38876159 DOI: 10.1016/j.bbagrm.2024.195046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
shRNA-mediated strategy of miRNA overexpression based on RNA Polymerase III (Pol III) expression cassettes is widely used for miRNA functional studies. For some miRNAs, e.g., encoded in the genome as a part of a polycistronic miRNA cluster, it is most likely the only way for their individual stable overexpression. Here we have revealed that expression of miRNAs longer than 19 nt (e.g. 23 nt in length hsa-miR-93-5p) using such approach could be accompanied by undesired predominant generation of 5' end miRNA isoforms (5'-isomiRs). Extra U residues (up to five) added by Pol III at the 3' end of the transcribed shRNA during transcription termination could cause a shift in the Dicer cleavage position of the shRNA. This results in the formation of 5'-isomiRs, which have a significantly altered seed region compared to the initially encoded canonical hsa-miR-93-5p. We demonstrated that the commonly used qPCR method is insensitive to the formation of 5'-isomiRs and cannot be used to confirm miRNA overexpression. However, the predominant expression of 5'-isomiRs without three or four first nucleotides instead of the canonical isoform could be disclosed based on miRNA-Seq analysis. Moreover, mRNA sequencing data showed that the 5'-isomiRs of hsa-miR-93-5p presumably regulate their own mRNA targets. Thus, omitting miRNA-Seq analysis may lead to erroneous conclusions regarding revealed mRNA targets and possible molecular mechanisms in which studied miRNA is involved. Overall, the presented results show that structures of shRNAs for stable overexpression of miRNAs requires careful design to avoid generation of undesired 5'-isomiRs.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Ivan Kirillov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Anton Zhiyanov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Daria Averinskaya
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Roman Suvorov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Daria Gubani
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 101000, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Art Photonics GmbH, Berlin 12489, Germany.
| |
Collapse
|
2
|
Semerci Sevimli T, Sevimli M, Ghorbani A, Şahintürk V, Qomi Ekenel E, Ertem T, Demir Cevizlidere B, Altuğ B, Tomsuk Ö, Uysal O, Güneş Bağış S, Avci H, Çemrek F, Ahmadova Z. The analysis of boric acid effect on epithelial-mesenchymal transition of CD133 + CD117 + lung cancer stem cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6791-6802. [PMID: 38536434 PMCID: PMC11422429 DOI: 10.1007/s00210-024-03062-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 09/25/2024]
Abstract
Targeting lung cancer stem cells (LC-SCs) for metastasis may be an effective strategy against lung cancer. This study is the first on epithelial-mesenchymal transition (EMT) properties of boric acid (BA) in LC-SCs. LC-SCs were isolated using the magnetic cell sorting (MACS) method. Tumor-sphere formation and flow cytometry confirmed CSC phenotype. The cytotoxic effect of BA was measured by MTT analysis, and the effect of BA on EMT was examined by migration analysis. The expression levels of ZEB1, SNAIL1, ITGA5, CDH1, ITGB1, VIM, COL1A1, and LAMA5 genes were analyzed by RT-qPCR. E-cadherin, Collagen-1, MMP-3, and Vimentin expressions were analyzed immunohistochemically. Boric acid slightly reduced the migration of cancer cells. Increased expression of transcription factor SNAIL (p < 0.001), but not ZEB1, was observed in LC-SCs. mRNA expression levels of ITGB1 (p < 0.01), ITGA5 (p < 0.001), COL1A1 (p < 0.001), and LAMA5 (p < 0.001) increased; CDH1 and VIM decreased in LC-SCs. Moreover, while E-cadherin (p < 0.001) and Collagen-1 (p < 0.01) immunoreactivities significantly increased, MMP-3 (p < 0.001) and Vimentin (p < 0.01) immunoreactivities decreased in BA-treated LC-SCs. To conclude, the current study provided insights into the efficacy and effects of BA against LC-SCs regarding proliferation, EMT, and cell death for future studies.
