1
|
Jung YY, Suresh RN, Mohan CD, Harsha KB, Shivakumara CS, Rangappa KS, Ahn KS. A new isoxazolyl-urea derivative induces apoptosis, paraptosis, and ferroptosis by modulating MAPKs in pancreatic cancer cells. Biochimie 2024; 227:262-272. [PMID: 39098374 DOI: 10.1016/j.biochi.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
MAPK pathway regulates the major events including cell division, cell death, migration, invasion, and angiogenesis. Small molecules that modulate the MAPK pathway have been demonstrated to impart cytotoxicity in cancer cells. Herein, the synthesis of a new isoxazolyl-urea derivative (QR-4) has been described and its effect on the growth of pancreatic cancer cells has been investigated. QR-4 reduced the cell viability in a panel of pancreatic cancer cells with minimal effect on normal hepatocytes. QR-4 induced the cleavage of PARP and procaspase-3, reduced the expression of antiapoptotic proteins, increased SubG1 cells, and annexin V/PI-stained cells indicating the induction of apoptosis. QR-4 also triggered paraptosis as witnessed by the reduction of mitochondrial membrane potential, decrease in the expression of Alix, increase in the levels of ATF4 and CHOP, and enhanced ER stress. QR-4 also modulated ferroptosis-related events such as elevation in iron levels, alteration in GSH/GSSG ratio, and increase in the expression of TFRC with a parallel decrease in the expression of GPX4 and SLC7A11. The mechanistic approach revealed that QR-4 increases the phosphorylation of all three forms of MAPKs (JNK, p38, and ERK). Independent application of specific inhibitors of these MAPKs resulted in a partial reversal of QR-4-induced effects. Overall, these reports suggest that a new isoxazolyl-urea imparts cell death via apoptosis, paraptosis, and ferroptosis by regulating the MAPK pathway in pancreatic cancer cells.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdae-mun-gu, Seoul, 02447, Republic of Korea
| | - Rajaghatta N Suresh
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Kachigere B Harsha
- Department of Chemistry, School of Engineering, University of Mysore, Mysuru, 570006, India
| | - Chilkunda Sannaiah Shivakumara
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, 563101, India
| | | | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdae-mun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
2
|
Kim NY, Dukanya D, Sethi G, Girimanchanaika SS, Yang J, Nagaraja O, Swamynayaka A, Vishwanath D, Venkantesha K, Basappa S, Chinnathambi A, Alharbi SA, Madegowda M, Sukhorukov A, Pandey V, Lobie PE, Basappa B, Ahn KS. Oxazine drug-seed induces paraptosis and apoptosis through reactive oxygen species/JNK pathway in human breast cancer cells. Transl Oncol 2024; 49:102101. [PMID: 39159553 PMCID: PMC11380389 DOI: 10.1016/j.tranon.2024.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024] Open
Abstract
Small molecule-driven JNK activation has been found to induce apoptosis and paraptosis in cancer cells. Herein pharmacological effects of synthetic oxazine (4aS, 7aS)-3-((4-(4‑chloro-2-fluorophenyl)piperazin-1-yl)methyl)-4-phenyl-4, 4a, 5, 6, 7, 7a-hexahydrocyclopenta[e] [1,2]oxazine (FPPO; BSO-07) on JNK-driven apoptosis and paraptosis has been demonstrated in human breast cancer (BC) MDA-MB231 and MCF-7 cells respectively. BSO-07 imparted significant cytotoxicity in BC cells, induced activation of JNK, and increased intracellular reactive oxygen species (ROS) levels. It also enhanced the expression of apoptosis-associated proteins like PARP, Bax, and phosphorylated p53, while decreasing the levels of Bcl-2, Bcl-xL, and Survivin. Furthermore, the drug altered the expression of proteins linked to paraptosis, such as ATF4 and CHOP. Treatment with N-acetyl-cysteine (antioxidant) or SP600125 (JNK inhibitor) partly reversed the effects of BSO-07 on apoptosis and paraptosis. Advanced in silico bioinformatics, cheminformatics, density Fourier transform and molecular electrostatic potential analysis further demonstrated that BSO-07 induced apoptosis and paraptosis via the ROS/JNK pathway in human BC cells.
Collapse
Affiliation(s)
- Na Young Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dukanya Dukanya
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore
| | - Swamy S Girimanchanaika
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, India
| | - Jirui Yang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen-518055, Guangdong, China
| | - Omantheswara Nagaraja
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-570006, India
| | - Ananda Swamynayaka
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-570006, India
| | - Divakar Vishwanath
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, India
| | | | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Medchal-500078, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh 11451, Saudi Arabia
| | - Mahendra Madegowda
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-570006, India
| | - Alexey Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow, 119991, Russia
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen-518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen, International Graduate School, Tsinghua University, Shenzhen-518055, Guangdong, China
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen-518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen, International Graduate School, Tsinghua University, Shenzhen-518055, Guangdong, China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, China.
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysuru-570006, India.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
4
|
Suresh RN, Jung YY, Harsha KB, Mohan CD, Ahn KS, Rangappa KS. Isoxazolyl-urea derivative evokes apoptosis and paraptosis by abrogating the Wnt/β-catenin axis in colon cancer cells. Chem Biol Interact 2024; 399:111143. [PMID: 39004389 DOI: 10.1016/j.cbi.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Deregulated activation of the Wnt/β-catenin pathway is observed in many types of human malignancies including colon cancer. Abrogation of the Wnt/β-catenin pathway has been demonstrated as an effective way of inducing cancer cell death. Herein, a new isoxazolyl-urea (QR-5) was synthesized and examined its efficacy on the viability of colon cancer cell lines. QR-5 displayed selective cytotoxicity towards colon cancer cells over normal counterparts. QR-5 induced apoptosis as evidenced by elevation in sub-G1 cells, decrease in Bcl-2, MMP-9, COX-2, VEGF and cleavage of PARP and caspase-3. QR-5 reduced the mitochondrial membrane potential, decreased the expression of Alix and elevated the expression of ATF4 and CHOP indicating the induction of paraptosis. The inhibitor of apoptosis (Z-DEVD-FMK) and paraptosis (CHX) could not restore Alix expression and PARP cleavage in QR-5 treated cells, respectively suggesting the complementation between the two cell death pathways. QR-5 suppressed the expression of Wnt/β-catenin pathway proteins which was also evidenced by the downregulation of nuclear and cytoplasmic β-catenin. The dependency of QR-5 on β-catenin for inducing apoptosis and paraptosis was demonstrated by knockdown experiments using β-catenin specific siRNA. Overall, QR-5 induces apoptosis as well as paraptosis by mitigating the Wnt/β-catenin axis in colon cancer cells.
