1
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
2
|
Bacchella C, Guerriere TB, Monzani E, Dell'Acqua S. Cysteine in the R3 Tau Peptide Modulates Hemin Binding and Reactivity. Inorg Chem 2024; 63:11986-12002. [PMID: 38897979 DOI: 10.1021/acs.inorgchem.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tau is a neuronal protein involved in axonal stabilization; however under pathological conditions, it triggers the deposition of insoluble neurofibrillary tangles, which are one of the biomarkers for Alzheimer's disease. The factors that might influence the fibrillation process are i) two cysteine residues in two pseudorepetitive regions, called R2 and R3, which can modulate protein-protein interaction via disulfide cross-linking; ii) an increase of reactive oxygen species affecting the post-translational modification of tau; and iii) cytotoxic levels of metals, especially ferric-heme (hemin), in hemolytic processes. Herein, we investigated how the cysteine-containing R3 peptide (R3C) and its Cys→Ala mutant (R3A) interact with hemin and how their binding affects the oxidative damage of the protein. The calculated binding constants are remarkably higher for the hemin-R3C complex (LogK1 = 5.90; LogK2 = 5.80) with respect to R3A (LogK1 = 4.44; LogK2 < 2), although NMR and CD investigations excluded the direct binding of cysteine as an iron axial ligand. Both peptides increase the peroxidase-like activity of hemin toward catecholamines and phenols, with a double catalytic efficiency detected for hemin-R3C systems. Moreover, the presence of cysteine significantly alters the susceptibility of R3 toward oxidative modifications, easily resulting in peptide dopamination and formation of cross-linked S-S derivatives.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Teresa Benedetta Guerriere
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 9, Pavia 27100, Italy
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
3
|
Segura L, Santos N, Flores R, Sikazwe D, McGibbon M, Blay V, Cheng KH. Exploring Tau Fibril-Disaggregating and Antioxidating Molecules Binding to Membrane-Bound Amyloid Oligomers Using Machine Learning-Enhanced Docking and Molecular Dynamics. Molecules 2024; 29:2818. [PMID: 38930883 PMCID: PMC11206291 DOI: 10.3390/molecules29122818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Intracellular tau fibrils are sources of neurotoxicity and oxidative stress in Alzheimer's. Current drug discovery efforts have focused on molecules with tau fibril disaggregation and antioxidation functions. However, recent studies suggest that membrane-bound tau-containing oligomers (mTCOs), smaller and less ordered than tau fibrils, are neurotoxic in the early stage of Alzheimer's. Whether tau fibril-targeting molecules are effective against mTCOs is unknown. The binding of epigallocatechin-3-gallate (EGCG), CNS-11, and BHT-CNS-11 to in silico mTCOs and experimental tau fibrils was investigated using machine learning-enhanced docking and molecular dynamics simulations. EGCG and CNS-11 have tau fibril disaggregation functions, while the proposed BHT-CNS-11 has potential tau fibril disaggregation and antioxidation functions like EGCG. Our results suggest that the three molecules studied may also bind to mTCOs. The predicted binding probability of EGCG to mTCOs increases with the protein aggregate size. In contrast, the predicted probability of CNS-11 and BHT-CNS-11 binding to the dimeric mTCOs is higher than binding to the tetrameric mTCOs for the homo tau but not for the hetero tau-amylin oligomers. Our results also support the idea that anionic lipids may promote the binding of molecules to mTCOs. We conclude that tau fibril-disaggregating and antioxidating molecules may bind to mTCOs, and that mTCOs may also be useful targets for Alzheimer's drug design.
Collapse
Affiliation(s)
- Luthary Segura
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA;
| | - Natalia Santos
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| | - Rafael Flores
- Pharmaceutical Sciences Department, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78209, USA; (R.F.); (D.S.)
| | - Donald Sikazwe
- Pharmaceutical Sciences Department, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78209, USA; (R.F.); (D.S.)
| | - Miles McGibbon
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, UK;
| | - Vincent Blay
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Kwan H. Cheng
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA;
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| |
Collapse
|
4
|
Longhini AP, DuBose A, Lobo S, Vijayan V, Bai Y, Rivera EK, Sala-Jarque J, Nikitina A, Carrettiero DC, Unger MT, Sclafani OR, Fu V, Beckett ER, Vigers M, Buée L, Landrieu I, Shell S, Shea JE, Han S, Kosik KS. Precision proteoform design for 4R tau isoform selective templated aggregation. Proc Natl Acad Sci U S A 2024; 121:e2320456121. [PMID: 38568974 PMCID: PMC11009657 DOI: 10.1073/pnas.2320456121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting β-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.