Collapse
Affiliation(s)
- Tuğba Semerci Sevimli
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
| | - Murat Sevimli
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Aynaz Ghorbani
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Varol Şahintürk
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Emilia Qomi Ekenel
- Graduate School of İnformatics, Middle East Technical University, Ankara, Turkey
| | - Tuğba Ertem
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Bahar Demir Cevizlidere
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Burcugül Altuğ
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Özlem Tomsuk
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Onur Uysal
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Sibel Güneş Bağış
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Hüseyin Avci
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Fatih Çemrek
- Department of Statistics, Faculty of Science and Letters, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Zarifa Ahmadova
- Stem Cell, Cellular Therapy, and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| |
Collapse
|
3
|
Fu Z, Qi Y, Xue LF, Xu YX, Yue J, Zhao JZ, Li C, Xiao W. LAMA5: A new pathogenic gene for non-syndromic cleft lip with or without cleft palate. Biomed J 2024; 47:100627. [PMID: 37390938 PMCID: PMC10957387 DOI: 10.1016/j.bj.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effect of LAMA5 on palatal development in mice. METHODS The palatine process of C57BL/6 J fetal mice on the embryonic day 13.5 (E13.5) was cultured in vitro via the rotating culture method. The LAMA5-shRNA adenovirus vector was constructed, then transfected into the palatal process of E13.5 for 48 h in vitro. A fluorescence microscope was used to visualize the fusion of palates. The expression of LAMA5 was also detected. The expression of ki67, cyclin D1, caspase 3, E-cadherin, vimentin and SHH signaling pathway-related signaling factors in the blank control group, the negative control group, and the LAMA5 interference group were detected after virus transfection. RESULTS The bilateral palates in the LAMA5 interference group were not fused after virus transfection. PCR and WB showed that the mRNA and protein expressions of LAMA5 were decreased in the LAMA5 interference group. Furthermore, the mRNA and protein expressions of ki67, cyclin D1 and gli1 were decreased in the LAMA5 interference group, while the mRNA and protein expressions of caspase 3 were increased. However, the mRNA and protein expression of E-cadherin, vimentin, Shh and ptch1 did not significantly change in the LAMA5 interference group. CONCLUSIONS LAMA5 silencing causes cleft palate by inhibiting the proliferation of mouse palatal cells and promoting apoptosis, which may not be involved in EMT. LAMA5 silencing can also cause cleft palate by interfering with the SHH signaling pathway.
Collapse
Affiliation(s)
- Zhenzhen Fu
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Yan Qi
- Department of Stomatology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ling-Fa Xue
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Yao-Xiang Xu
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Jin Yue
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Jin-Ze Zhao
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Cong Li
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Wenlin Xiao
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Maiese K. Artificial Intelligence and Disease Signature Pathways: Driving Innovation to Elucidate Underlying Pathogenic Mechanisms. Curr Neurovasc Res 2024; 21:229-233. [PMID: 38910427 DOI: 10.2174/1567202621999240621122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
|
5
|
Wang Q, Zhang YF, Li CL, Wang Y, Wu L, Wang XR, Huang T, Liu GL, Chen X, Yu Q, He PF. Integrating scRNA-seq and bulk RNA-seq to characterize infiltrating cells in the colorectal cancer tumor microenvironment and construct molecular risk models. Aging (Albany NY) 2023; 15:13799-13821. [PMID: 38054820 PMCID: PMC10756133 DOI: 10.18632/aging.205263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023]
Abstract
Colorectal cancer (CRC) is a malignancy that is both highly lethal and heterogeneous. Although the correlation between intra-tumoral genetic and functional heterogeneity and cancer clinical prognosis is well-established, the underlying mechanism in CRC remains inadequately understood. Utilizing scRNA-seq data from GEO database, we re-isolated distinct subsets of cells, constructed a CRC tumor-related cell differentiation trajectory, and conducted cell-cell communication analysis to investigate potential interactions across cell clusters. A prognostic model was built by integrating scRNA-seq results with TCGA bulk RNA-seq data through univariate, LASSO, and multivariate Cox regression analyses. Eleven distinct cell types were identified, with Epithelial cells, Fibroblasts, and Mast cells exhibiting significant differences between CRC and healthy controls. T cells were observed to engage in extensive interactions with other cell types. Utilizing the 741 signature genes, prognostic risk score model was constructed. Patients with high-risk scores exhibited a significant correlation with unfavorable survival outcomes, high-stage tumors, metastasis, and low responsiveness to chemotherapy. The model demonstrated a strong predictive performance across five validation cohorts. Our investigation involved an analysis of the cellular composition and interactions of infiltrates within the microenvironment, and we developed a prognostic model. This model provides valuable insights into the prognosis and therapeutic evaluation of CRC.