Collapse
Affiliation(s)
- Rajaghatta N Suresh
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdae-mun-gu, Seoul, 02447, Republic of Korea
| | - Kachigere B Harsha
- Department of Chemistry, School of Engineering, University of Mysore, Mysuru, 570006, India
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdae-mun-gu, Seoul, 02447, Republic of Korea.
| | | |
Collapse
|
5
|
Kim NY, Shivanne Gowda SG, Lee SG, Sethi G, Ahn KS. Cannabidiol induces ERK activation and ROS production to promote autophagy and ferroptosis in glioblastoma cells. Chem Biol Interact 2024; 394:110995. [PMID: 38583854 DOI: 10.1016/j.cbi.2024.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Small molecule-driven ERK activation is known to induce autophagy and ferroptosis in cancer cells. Herein the effect of cannabidiol (CBD), a phytochemical derived from Cannabis sativa, on ERK-driven autophagy and ferroptosis has been demonstrated in glioblastoma (GBM) cells (U87 and U373 cells). CBD imparted significant cytotoxicity in GBM cells, induced activation of ERK (not JNK and p38), and increased intracellular reactive oxygen species (ROS) levels. It increased the autophagy-related proteins such as LC3 II, Atg7, and Beclin-1 and modulated the expression of ferroptosis-related proteins such as glutathione peroxidase 4 (GPX4), SLC7A11, and TFRC. CBD significantly elevated the endoplasmic reticulum stress, ROS, and iron load, and decreased GSH levels. Inhibitors of autophagy (3-MA) and ferroptosis (Fer-1) had a marginal effect on CBD-induced autophagy/ferroptosis. Treatment with N-acetyl-cysteine (antioxidant) or PD98059 (ERK inhibitor) partly reverted the CBD-induced autophagy/ferroptosis by decreasing the activation of ERK and the production of ROS. Overall, CBD induced autophagy and ferroptosis through the activation of ERK and generation of ROS in GBM cells.
Collapse
Affiliation(s)
- Na Young Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | | | - Seok-Geun Lee
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
6
|
Kim NY, Mohan CD, Sethi G, Ahn KS. Cannabidiol activates MAPK pathway to induce apoptosis, paraptosis, and autophagy in colorectal cancer cells. J Cell Biochem 2024; 125:e30537. [PMID: 38358093 DOI: 10.1002/jcb.30537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Mitogen-activated protein kinase (MAPK) activation by natural compounds is known to be involved in the induction of apoptosis, paraptosis, and autophagy. Cannabidiol (CBD), a bioactive compound found in Cannabis sativa, is endowed with many pharmacological activities. We investigated the cytotoxic effect of CBD in a panel of colorectal cancer (CRC) cells (HT-29, SW480, HCT-116, and HCT-15). CBD induced significant cytotoxicity as evidenced by the results of MTT assay, live-dead assay, and flow cytometric analysis. Since CBD displayed cytotoxicity against CRC cells, we examined the effect of CBD on apoptosis, paraptosis, and autophagy. CBD decreased the expression of antiapoptotic proteins and increased the Annexin-V-positive as well as TUNEL-positive cells suggesting that CBD induces apoptosis. CBD increased the expression of ATF4 (activating transcription factor 4) and CHOP (CCAAT/enhancer-binding protein homologous protein), elevated endoplasmic reticulum stress, and enhanced reactive oxygen species levels indicating that CBD also promotes paraptosis. CBD also induced the expression of Atg7, phospho-Beclin-1, and LC3 suggesting that CBD also accelerates autophagy. Since, the MAPK pathway is a common cascade that is involved in the regulation of apoptosis, paraptosis, and autophagy, we investigated the effect of CBD on the activation of JNK, p38, and ERK pathways. CBD activated all the forms of MAPK proteins and pharmacological inhibition of these proteins reverted the observed effects. Our findings implied that CBD could induce CRC cell death by activating apoptosis, paraptosis, and autophagy through the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Na Young Kim
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Yan G, Xiao Q, Zhao J, Chen H, Xu Y, Tan M, Peng L. Brucea javanica derived exosome-like nanovesicles deliver miRNAs for cancer therapy. J Control Release 2024; 367:425-440. [PMID: 38295998 DOI: 10.1016/j.jconrel.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterized by complex heterogeneity, high recurrence and metastasis rates, and short overall survival, owing to the lack of endocrine and targeted receptors, which necessitates chemotherapy as the major treatment regimen. Exosome-like nanovesicles derived from medicinal plants have shown great potential as novel biotherapeutics for cancer therapy by delivering their incorporated nucleic acids, especially microRNAs (miRNAs), to mammalian cells. In this study, we isolated exosome-like nanovesicles derived from B. javanica (BF-Exos) and investigated their influence and underlying molecular mechanisms in TNBC. We found that BF-Exos delivered 10 functional miRNAs to 4T1 cells, significantly retarding the growth and metastasis of 4T1 cells by regulating the PI3K/Akt/mTOR signaling pathway and promoting ROS/caspase-mediated apoptosis. Moreover, BF-Exos were shown to inhibit the secretion of vascular endothelial growth factor, contributing to anti-angiogenesis in the tumor microenvironment. In vivo, BF-Exos inhibited tumor growth, metastasis, and angiogenesis in breast tumor mouse models, while maintaining high biosafety. Overall, BF-Exos are considered promising nanoplatforms for the delivery of medicinal plant-derived nucleic acids, with great potential to be developed into novel biotherapeutics for the treatment of TNBC.