Collapse
Affiliation(s)
- Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yi-Fan Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- The First clinical Medical College, Shanxi medical University, Taiyuan, China
| | - Chen-Long Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yang Wang
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Xing-Ru Wang
- The Fifth Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Tai Huang
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Ge-Liang Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xing Chen
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Li X, Shan J, Chen X, Cui H, Wen G, Yu Y. Decellularized diseased tissues: current state-of-the-art and future directions. MedComm (Beijing) 2023; 4:e399. [PMID: 38020712 PMCID: PMC10661834 DOI: 10.1002/mco2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianyang Shan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Diao B, Sun C, Yu P, Zhao Z, Yang P. LAMA5 promotes cell proliferation and migration in ovarian cancer by activating Notch signaling pathway. FASEB J 2023; 37:e23109. [PMID: 37527216 DOI: 10.1096/fj.202300306r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
LAMA5 (laminin α5) is a member of the laminin family. Despite the recent research implicating LAMA5 in cancer, the function of LAMA5 has remained uncertain in the progression of ovarian cancer (OC). Here, we investigated the functional influences of LAMA5 knockdown on OC in vitro and in vivo. In this study, we used immunohistochemistry (IHC) analysis to detect the relative expression of LAMA5 in OC and non-cancer tissues, and we analyzed its connection with the overall survival (OS) of OC patients. To prove the role of LAMA5 in cell proliferation, migration, and invasion, LAMA5 expression in OC cell lines was inhibited by lentivirus. Compared with normal fallopian tube tissue, epithelial ovarian cancer (EOC) tissue showed critically higher LAMA5 expression levels; additionally, high LAMA5 levels were a poor predictor of OS. We found that cell progression was restrained in LAMA5-knockdown OC cell lines in vivo and in vitro. Finally, LAMA5 might be a commanding inducer of the expression of epithelial-mesenchymal transition (EMT) and Notch signaling pathway-related markers. Together, our research indicates that LAMA5 is highly connected to OC progression as it may play a role in the EMT process through the Notch signaling pathway.
Collapse
Affiliation(s)
- Bowen Diao
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Chongfeng Sun
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Panpan Yu
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Zouyu Zhao
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Ping Yang
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China
- The NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Nikulin S, Razumovskaya A, Poloznikov A, Zakharova G, Alekseev B, Tonevitsky A. ELOVL5 and IGFBP6 genes modulate sensitivity of breast cancer cells to ferroptosis. Front Mol Biosci 2023; 10:1075704. [PMID: 36714261 PMCID: PMC9880435 DOI: 10.3389/fmolb.2023.1075704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Introduction: Relapse of breast cancer is one of the key obstacles to successful treatment. Previously we have shown that low expression of ELOVL5 and IGFBP6 genes in breast cancer tissue corresponded to poor prognosis. ELOVL5 participates directly in the elongation of polyunsaturated fatty acids (PUFAs) that are considered to play an important role in cancer cell metabolism. Thus, in this work we studied the changes in lipid metabolism in breast cancer cells with reduced expression of either ELOVL5 or IGFBP6 gene. Methods: MDA-MB-231 cells with a stable knockdown of either ELOVL5 or IGFBP6 gene were used in this study. Transcriptomic and proteomic analysis as well as RT-PCR were utilized to assess gene expression. Content of individual fatty acids in the cells was measured with HPLC-MS. HPLC was used for analysis of the kinetics of PUFAs uptake. Cell viability was measured with MTS assay. Flow cytometry was used to measure activation of apoptosis. Fluorescent microscopy was utilized to assess accumulation of ROS and formation of lipid droplets. Glutathione peroxidase activity was measured with a colorimetric assay. Results: We found that the knockdown of IGFBP6 gene led to significant changes in the profile of fatty acids in the cells and in the expression of many genes associated with lipid metabolism. As some PUFAs are known to inhibit proliferation and cause death of cancer cells, we also tested the response of the cells to single PUFAs and to combinations of docosahexaenoic acid (DHA, a n-3 PUFA) with standard chemotherapeutic drugs. Our data suggest that external PUFAs cause cell death by activation of ferroptosis, an iron-dependent mechanism of cell death with excessive lipid peroxidation. Moreover, both knockdowns increased cells' sensitivity to ferroptosis, probably due to a significant decrease in the activity of the antioxidant enzyme GPX4. Addition of DHA to commonly used chemotherapeutic drugs enhanced their effect significantly, especially for the cells with low expression of IGFBP6 gene. Discussion: The results of this study suggest that addition of PUFAs to the treatment regimen for the patients with low expression of IGFBP6 and ELOVL5 genes can be potentially beneficial and is worth testing in a clinically relevant setting.