Collapse
Affiliation(s)
- Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiyao Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jingyu Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haoran Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, PR China.
| |
Collapse
|
8
|
Chen J, Yu D, Li X, Deng Q, Yang H, Chen L, Bai L. A review of Brucea javanica: metabolites, pharmacology and clinical application. Front Pharmacol 2024; 14:1317620. [PMID: 38371913 PMCID: PMC10871038 DOI: 10.3389/fphar.2023.1317620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024] Open
Abstract
This review examines advances in the metabolites, pharmacological research, and therapeutic applications of the medicinal fruit of Brucea javanica (L.) Merr. Brucea javanica (BJ) is derived from the fruit of the Brucea javanica (L.) Merr. There are nearly 200 metabolites present in BJ, and due to the diversity of its metabolites, BJ has a wide range of pharmacological effects. The traditional pharmacological effects of BJ include anti-dysentery, anti-malaria, etc. The research investigating the contemporary pharmacological impacts of BJ mainly focuses on its anti-tumor properties. In the article, the strong monomeric metabolites among these pharmacological effects were preliminarily screened. Regarding the pharmacological mechanism of action, current research has initially explored BJ's pharmacological agent and molecular signaling pathways. However, a comprehensive system has yet to be established. BJ preparations have been utilized in clinical settings and have demonstrated effectiveness. Nevertheless, clinical research is primarily limited to observational studies, and there is a need for higher-quality research evidence to support its clinical application. There are still many difficulties and obstacles in studying BJ. However, it is indisputable that BJ is a botanical drugs with significant potential for application, and it is expected to have broader global usage.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Guangyuan Central Hospital of Sichuan Province, Guangyuan, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pharmacy, Guanghan People's Hospital, Guanghan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Shi A, Liu L, Li S, Qi B. Natural products targeting the MAPK-signaling pathway in cancer: overview. J Cancer Res Clin Oncol 2024; 150:6. [PMID: 38193944 PMCID: PMC10776710 DOI: 10.1007/s00432-023-05572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This article summarizes natural products that target the MAPK-signaling pathway in cancer therapy. The classification, chemical structures, and anti-cancer mechanisms of these natural products are elucidated, and comprehensive information is provided on their potential use in cancer therapy. METHODS Using the PubMed database, we searched for keywords, including "tumor", "cancer", "natural product", "phytochemistry", "plant chemical components", and "MAPK-signaling pathway". We also screened for compounds with well-defined structures that targeting the MAPK-signaling pathway and have anti-cancer effects. We used Kingdraw software and Adobe Photoshop software to draw the chemical compound structural diagrams. RESULTS A total of 131 papers were searched, from which 85 compounds with well-defined structures were selected. These compounds have clear mechanisms for targeting cancer treatment and are mainly related to the MAPK-signaling pathway. Examples include eupatilin, carvacrol, oridonin, sophoridine, diosgenin, and juglone. These chemical components are classified as flavonoids, phenols, terpenoids, alkaloids, steroidal saponins, and quinones. CONCLUSIONS Certain MAPK pathway inhibitors have been used for clinical treatment. However, the clinical feedback has not been promising because of genomic instability, drug resistance, and side effects. Natural products have few side effects, good medicinal efficacy, a wide range of sources, individual heterogeneity of biological activity, and are capable of treating disease from multiple targets. These characteristics make natural products promising drugs for cancer treatment.
Collapse
Affiliation(s)
- Aiwen Shi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Li Liu
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Shuang Li
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Qi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
10
|
Beyaz S, Aslan A, Gok O, Ozercan IH, Agca CA. Fullerene C 60 protects against 7,12-dimethylbenz [a] anthracene (DMBA) induced-pancreatic damage via NF-κB and Nrf-2/HO-1 axis in rats. Toxicol Res (Camb) 2023; 12:954-963. [PMID: 37915491 PMCID: PMC10615826 DOI: 10.1093/toxres/tfad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
The objective of this investigation was to investigate the protective effects of fullerene C60 nanoparticle against pancreatic damage experimentally induced by 7,12-dimethylbenz [a] anthracene (DMBA) in female rats. Fullerene C60 nanoparticle was administered to rats 5 times a week by oral gavage (o.g) at 1.7 mg/kg bw 7 days after DMBA administration. 60 Wistar albino female rats divided to four groups; Groups: (1) Control group: Fed with standard diet; (2) Fullerene C60 group: Fullerene C60 (1.7 mg/kg bw); (3) DMBA group: DMBA (45 mg/kg bw); (4) Fullerene C60 + DMBA group: Fullerene C60 (1.7 mg/kg bw) and DMBA (45 mg/kg bw). Lipid peroxidation malondialdehyde (MDA), catalase activity (CAT) and glutathione (GSH) levels in pancreatic tissue were determined by spectrophotometer. Protein expression levels of p53, HO-1, p38-α (MAPK), Nrf-2, NF-κB and COX-2 in pancreatic tissue were determined by western blotting technique. In our findings, compared to the group given DMBA, MDA levels and p38-α, NF-κB and COX-2 levels decreased, CAT activity, GSH level, total protein density and p53, HO-1, Nrf-2 levels in the groups given fullerene C60 nanoparticle an increase in expression levels was observed. Our results showed that fullerene C60 nanoparticle may be more beneficial in preventing pancreatic damage.
Collapse
Affiliation(s)
- Seda Beyaz
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | - Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Can Ali Agca
- Department of Molecular Biology and Genetics Bingol, Faculty of Science, Bingol University, Bingol, Turkey
| |
Collapse
|
11
|
Yang MH, Lee M, Deivasigamani A, Le DD, Mohan CD, Hui KM, Sethi G, Ahn KS. Decanoic Acid Exerts Its Anti-Tumor Effects via Targeting c-Met Signaling Cascades in Hepatocellular Carcinoma Model. Cancers (Basel) 2023; 15:4681. [PMID: 37835375 PMCID: PMC10571573 DOI: 10.3390/cancers15194681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
DA, one of the medium-chain fatty acids found in coconut oil, is suggested to have diverse biochemical functions. However, its possible role as a chemoprevention agent in HCC has not been deciphered. Aberrant activation of c-Met can modulate tumor growth and progression in HCC. Here, we report that DA exhibited pro-found anti-tumor effects on human HCC through the suppression of HGF/c-Met signaling cascades in vitro and in vivo. It was noted that DA inhibited HGF-induced activation of c-Met and its downstream signals. DA induced apoptotic cell death and inhibited the expression of diverse tumorigenic proteins. In addition, DA attenuated tumor growth and lung metastasis in the HCC mouse model. Similar to in vitro studies, DA also suppressed the expression of c-Met and its downstream signals in mice tissues. These results highlight the substantial potential of DA in the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Min Hee Yang
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Mina Lee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Republic of Korea; (M.L.); (D.D.L.)
| | - Amudha Deivasigamani
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore; (A.D.); (K.M.H.)
| | - Duc Dat Le
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si 57922, Republic of Korea; (M.L.); (D.D.L.)
| | - Chakrabhavi Dhananjaya Mohan
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India;
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore; (A.D.); (K.M.H.)