Collapse
Affiliation(s)
- Sergey Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia,*Correspondence: Sergey Nikulin,
| | | | - Andrey Poloznikov
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Galina Zakharova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Boris Alekseev
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S, Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology 2022; 20:371. [PMID: 35953863 PMCID: PMC9367166 DOI: 10.1186/s12951-022-01586-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer is considered one of the major malignancies that threaten the lives and health of people around the world. Patients with CRC are prone to post-operative local recurrence or metastasis, and some patients are advanced at the time of diagnosis and have no chance for complete surgical resection. These factors make chemotherapy an indispensable and important tool in treating CRC. However, the complex composition of the tumor microenvironment and the interaction of cellular and interstitial components constitute a tumor tissue with high cell density, dense extracellular matrix, and high osmotic pressure, inevitably preventing chemotherapeutic drugs from entering and acting on tumor cells. As a result, a novel drug carrier system with targeted nanoparticles has been applied to tumor therapy. It can change the physicochemical properties of drugs, facilitate the crossing of drug molecules through physiological and pathological tissue barriers, and increase the local concentration of nanomedicines at lesion sites. In addition to improving drug efficacy, targeted nanoparticles also reduce side effects, enabling safer and more effective disease diagnosis and treatment and improving bioavailability. In this review, we discuss the mechanisms by which infiltrating cells and other stromal components of the tumor microenvironment comprise barriers to chemotherapy in colorectal cancer. The research and application of targeted nanoparticles in CRC treatment are also classified.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Yongbo Zou
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Longhai Jin
- Department of Radiology, Jilin University Second Hospital, Changchun, 130000, China
| | - Zeyun Zhao
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, 130000, China.
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| |
Collapse
|
10
|
Differences in Medium-Induced Conformational Plasticity Presumably Underlie Different Cytotoxic Activity of Ricin and Viscumin. Biomolecules 2022; 12:biom12020295. [PMID: 35204796 PMCID: PMC8961613 DOI: 10.3390/biom12020295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
Structurally similar catalytic subunits A of ricin (RTA) and viscumin (MLA) exhibit cytotoxic activity through ribosome inactivation. Ricin is more cytotoxic than viscumin, although the molecular mechanisms behind this difference are still poorly understood. To shed more light on this problem, we used a combined biochemical/molecular modeling approach to assess possible relationships between the activity of toxins and their structural/dynamic properties. Based on bioassay measurements, it was suggested that the differences in activity are associated with the ability of RTA and MLA to undergo structural/hydrophobic rearrangements during trafficking through the endoplasmic reticulum (ER) membrane. Molecular dynamics simulations and surface hydrophobicity mapping of both proteins in different media showed that RTA rearranges its structure in a membrane-like environment much more efficiently than MLA. Their refolded states also drastically differ in terms of hydrophobic organization. We assume that the higher conformational plasticity of RTA is favorable for the ER-mediated translocation pathway, which leads to a higher rate of toxin penetration into the cytoplasm.
Collapse
|
11
|
Wang J, Lu D, Sun R, Lei S, Luo S, Dang X, Zhang Y, Yuan C, Zhang Y, Wu J, Yang G, Fu L, Jiang F. One-Pot Enzymatic Synthesis and Biological Evaluation of Ganglioside GM3 Derivatives as Potential Cancer Immunotherapeutics. J Med Chem 2022; 65:1883-1897. [PMID: 35073068 DOI: 10.1021/acs.jmedchem.1c01301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer is a leading cause of death worldwide. Recent research studies have revealed that GM3 derivatives have considerable promise as potential therapeutic agents for cancer. To discover novel GM3 derivatives as potential antitumor agents, a one-pot enzymatic synthesis was established, yielding 14 GM3 derivatives in high total yields (22-41%). Subsequently, the inhibitory activities of GM3 derivatives were assessed by wound-healing assays and Transwell assays and tumor-bearing animal models. Among all the GM3 derivatives, N-12 showed excellent migration and invasion inhibitory effects in cells and marked antitumor activity in C57BL/6 mice. The subsequent analysis of cancer tissues and serum samples revealed that N-12 induces tumor inhibition, which was closely related to immune response. Taken together, N-12 can be further developed as an effective therapeutic for the treatment of cancer. An RNA-sequencing (RNA-seq) analysis was then performed and indicated that the antitumor mechanism of N-12 involved focal adhesion and ECM-receptor interaction signaling pathways.
Collapse
Affiliation(s)
- Juntao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Dan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Ran Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Shuhua Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Xin Dang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Yang Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Chang Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Yong Zhang
- School of Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Guangyu Yang
- School of Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Faqin Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| |
Collapse
|
12
|
Poloznikov AA, Nikulin SV, Hushpulian DM, Khristichenko AY, Osipyants AI, Asachenko AF, Shurupova OV, Savin SS, Lee SH, Gaisina IN, Thatcher GRJ, Narciso A, Chang EP, Kazakov SV, Krucher N, Tishkov VI, Thomas B, Gazaryan IG. Structure-Activity Relationships and Transcriptomic Analysis of Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors. Antioxidants (Basel) 2022; 11:220. [PMID: 35204103 PMCID: PMC8868400 DOI: 10.3390/antiox11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
To evaluate the differences in action of commercially available 2-oxoglutarate mimetics and "branched-tail" oxyquinoline inhibitors of hypoxia-inducible factor prolyl hydroxylase (HIF PHD), the inhibitors' IC50 values in the activation of HIF1 ODD-luciferase reporter were selected for comparative transcriptomics. Structure-activity relationship and computer modeling for the oxyquinoline series of inhibitors led to the identification of novel inhibitors, which were an order of magnitude more active in the reporter assay than roxadustat and vadadustat. Unexpectedly, 2-methyl-substitution in the oxyquinoline core of the best HIF PHD inhibitor was found to be active in the reporter assay and almost equally effective in the pretreatment paradigm of the oxygen-glucose deprivation in vitro model. Comparative transcriptomic analysis of the signaling pathways induced by HIF PHD inhibitors showed high potency of the two novel oxyquinoline inhibitors (#4896-3249 and #5704-0720) at 2 μM concentrations matching the effect of 30 μM roxadustat and 500 μM dimethyl oxalyl glycine in inducing HIF1 and HIF2-linked pathways. The two oxyquinoline inhibitors exerted the same activation of HIF-triggered glycolytic pathways but opposite effects on signaling pathways linked to alternative substrates of HIF PHD 1 and 3, such as p53, NF-κB, and ATF4. This finding can be interpreted as the specificity of the 2-methyl-substitute variant for HIF PHD2.
Collapse
Affiliation(s)
- Andrey A. Poloznikov
- Faculty of Biology and Biotechnologies, Higher School of Economics, 101000 Moscow, Russia; (A.A.P.); (S.V.N.)
| | - Sergey V. Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, 101000 Moscow, Russia; (A.A.P.); (S.V.N.)
| | - Dmitry M. Hushpulian
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Anna Yu. Khristichenko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (A.Y.K.); (A.I.O.)
| | - Andrey I. Osipyants
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (A.Y.K.); (A.I.O.)
| | - Andrey F. Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia; (A.F.A.); (O.V.S.)
| | - Olga V. Shurupova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia; (A.F.A.); (O.V.S.)
| | - Svyatoslav S. Savin
- Department of Chemical Enzymology, Chemistry Faculty, M. V. Lomonosov Moscow State University, 119192 Moscow, Russia; (S.S.S.); (V.I.T.)
| | - Sue H. Lee
- Department of Pharmaceutical Sciences and UICentre, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA; (S.H.L.); (I.N.G.)
| | - Irina N. Gaisina
- Department of Pharmaceutical Sciences and UICentre, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA; (S.H.L.); (I.N.G.)
| | - Gregory R. J. Thatcher
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA;
| | - Anthony Narciso
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Eric P. Chang
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Sergey V. Kazakov
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Nancy Krucher
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Vladimir I. Tishkov
- Department of Chemical Enzymology, Chemistry Faculty, M. V. Lomonosov Moscow State University, 119192 Moscow, Russia; (S.S.S.); (V.I.T.)