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
12
|
Gupta N, Mohan CD, Shanmugam MK, Jung YY, Chinnathambi A, Alharbi SA, Ashrafizadeh M, Mahale M, Bender A, Kumar AP, Putti TC, Rangappa KS, Zhang X, Ahn KS, Sethi G. CXCR4 expression is elevated in TNBC patient derived samples and Z-guggulsterone abrogates tumor progression by targeting CXCL12/CXCR4 signaling axis in mice model. ENVIRONMENTAL RESEARCH 2023:116335. [PMID: 37290620 DOI: 10.1016/j.envres.2023.116335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Environmental factors such as exposure to ionizing radiations, certain environmental pollutants, and toxic chemicals are considered as risk factors in the development of breast cancer. Triple-negative breast cancer (TNBC) is a molecular variant of breast cancer that lacks therapeutic targets such as progesterone receptor, estrogen receptor, and human epidermal growth factor receptor-2 which makes the targeted therapy ineffective in TNBC patients. Therefore, identification of new therapeutic targets for the treatment of TNBC and the discovery of new therapeutic agents is the need of the hour. In this study, CXCR4 was found to be highly expressed in majority of breast cancer tissues and metastatic lymph nodes derived from TNBC patients. CXCR4 expression is positively correlated with breast cancer metastasis and poor prognosis of TNBC patients suggesting that suppression of CXCR4 expression could be a good strategy in the treatment of TNBC patients. Therefore, the effect of Z-guggulsterone (ZGA) on the expression of CXCR4 in TNBC cells was examined. ZGA downregulated protein and mRNA expression of CXCR4 in TNBC cells and proteasome inhibition or lysosomal stabilization had no effect on the ZGA-induced CXCR4 reduction. CXCR4 is under the transcriptional control of NF-κB, whereas ZGA was found to downregulate transcriptional activity NF-κB. Functionally, ZGA downmodulated the CXCL12-driven migration/invasion in TNBC cells. Additionally, the effect of ZGA on growth of tumor was investigated in the orthotopic TNBC mice model and ZGA presented good inhibition of tumor growth and liver/lung metastasis in this model. Western blotting and immunohistochemical analysis indicated a reduction of CXCR4, NF-κB, and Ki67 in tumor tissues. Computational analysis suggested PXR agonism and FXR antagonism as targets of ZGA. In conclusion, CXCR4 was found to be overexpressed in majority of patient-derived TNBC tissues and ZGA abrogated the growth of TNBC tumors by partly targeting the CXCL12/CXCR4 signaling axis.
Collapse
Affiliation(s)
- Nikita Gupta
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | | | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Manas Mahale
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Thomas Choudary Putti
- Department of Pathology, National University of Singapore, National University Hospital, Kent Ridge Road, Singapore, 119074, Singapore
| | | | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| |
Collapse
|
13
|
Jadimurthy R, Jagadish S, Nayak SC, Kumar S, Mohan CD, Rangappa KS. Phytochemicals as Invaluable Sources of Potent Antimicrobial Agents to Combat Antibiotic Resistance. Life (Basel) 2023; 13:948. [PMID: 37109477 PMCID: PMC10145550 DOI: 10.3390/life13040948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Plants have been used for therapeutic purposes against various human ailments for several centuries. Plant-derived natural compounds have been implemented in clinics against microbial diseases. Unfortunately, the emergence of antimicrobial resistance has significantly reduced the efficacy of existing standard antimicrobials. The World Health Organization (WHO) has declared antimicrobial resistance as one of the top 10 global public health threats facing humanity. Therefore, it is the need of the hour to discover new antimicrobial agents against drug-resistant pathogens. In the present article, we have discussed the importance of plant metabolites in the context of their medicinal applications and elaborated on their mechanism of antimicrobial action against human pathogens. The WHO has categorized some drug-resistant bacteria and fungi as critical and high priority based on the need to develope new drugs, and we have considered the plant metabolites that target these bacteria and fungi. We have also emphasized the role of phytochemicals that target deadly viruses such as COVID-19, Ebola, and dengue. Additionally, we have also elaborated on the synergetic effect of plant-derived compounds with standard antimicrobials against clinically important microbes. Overall, this article provides an overview of the importance of considering phytogenous compounds in the development of antimicrobial compounds as therapeutic agents against drug-resistant microbes.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Swamy Jagadish
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India;
| | - Sumana Kumar
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | | |
Collapse
|
14
|
Jung YY, Mohan CD, Rangappa S, Um JY, Chinnathambi A, Alharbi SA, Rangappa KS, Ahn KS. Brucein D imparts a growth inhibitory effect in multiple myeloma cells by abrogating the Akt-driven signaling pathway. IUBMB Life 2023; 75:149-160. [PMID: 36262053 DOI: 10.1002/iub.2684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/07/2022] [Indexed: 02/02/2023]
Abstract
The Akt signaling pathway is an oncogenic cascade activated in the bone marrow microenvironment of multiple myeloma (MM) cells and contributes to their uncontrolled proliferation. Abrogation of Akt signaling has been presented as one of the prime therapeutic targets in the treatment of MM. In the present report, we have investigated the effect of Brucein D (BD) on Akt-driven signaling events in MM cells. BD (300 nM) substantially inhibited cell viability and imparted growth-inhibitory effects in U266 cells as evidenced by cell viability assays and flow cytometric analysis. Effect of BD on cell viability was evaluated by MTT assay. Apoptotic cells and cell cycle arrest by BD were analyzed by flow cytometer. The results of the TUNEL assay and western blotting showed that BD induces apoptosis of MM cells by activating caspase-8 and 9 with subsequent reduction in the expression of antiapoptotic proteins (Bcl-2, Bcl-xl, survivin, cyclin D1, COX-2, VEGF, MMP-9). Analysis of activated kinases by Phospho-Kinase Array Kit revealed that Akt, p70S6K, HSP60, p53, and WNK1 were strongly expressed in untreated cells and BD treatment reversed this effect. Using transfection experiments, AKT depletion led to a decrease in phosphorylation of Akt, mTOR, p70S6K, and WNK. However, Akt overexpression led to increase in phosphorylation of these proteins. Depletion of Akt potentiated the apoptosis-inducing effect of BD whereas overexpression displayed resistance to BD-induced apoptosis suggesting the role of Akt in chemoresistance. Taken together, BD mitigates Akt-dependent signaling pathways in MM cells to impart its anticancer activity.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara, India
| | - Jae-Young Um
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Procaine Abrogates the Epithelial-Mesenchymal Transition Process through Modulating c-Met Phosphorylation in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14204978. [PMID: 36291760 PMCID: PMC9599628 DOI: 10.3390/cancers14204978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Epithelial-mesenchymal transition (EMT) is a vital process that leads to the dissemination of tumor cells to distant organs and promotes cancer progression. Aberrant activation of c-Met has been positively correlated with tumor metastasis in hepatocellular carcinoma (HCC). In this report, we have demonstrated the suppressive effect of procaine on the EMT process through the blockade of the c-Met signaling pathway. Procaine downregulated mesenchymal markers and upregulated epithelial markers. Functionally, procaine abrogated cellular migration and invasion. Moreover, procaine suppressed c-Met and its downstream signaling events in HCC models. We report that procaine can function as a novel inhibitor of the EMT process and c-Met-dependent signaling cascades. These results support the consideration of procaine being tested as a potential anti-metastatic agent. Abstract EMT is a critical cellular phenomenon that promotes tumor invasion and metastasis. Procaine is a local anesthetic agent used in oral surgeries and as an inhibitor of DNA methylation in some types of cancers. In this study, we have investigated whether procaine can inhibit the EMT process in HCC cells and the preclinical model. Procaine suppressed the expression of diverse mesenchymal markers but induced the levels of epithelial markers such as E-cadherin and occludin in HGF-stimulated cells. Procaine also significantly reduced the invasion and migration of HCC cells. Moreover, procaine inhibited HGF-induced c-Met and its downstream oncogenic pathways, such as PI3K/Akt/mTOR and MEK/ERK. Additionally, procaine decreased the tumor burden in the HCC mouse model and abrogated lung metastasis. Overall, our study suggests that procaine may inhibit the EMT process through the modulation of a c-Met signaling pathway.
Collapse
|
16
|
Chen J, Chen S, Yang X, Wang S, Wu W. Efficacy and safety of Brucea javanica oil emulsion injection as adjuvant therapy for cancer: An overview of systematic reviews and meta-analyses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154141. [PMID: 35598523 DOI: 10.1016/j.phymed.2022.154141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In China, Brucea javanica oil emulsion injection (BJOEI) has been used as adjuvant therapy to treat cancer for many years. Many systematic reviews (SRs) or meta-analyses (MAs) were published to evaluate its efficacy and safety. Nevertheless, uneven quality made it difficult to reach a consensus and there has been no specific review to integrate the evidence of BJOEI for cancer at present. Therefore, a comprehensive evidence map is needed to guide clinicians. PURPOSE We, for the first time, conducted an overview to assess the SRs/MAs of BJOEI, and provided a comprehensive evidence map to guide clinicians. Besides, this study provided a promising direction for future research to promote the generation of advanced evidence. STUDY DESIGN An overview of SRs or MAs. METHODS The pre-defined search strategies were applied to 8 databases. Suitable SRs/MAs were included according to the inclusion and exclusion criteria. Methodological quality, reporting quality, and risk of bias were assessed. An evidence map was conducted to show the situation of clinical evidence. RESULTS 27 SRs/MAs in 7 cancer types were included in this overview. The main problems of SRs/MAs were concentrated on the following aspects: without registration or protocol, lacking gray literature retrieval and a list of excluded studies, incomplete description in the literature retrieval strategy or the methods of merging results, the bias of each synthetic result, less exploration in heterogeneity or publication bias, deficiencies in assessing evidence quality and less description in conflict, funding or access to relevant information. Based on the rules of GRADE, the evidence quality of 154 items in 27 SRs/MAs was defined as moderate quality (103 items), low-quality (44 items), and very low-quality (7 items). Especially, risk of bias (154 items), imprecision (27 items), inconsistency (20 items), and publication bias (9 items) were the main downgrading factors. CONCLUSION BJOEI may be a promising adjuvant therapy for treating cancer, especially in the digestive system. However, high-quality SRs/MAs are expected to be carried out to improve the reliability of the above conclusion in the future.
Collapse
Affiliation(s)
- Jixin Chen
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong-HongKong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine; Guangzhou, Guangdong 510120, PR China
| | - Shuqi Chen
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Xiaobing Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong-HongKong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine; Guangzhou, Guangdong 510120, PR China
| | - Sumei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong-HongKong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine; Guangzhou, Guangdong 510120, PR China.
| | - Wanyin Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong-HongKong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine; Guangzhou, Guangdong 510120, PR China.