- A.N. Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Bobby Thomas
- Darby Children’s Research Institute, Departments of Pediatrics, Neuroscience and Drug Discovery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Irina G. Gazaryan
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| |
Collapse
|
13
|
Nersisyan SA. Induction of Hypoxic Response in Caco-2 Cells Promote the Expression of Genes Involved in SARS-CoV-2 Endocytosis and Transcytosis. DOKL BIOCHEM BIOPHYS 2022; 506:206-209. [PMID: 36303053 PMCID: PMC9612616 DOI: 10.1134/s1607672922050118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/07/2022]
Abstract
In the present manuscript we analyzed the influence of hypoxic response in Caco-2 cells on the expression of genes and miRNAs involved in the mechanisms of intracellular transport of SARS-CoV-2 viral particles, especially endocytosis and transcytosis. With the use of RNA sequencing of Caco-2 cells treated with hypoxia-inducing oxyquinoline derivative, we showed two-fold increase in the expression of the main SARS-CoV-2 receptor ACE2. Expression of the non-canonical receptor TFRC was also elevated. We also observed a significant increase in the expression levels of genes from the low-density lipoprotein (LDL) receptor family, which play a crucial role in the transcytosis: LDLR, LRP1, LRP4, and LRP5. Upregulation of LDLR was coupled with the downregulation of hsa-miR-148a-3p, which can directly bind to LDLR mRNA. Thus, the hypoxic response in Caco-2 cells includes upregulation of genes involved in the mechanisms of endocytosis and transcytosis of SARS-CoV-2 viral particles.
Collapse
Affiliation(s)
- S. A. Nersisyan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia ,Institute of Molecular Biology (IMB), National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| |
Collapse
|
14
|
Nersisyan S, Novosad V, Engibaryan N, Ushkaryov Y, Nikulin S, Tonevitsky A. ECM-Receptor Regulatory Network and Its Prognostic Role in Colorectal Cancer. Front Genet 2021; 12:782699. [PMID: 34938324 PMCID: PMC8685507 DOI: 10.3389/fgene.2021.782699] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions of the extracellular matrix (ECM) and cellular receptors constitute one of the crucial pathways involved in colorectal cancer progression and metastasis. With the use of bioinformatics analysis, we comprehensively evaluated the prognostic information concentrated in the genes from this pathway. First, we constructed a ECM-receptor regulatory network by integrating the transcription factor (TF) and 5'-isomiR interaction databases with mRNA/miRNA-seq data from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD). Notably, one-third of interactions mediated by 5'-isomiRs was represented by noncanonical isomiRs (isomiRs, whose 5'-end sequence did not match with the canonical miRBase version). Then, exhaustive search-based feature selection was used to fit prognostic signatures composed of nodes from the network for overall survival prediction. Two reliable prognostic signatures were identified and validated on the independent The Cancer Genome Atlas Rectum Adenocarcinoma (TCGA-READ) cohort. The first signature was made up by six genes, directly involved in ECM-receptor interaction: AGRN, DAG1, FN1, ITGA5, THBS3, and TNC (concordance index 0.61, logrank test p = 0.0164, 3-years ROC AUC = 0.68). The second hybrid signature was composed of three regulators: hsa-miR-32-5p, NR1H2, and SNAI1 (concordance index 0.64, logrank test p = 0.0229, 3-years ROC AUC = 0.71). While hsa-miR-32-5p exclusively regulated ECM-related genes (COL1A2 and ITGA5), NR1H2 and SNAI1 also targeted other pathways (adhesion, cell cycle, and cell division). Concordant distributions of the respective risk scores across four stages of colorectal cancer and adjacent normal mucosa additionally confirmed reliability of the models.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Victor Novosad
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Narek Engibaryan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Yuri Ushkaryov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Sergey Nikulin
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute—Branch, National Medical Research Radiological Centre, Ministry of Health of Russian Federation, Moscow, Russia