| |
Collapse
|
17
|
Jung YY, Mohan CD, Eng H, Narula AS, Namjoshi OA, Blough BE, Rangappa KS, Sethi G, Kumar AP, Ahn KS. 2,3,5,6-Tetramethylpyrazine Targets Epithelial-Mesenchymal Transition by Abrogating Manganese Superoxide Dismutase Expression and TGFβ-Driven Signaling Cascades in Colon Cancer Cells. Biomolecules 2022; 12:891. [PMID: 35883447 PMCID: PMC9312507 DOI: 10.3390/biom12070891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial process in which the polarized epithelial cells acquire the properties of mesenchymal cells and gain invasive properties. We have previously demonstrated that manganese superoxide dismutase (MnSOD) can regulate the EMT phenotype by modulating the intracellular reactive oxygen species. In this report, we have demonstrated the EMT-suppressive effects of 2,3,5,6-Tetramethylpyrazine (TMP, an alkaloid isolated from Chuanxiong) in colon cancer cells. TMP suppressed the expression of MnSOD, fibronectin, vimentin, MMP-9, and N-cadherin with a parallel elevation of occludin and E-cadherin in unstimulated and TGFβ-stimulated cells. Functionally, TMP treatment reduced the proliferation, migration, and invasion of colon cancer cells. TMP treatment also modulated constitutive activated as well as TGFβ-stimulated PI3K/Akt/mTOR, Wnt/GSK3/β-catenin, and MAPK signaling pathways. TMP also inhibited the EMT program in the colon cancer cells-transfected with pcDNA3-MnSOD through modulation of MnSOD, EMT-related proteins, and oncogenic pathways. Overall, these data indicated that TMP may inhibit the EMT program through MnSOD-mediated abrogation of multiple signaling events in colon cancer cells.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | | | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | | | - Ojas A. Namjoshi
- Engine Biosciences, 733 Industrial Rd., San Carlos, CA 94070, USA;
| | - Bruce E. Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27616, USA;
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| |
Collapse
|
18
|
Jadimurthy R, Mayegowda SB, Nayak S, Mohan CD, Rangappa KS. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00728. [PMID: 35686013 PMCID: PMC9171455 DOI: 10.1016/j.btre.2022.e00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The microorganisms that have developed resistance to available therapeutic agents are threatening the globe and multidrug resistance among the bacterial pathogens is becoming a major concern of public health worldwide. Bacteria develop protective mechanisms to counteract the deleterious effects of antibiotics, which may eventually result in loss of growth-inhibitory potential of antibiotics. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens display multidrug resistance and virulence through various mechanisms and it is the need of the hour to discover or design new antibiotics against ESKAPE pathogens. In this article, we have discussed the mechanisms acquired by ESKAPE pathogens to counteract the effect of antibiotics and elaborated on recently discovered secondary metabolites derived from bacteria and plant sources that are endowed with good antibacterial activity towards pathogenic bacteria in general, ESKAPE organisms in particular. Abyssomicin C, allicin, anthracimycin, berberine, biochanin A, caffeic acid, daptomycin, kibdelomycin, piperine, platensimycin, plazomicin, taxifolin, teixobactin, and thymol are the major metabolites whose antibacterial potential have been discussed in this article.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shilpa Borehalli Mayegowda
- Dayananda Sagar University, School of Basic and Applied Sciences, Shavige Malleswara Hills, Kumaraswamy layout, Bengaluru 560111, India
| | - S.Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | | | | |
Collapse
|
19
|
Sin ZW, Mohan CD, Chinnathambi A, Govindasamy C, Rangappa S, Rangappa KS, Jung YY, Ahn KS. Leelamine Exerts Antineoplastic Effects in Association with Modulating Mitogen‑Activated Protein Kinase Signaling Cascade. Nutr Cancer 2022; 74:3375-3387. [PMID: 35579498 DOI: 10.1080/01635581.2022.2059092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitogen‑activated protein kinase (MAPK) pathway is a prominent signaling cascade that modulates cell proliferation, apoptosis, stress response, drug resistance, immune response, and cell motility. Activation of MAPK by various small molecules/natural compounds has been demonstrated to induce apoptosis in cancer cells. Herein, the effect of leelamine (LEE, a triterpene derived from bark of pine trees) on the activation of MAPK in hepatocellular carcinoma (HCC) and breast cancer (BC) cells was investigated. LEE induced potent cytotoxicity of HCC (HepG2 and HCCLM3) and BC (MDA-MB-231 and MCF7) cells over normal counterparts (MCF10A). LEE significantly enhanced the phosphorylation of p38 and JNK MAPKs in a dose-dependent fashion and it did not affect the phosphorylation of ERK in HCC and BC cells. The apoptosis-driving effect of LEE was further demonstrated by cleavage of procaspase-3/Bid and suppression of prosurvival proteins (Bcl-xL and XIAP). Furthermore, LEE also reduced the SDF1-induced-migration and -invasion of HCC and BC cells. Taken together, the data demonstrated that LEE promotes apoptosis and induces an anti-motility effect by activating p38 and JNK MAPKs in HCC and BC cells.
Collapse
Affiliation(s)
- Zi Wayne Sin
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, BG Nagara, India
| | | | - Young Yun Jung
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Zhang J, Xu HX, Dou YX, Huang QH, Xian YF, Lin ZX. Major Constituents From Brucea javanica and Their Pharmacological Actions. Front Pharmacol 2022; 13:853119. [PMID: 35370639 PMCID: PMC8971814 DOI: 10.3389/fphar.2022.853119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Brucea javanica (Ya-dan-zi in Chinese) is a well-known Chinese herbal medicine, which is traditionally used in Chinese medicine for the treatment of intestinal inflammation, diarrhea, malaria, and cancer. The formulation of the oil (Brucea javanica oil) has been widely used to treat various types of cancer. It has also been found that B. javanica is rich in chemical constituents, including quassinoids, triterpenes, alkaloids and flavonoids. Pharmacological studies have revealed that chemical compounds derived from B. javanica exhibit multiple bioactivities, such as anti-cancer, anti-bacterial, anti-diabetic, and others. This review provides a comprehensive summary on the pharmacological properties of the main chemical constituents presented in B. javanica and their underlying molecular mechanisms. Moreover, the review will also provide scientific references for further research and development of B. javanica and its chemical constituents into novel pharmaceutical products for disease management.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yao-Xing Dou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiong-Hui Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- *Correspondence: Yan-Fang Xian, ; Zhi-Xiu Lin,
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, China
- *Correspondence: Yan-Fang Xian, ; Zhi-Xiu Lin,
| |
Collapse
|
21
|
Cipriani C, Pacheco MP, Kishk A, Wachich M, Abankwa D, Schaffner-Reckinger E, Sauter T. Bruceine D Identified as a Drug Candidate against Breast Cancer by a Novel Drug Selection Pipeline and Cell Viability Assay. Pharmaceuticals (Basel) 2022; 15:179. [PMID: 35215292 PMCID: PMC8875459 DOI: 10.3390/ph15020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
The multi-target effects of natural products allow us to fight complex diseases like cancer on multiple fronts. Unlike docking techniques, network-based approaches such as genome-scale metabolic modelling can capture multi-target effects. However, the incompleteness of natural product target information reduces the prediction accuracy of in silico gene knockout strategies. Here, we present a drug selection workflow based on context-specific genome-scale metabolic models, built from the expression data of cancer cells treated with natural products, to predict cell viability. The workflow comprises four steps: first, in silico single-drug and drug combination predictions; second, the assessment of the effects of natural products on cancer metabolism via the computation of a dissimilarity score between the treated and control models; third, the identification of natural products with similar effects to the approved drugs; and fourth, the identification of drugs with the predicted effects in pathways of interest, such as the androgen and estrogen pathway. Out of the initial 101 natural products, nine candidates were tested in a 2D cell viability assay. Bruceine D, emodin, and scutellarein showed a dose-dependent inhibition of MCF-7 and Hs 578T cell proliferation with IC50 values between 0.7 to 65 μM, depending on the drug and cell line. Bruceine D, extracted from Brucea javanica seeds, showed the highest potency.
Collapse
Affiliation(s)
- Claudia Cipriani
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Maria Pires Pacheco
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Ali Kishk
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Maryem Wachich
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Elisabeth Schaffner-Reckinger
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Thomas Sauter
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| |
Collapse
|
22
|
3-Formylchromone Counteracts STAT3 Signaling Pathway by Elevating SHP-2 Expression in Hepatocellular Carcinoma. BIOLOGY 2021; 11:biology11010029. [PMID: 35053027 PMCID: PMC8773260 DOI: 10.3390/biology11010029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary STAT3 acts as a potential tumor-promoting transcription factor that gets aberrantly activated in several types of human cancers and plays a crucial role in tumor progression and metastasis. STAT3 expression has been correlated with a dismal prognosis and poor survival. In this study, we have demonstrated that 3-formylchromone inhibits the STAT3 signaling in HCC cells by modulating SHP-2 expression. It also effectively diminished the tumor growth and subsequent reduction in metastasis in the HCC mouse model without exhibiting any major side effects. Abstract Hepatocellular carcinoma (HCC) is one of the leading cancers that contribute to a large number of deaths throughout the globe. The signal transducer and activator of transcription 3 (STAT3) is a tumorigenic protein that is overactivated in several human malignancies including HCC. In the present report, the effect of 3-formylchromone (3FC) on the STAT3 signaling pathway in the HCC model was investigated. 3FC downregulated the constitutive phosphorylation of STAT3 and non-receptor tyrosine kinases such as JAK1 and JAK2. It also suppressed the transportation of STAT3 to the nucleus and reduced its DNA-binding ability. Pervanadate treatment overrode the 3FC-triggered STAT3 inhibition, and the profiling of cellular phosphatase expression revealed an increase in SHP-2 levels upon 3FC treatment. The siRNA-driven deletion of SHP-2 led to reinstate STAT3 activation. 3FC downmodulated the levels of various oncogenic proteins and decreased CXCL12-driven cell migration and invasion. Interestingly, 3FC did not exhibit any substantial toxicity, whereas it significantly regressed tumor growth in an orthotopic HCC mouse model and abrogated lung metastasis. Overall, 3FC can function as a potent agent that can display antitumor activity by targeting STAT3 signaling in HCC models.
Collapse
|
23
|
Ramchandani S, Mohan CD, Mistry JR, Su Q, Naz I, Rangappa KS, Ahn KS. The multifaceted antineoplastic role of pyrimethamine against different human malignancies. IUBMB Life 2021; 74:198-212. [PMID: 34921584 DOI: 10.1002/iub.2590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Cancer accounted for nearly 10 million deaths in 2020 and is the second leading cause of death worldwide. The chemotherapeutic agents that are in clinical practice possess a broad range of severe adverse effects towards vital organs which emphasizes the importance of the discovery of new therapeutic agents or repurposing of existing drugs for the treatment of human cancers. Pyrimethamine is an antiparasitic drug used for the treatment of malaria and toxoplasmosis with a well-documented excellent safety profile. In the last five years, numerous efforts have been made to explore the anticancer potential of pyrimethamine in in vitro and in vivo preclinical models and to repurpose it as an anticancer agent. The studies have demonstrated that pyrimethamine inhibits oncogenic proteins such as STAT3, NF-κB, DX2, MAPK, DHFR, thymidine phosphorylase, telomerase, and many more in a different types of cancer models. Moreover, pyrimethamine has been reported to work in synergy with other anticancer agents, such as temozolomide, to induce apoptosis of tumor cells. Recently, the results of phase-1/2 clinical trials demonstrated that pyrimethamine administration reduces the expression of STAT3 signature genes in tumor tissues of chronic lymphocytic leukemia patients with a good therapeutic response. In the present article, we have reviewed most of the published papers related to the antitumor effects of pyrimethamine in malignancies of breast, liver, lung, skin, ovary, prostate, pituitary, and leukemia in in vitro and in vivo settings. We have also discussed the pharmacokinetic profile and results of clinical trials obtained after pyrimethamine treatment. From these studies, we believe that pyrimethamine has the potential to be repurposed as an anticancer drug. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shanaya Ramchandani
- Department of Pharmacology and Biochemistry, University of Melbourne, Parkville, VIC, Australia
| | | | - Jenaifer Rustom Mistry
- Jenaifer Rustom Mistry, Department of Biological Sciences, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Qi Su
- Qi Su, Department of Pharmacy, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Irum Naz
- Irum Naz, Qaid-i-Azam, University of Islamabad & Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University, Bahawalpur, Pakistan
| | | | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
24
|
Arora L, Mohan CD, Yang MH, Rangappa S, Deivasigamani A, Kumar AP, Kunnumakkara AB, Garg M, Chinnathambi A, Alharbi SA, Alahmadi TA, Rangappa KS, Hui KM, Sethi G, Ahn KS. Tris(dibenzylideneacetone)dipalladium(0) (Tris DBA) Abrogates Tumor Progression in Hepatocellular Carcinoma and Multiple Myeloma Preclinical Models by Regulating the STAT3 Signaling Pathway. Cancers (Basel) 2021; 13:cancers13215479. [PMID: 34771643 PMCID: PMC8582575 DOI: 10.3390/cancers13215479] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary STAT3 is a major oncogenic transcription factor that is constitutively activated in many types of human cancers, including hepatocellular carcinoma (HCC) and multiple myeloma (MM). Many STAT3 inhibitors have gained momentum in clinical trials towards the treatment of various cancers. In the present study, we have investigated the STAT3 inhibitory efficacy of Tris DBA, a palladium-based compound, in HCC and MM cancer cells and preclinical cancer models. Tris(dibenzylideneacetone)dipalladium(0) (Tris DBA) abrogated the STAT3 signaling pathway in both models by elevating the expression of SHP2. Functionally, Tris DBA inhibited cell proliferation, migration, invasion, and regressed tumor metastasis. Although many studies propose Tris DBA as a modulator of MAPK, Akt, phospho-S6 kinase, and N-myristoyltransferase-1, we have comprehensively demonstrated for the first time that Tris DBA is an inhibitor of STAT3 signaling in preclinical cancer models. These results support the consideration of Tris DBA in clinical trials in translational relevance. Abstract STAT3 is an oncogenic transcription factor that controls the expression of genes associated with oncogenesis and malignant progression. Persistent activation of STAT3 is observed in human malignancies, including hepatocellular carcinoma (HCC) and multiple myeloma (MM). Here, we have investigated the action of Tris(dibenzylideneacetone) dipalladium 0 (Tris DBA) on STAT3 signaling in HCC and MM cells. Tris DBA decreased cell viability, increased apoptosis, and inhibited IL-6 induced/constitutive activation of STAT3, JAK1, JAK2, and Src in HCC and MM cells. Tris DBA downmodulated the nuclear translocation of STAT3 and reduced its DNA binding ability. It upregulated the expression of SHP2 (protein and mRNA) to induce STAT3 dephosphorylation, and the inhibition of SHP2 reversed this effect. Tris DBA downregulated the expression of STAT3-driven genes, suppressed cell migration/invasion. Tris DBA significantly inhibited tumor growth in xenograft MM and orthotopic HCC preclinical mice models with a reduction in the expression of various prosurvival biomarkers in MM tumor tissues without displaying significant toxicity. Overall, Tris DBA functions as a good inhibitor of STAT3 signaling in preclinical HCC and MM models.