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- SRC Bioclinicum, Moscow, Russia
| |
Collapse
|
15
|
Diao B, Yang P. Comprehensive Analysis of the Expression and Prognosis for Laminin Genes in Ovarian Cancer. Pathol Oncol Res 2021; 27:1609855. [PMID: 34512203 PMCID: PMC8423899 DOI: 10.3389/pore.2021.1609855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Survival is low in ovarian cancer (OC). Most OC patients demonstrate advanced metastases, and recurrence is common. Dysregulation of laminin interactions is associated with cancer development. However, it is unknown whether laminin subunits can be considered as biomarkers for OC diagnosis, prognosis, and treatment. We used cBioPortal, GEO, ONCOMINE, GEPIA, Human Protein Atlas, Kaplan-Meier Plotter, TIMER, and Metascape to determine the associations among laminin expression, prognosis, and immune cell infiltration in OC. LAMA5, LAMB3, and LAMC2 mRNAs and LAMA3, LAMB1/B2/B3, and LAMC1/C2 proteins were overexpressed in OC tissues compared with normal ovaries. LAMA4, LAMB1, and LAMC1 mRNA upregulation was positively correlated with worse overall survival (OS) and progression-free survival (PFS) in OC. Elevated LAMA2 and LAMC2 mRNA expression levels were related to better PFS or OS, respectively. The results speculated that LAMA5 could potentially be a good prognostic factor in OC. Its expression proves valuable for predicting OS in patients diagnosed with stage Ⅳ and grade 3 OC and PFS in patients diagnosed with all OC stages or grades. LAMB3 and LAMC2 expression was correlated with platinum resistance development. ROC analysis of laminins in OC sets revealed that LAMA2/A4/A5, LAMB1/B2/B3, and LAMC2 could be used to differentiate between malignant tumors and non-neoplastic tissues. LAMA1/A5 and LAMC1 were significantly and negatively correlated with various tumor immune infiltrates (TILs), especially with dendritic cells, CD8+ T cells or neutrophil. LAMA4 and LAMB1 might be associated with tumor purity in OC. Overall, LAMA5 and LAMC1 could help predict OC survival and diagnosis and might be deemed important OC oncogenes.
Collapse
Affiliation(s)
- Bowen Diao
- Department of Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ping Yang
- Department of Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
16
|
Nikulin S, Zakharova G, Poloznikov A, Raigorodskaya M, Wicklein D, Schumacher U, Nersisyan S, Bergquist J, Bakalkin G, Astakhova L, Tonevitsky A. Effect of the Expression of ELOVL5 and IGFBP6 Genes on the Metastatic Potential of Breast Cancer Cells. Front Genet 2021; 12:662843. [PMID: 34149804 PMCID: PMC8206645 DOI: 10.3389/fgene.2021.662843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/20/2021] [Indexed: 12/09/2022] Open
Abstract
Breast cancer (BC) is the leading cause of death from malignant neoplasms among women worldwide, and metastatic BC presents the biggest problems for treatment. Previously, it was shown that lower expression of ELOVL5 and IGFBP6 genes is associated with a higher risk of the formation of distant metastases in BC. In this work, we studied the change in phenotypical traits, as well as in the transcriptomic and proteomic profiles of BC cells as a result of the stable knockdown of ELOVL5 and IGFBP6 genes. The knockdown of ELOVL5 and IGFBP6 genes was found to lead to a strong increase in the expression of the matrix metalloproteinase (MMP) MMP1. These results were in good agreement with the correlation analysis of gene expression in tumor samples from patients and were additionally confirmed by zymography. The knockdown of ELOVL5 and IGFBP6 genes was also discovered to change the expression of a group of genes involved in the formation of intercellular contacts. In particular, the expression of the CDH11 gene was markedly reduced, which also complies with the correlation analysis. The spheroid formation assay showed that intercellular adhesion decreased as a result of the knockdown of the ELOVL5 and IGFBP6 genes. Thus, the obtained data indicate that malignant breast tumors with reduced expression of the ELOVL5 and IGFBP6 genes can metastasize with a higher probability due to a more efficient invasion of tumor cells.
Collapse
Affiliation(s)
- Sergey Nikulin
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | | | - Andrey Poloznikov
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Maria Raigorodskaya
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- Scientific Research Centre Bioclinicum, Moscow, Russia
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Jonas Bergquist
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Lidiia Astakhova
- Scientific Research Centre Bioclinicum, Moscow, Russia
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
17
|
Maltseva DV, Poloznikov AA, Artyushenko VG. Selective changes in expression of integrin α-subunits in the intestinal epithelial Caco-2 cells under conditions of hypoxia and microcirculation. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal epithelial cells are constantly exposed to physiologically hypoxic environment. The further reduction of tissue oxygen delivery may result in the intestinal epithelial cells function impairment, being a sign of active inflammation. The cultivation conditions are important when performing in vitro studies, since those may affect the cells’ properties. The study was aimed to assess the integrin receptor expression in the human colon adenocarcinoma Caco-2 cell line when simulating both hypoxic condition using the cobalt chloride and microcirculation. Transcriptome analysis revealed the significantly increased expression of the integrin receptors ITGA2 and ITGA5 α2- and α5-subunit genes under hypoxic conditions, as well as the reduction of ITGA5 during incubation in the microfluidic chip. The expression of β-subunits did not change. Analysis of microRNA transcriptomes revealed the decreased expression of hsa-miR-766-3p and hsa-miR-23b-5p microRNA. One of the validated targets for both microRNAs is mRNA of gene ITGA5. It has been shown that microcirculation makes it possible to bring the intestinal epithelial cells cultivation conditions closer to physiological conditions. The possible biological significance of the detected integrin expression profile alterations and the role of microcirculation have been discussed.
Collapse
Affiliation(s)
- DV Maltseva
- National Research University Higher School of Economics, Moscow, Russia
| | - AA Poloznikov
- National Research University Higher School of Economics, Moscow, Russia
| | | |
Collapse
|
18
|
Maltseva DV, Shkurnikov MY, Nersisyan SA, Nikulin SV, Kurnosov AA, Raigorodskaya MP, Osipyants AI, Tonevitsky EA. Hypoxia enhances transcytosis in intestinal enterocytes. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The integrity of the intestinal epithelial cell lining is crucial for the normal intestinal function. As a rule, intestinal inflammation is associated with additional tissue hypoxia, leading to the loss of epithelial monolayer integrity. However, in the absence of visible damage to the epithelium, there still might be a risk of infection driven by changes in the intracellular transport of bacteria-containing vesicles. The aim of this study was to investigate the effects of hypoxia on transcytosis using a human intestinal enterocyte model. We found that hypoxia enhances transcytosis of the model protein ricin 1.8-fold. The comparative transcriptome and proteome analyses revealed significant changes in the expression of genes involved in intracellular vesicle transport. Specifically, the expression of apoB (the regulator of lipid metabolism) was changed at both protein (6.5-fold) and mRNA (2.1-fold) levels. Further research is needed into the possible mechanism regulating gene expression in intestinal erythrocytes under hypoxic conditions.
Collapse
Affiliation(s)
- DV Maltseva
- National Research University Higher School of Economics, Moscow, Russia
| | - MYu Shkurnikov
- National Research University Higher School of Economics, Moscow, Russia; P. A. Hertsen Moscow Oncology Research Center, branch of the National Medical Research Radiology Center, Moscow, Russia
| | - SA Nersisyan
- National Research University Higher School of Economics, Moscow, Russia
| | - SV Nikulin
- National Research University Higher School of Economics, Moscow, Russia
| | - AA Kurnosov
- National Research University Higher School of Economics, Moscow, Russia
| | | | - AI Osipyants
- P. A. Hertsen Moscow Oncology Research Center, branch of the National Medical Research Radiology Center, Moscow, Russia; Far Eastern Federal University, Vladivostok, Russia
| | - EA Tonevitsky
- Fund for Development of Innovative Scientific-Technological Center Mendeleev Valley, Moscow, Russia
| |
Collapse
|