Collapse
Affiliation(s)
- Loukik Arora
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; (L.A.); (A.P.K.)
| | | | - Min Hee Yang
- KHU-KIST Department of Converging Science and Technology and Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, BG Nagara, Nagamangala Taluk 571448, India;
| | - Amudha Deivasigamani
- National Cancer Centre, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, Singapore 169610, Singapore;
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; (L.A.); (A.P.K.)
- Cancer Science Institute of Singapore, and Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Ajaikumar B. Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India;
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida 201313, India;
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.C.); (S.A.A.)
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.C.); (S.A.A.)
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University, King Khalid University Hospital, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | | | - Kam Man Hui
- National Cancer Centre, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, Singapore 169610, Singapore;
- Correspondence: (K.M.H.); (G.S.); (K.S.A.)
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; (L.A.); (A.P.K.)
- Correspondence: (K.M.H.); (G.S.); (K.S.A.)
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology and Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Correspondence: (K.M.H.); (G.S.); (K.S.A.)
| |
Collapse
|
25
|
Su J, Chen X, Xiao Y, Li D, Li M, Li H, Huang J, Lai Z, Su Z, Xie Y, Zhu D, Chen Q, Lu H, He J, Xia C. Bruceae Fructus Oil Inhibits Triple-Negative Breast Cancer by Restraining Autophagy: Dependence on the Gut Microbiota-Mediated Amino Acid Regulation. Front Pharmacol 2021; 12:727082. [PMID: 34658867 PMCID: PMC8517338 DOI: 10.3389/fphar.2021.727082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has been acknowledged as an aggressive disease with worst prognosis, which requires endeavor to develop novel therapeutic agents. Bruceae fructus oil (BO), a vegetable oil derived from the fruit of Brucea javanica (L.) Merr., is an approved marketable drug for the treatment of cancer in China for several decades. Despite that the anti–breast cancer activity of several quassinoids derived from B. javanica has been found, it was the first time that the potential of BO against TNBC was revealed. Although BO had no cytotoxicity on TNBC cell lines in vitro, the oral administration of BO exhibited a gut microbiota–dependent tumor suppression without toxicity on the non-targeted organs in vivo. By metagenomics and untargeted metabolomics, it was found that BO not only altered the composition and amino acid metabolism function of gut microbiota but also regulated the host’s amino acid profile, which was in accordance with the metabolism alternation in gut microbiota. Moreover, the activity of mTOR in tumor was promoted by BO treatment as indicated by the phosphorylation of 4E-binding protein 1 (4E-BP1) and ribosomal protein S6, and hyper-autophagy was consequently restrained. By contrast, the failure of tumor suppression by BO under pseudo germ-free (PGF) condition came with indistinctive changes in autophagy and mTOR activity, implying the critical role of the gut microbiota in BO’s anticancer activity. The present study highlighted a promising application of BO against breast cancer with novel efficacy and safety.
Collapse
Affiliation(s)
- Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xiaohong Chen
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Yuanjie Xiao
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Muxia Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongfu Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiangjian Huang
- Guangzhou Baiyunshan Ming Xing Pharmaceutical Co., Ltd., Guangzhou, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Ziren Su
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Dajiang Zhu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Qianjun Chen
- Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hai Lu
- Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jingjin He
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Shenzhen International Institute for Biomedical Research, Shenzhen, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Mohan CD, Kim C, Siveen KS, Manu KA, Rangappa S, Chinnathambi A, Alharbi SA, Rangappa KS, Kumar AP, Ahn KS. Crocetin imparts antiproliferative activity via inhibiting STAT3 signaling in hepatocellular carcinoma. IUBMB Life 2021; 73:1348-1362. [PMID: 34514729 DOI: 10.1002/iub.2555] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/04/2021] [Accepted: 09/04/2021] [Indexed: 01/16/2023]
Abstract
STAT3 is a key oncogenic transcription factor, often overactivated in several human cancers including hepatocellular carcinoma (HCC). STAT3 modulates the expression of genes that are connected with cell proliferation, antiapoptosis, metastasis, angiogenesis, and immune evasion in tumor cells. In this study, we investigated the effect of crocetin on the growth of HCC cells and dissected its underlying molecular mechanism in imparting a cytotoxic effect. Crocetin suppressed proliferation, promoted apoptosis, and counteracted the invasive capacity of HCC cells. Besides, crocetin downregulated the constitutive/inducible STAT3 activation (STAT3Y705 ), nuclear accumulation of STAT3 along with suppression of its DNA binding activity in HCC cells with no effect on STAT5 activation. Crocetin suppressed the activity of upstream kinases such as Src, JAK1, and JAK2. Sodium pervanadate treatment terminated the crocetin-propelled STAT3 inhibition suggesting the involvement of tyrosine phosphatases. Crocetin increased the expression of SHP-1 and siRNA-mediated SHP-1 silencing resulted in the negation of crocetin-driven STAT3 inhibition. Further investigation revealed that crocetin treatment inhibited the expression of STAT3 regulated genes (Bcl-2, Bcl-xL, cyclin D1, survivin, VEGF, COX-2, and MMP-9). Taken together, this report presents crocetin as a novel abrogator of the STAT3 pathway in HCC cell lines.
Collapse
Affiliation(s)
| | - Chulwon Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kodappully Sivaraman Siveen
- Flow Cytometry Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, BG Nagara, Nagamangala Taluk, Karnataka, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|