Collapse
Affiliation(s)
- Andrew P. Longhini
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Austin DuBose
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
| | - Samuel Lobo
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106
| | - Vishnu Vijayan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
| | - Yeran Bai
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
- Photothermal Spectroscopy Corp., Santa Barbara, CA93101
| | - Erica Keane Rivera
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Julia Sala-Jarque
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Arina Nikitina
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Daniel C. Carrettiero
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, São Paulo09600-000, Brazil
| | - Matthew T. Unger
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Olivia R. Sclafani
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Valerie Fu
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Emily R. Beckett
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Michael Vigers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & CognitionLilleF-59000, France
- Laboratoire d'Excellence Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease, Alzheimer & Tauopathies Team, LilleF-59000, France
| | - Isabelle Landrieu
- Center National de la Recherche Scientifique Équipe de Recherche 9002–Integrative Structural Biology, LilleF-59000, France
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1167–Risk Factors and Molecular Determinants of Aging-Related DiseasesLilleF-59000, France
| | - Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106
| | - Joan E. Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA93106
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| |
Collapse
|
5
|
Tang J, Sun R, Wan J, Xu Z, Zou Y, Zhang Q. Atomic insights into the inhibition of R3 domain of tau protein by epigallocatechin gallate, quercetin and gallic acid. Biophys Chem 2024; 305:107142. [PMID: 38088006 DOI: 10.1016/j.bpc.2023.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024]
Abstract
Inhibiting tau protein aggregation has become a prospective avenue for the therapeutic development of tauopathies. The third microtubule-binding repeat (R3) domain of tau is confirmed as the most aggregation-favorable fragment of the whole protein. As dimerization is the first step of the aggregation of tau into amyloid fibrils, impeding the dimerization of the R3 domain is critical to prevent the full-length tau aggregation. Natural polyphenol small molecules epigallocatechin gallate (EGCG), quercetin (QE) and gallic acid (GA) are proven to inhibit the aggregation of the full-length recombinant tau (For EGCG and QE) or the R3 domain (For GA) of tau in vitro. However, the underlying molecular mechanisms of the inhibitive effects on the R3 domain of tau remain largely unknown. In this study, we conducted numerous all-atom molecular dynamics simulations on R3 dimers with and without EGCG, QE or GA, respectively. The results reveal that all three molecules can effectively decrease the β structure composition of the R3 dimer, induce the dimer to adopt loosely-packed conformations, and weaken interchain interactions, thus impeding the dimerization of the R3 peptide chains. The specific preferentially binding sites for the three molecules exhibit similarities and differences. Hydrophobic, π-π stacking and hydrogen-bonding interactions collectively drive EGCG, QE and GA respectively binding on the R3 dimer, while QE also binds with the dimer through cation-π interaction. Given the incurable nature of tauopathies hitherto, our research provides helpful knowledge for the development of drugs to treat tauopathies.
Collapse
Affiliation(s)
- Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Ruiqing Sun
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Zhengdong Xu
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| |
Collapse
|
6
|
Garmendia JV, De Sanctis CV, Das V, Annadurai N, Hajduch M, De Sanctis JB. Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond. Curr Neuropharmacol 2024; 22:1080-1109. [PMID: 37898823 PMCID: PMC10964103 DOI: 10.2174/1570159x22666231017141636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/30/2023] Open
Abstract
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Marián Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| |
Collapse
|
7
|
Longhini AP, DuBose A, Lobo S, Vijayan V, Bai Y, Rivera EK, Sala-Jarque J, Nikitina A, Carrettiero DC, Unger M, Sclafani O, Fu V, Vigers M, Buee L, Landrieu I, Shell S, Shea JE, Han S, Kosik KS. Precision Proteoform Design for 4R Tau Isoform Selective Templated Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555649. [PMID: 37693456 PMCID: PMC10491155 DOI: 10.1101/2023.08.31.555649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau, folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting β-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naïve 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.
Collapse
Affiliation(s)
- Andrew P. Longhini
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Austin DuBose
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Samuel Lobo
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Vishnu Vijayan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Yeran Bai
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Photothermal Spectroscopy Corp., Santa Barbara, CA 93101, USA
| | - Erica Keane Rivera
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Julia Sala-Jarque
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Arina Nikitina
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Daniel C. Carrettiero
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Matthew Unger
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Olivia Sclafani
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Valerie Fu
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Michael Vigers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Luc Buee
- Univ. Lille, Inserm, CHU Lille, LilNCog – Lille Neuroscience & Cognition, F-59000 Lille, France
- LabEx DISTALZ, Alzheimer & Tauopathies Team, F-59000 Lille, France
| | - Isabelle Landrieu
- CNRS EMR9002 – BSI - Integrative Structural Biology F-59000 Lille, France
| | - Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Joan E. Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France. Department of Physics, University of California, Santa Barbara, Santa Barbara, CA
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Lead Contacts
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Lead Contacts
| |
Collapse
|
8
|
Annadurai N, Hrubý J, Kubíčková A, Malina L, Hajdúch M, Das V. Time- and dose-dependent seeding tendency of exogenous tau R2 and R3 aggregates in cells. Biochem Biophys Res Commun 2023; 653:102-105. [PMID: 36863211 DOI: 10.1016/j.bbrc.2023.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Tauopathies are a group of neurodegenerative diseases categorised into three types, 3R, 4R, or 3R+4R (mixed) tauopathies, based on the tau isoforms that make up the aberrant filaments. It is supposed that all six tau isoforms share functional characteristics. However, differences in the neuropathological features associated with different tauopathies offer the possibility that disease progression and tau accumulation may vary depending on the isoform composition. The presence or absence of repeat 2 (R2) in the microtubule-binding domain defines the type of isoform, which might influence tau pathology associated with a particular tau isoform. Therefore, our study aimed to identify the differences in the seeding propensities of R2 and repeat 3 (R3) aggregates using HEK293T biosensor cells. We show that the seeding induced by R2 was generally higher than by R3 aggregates, and lower concentrations of R2 aggregates are sufficient to induce seeding. Next, we found that both R2 and R3 aggregates dose-dependently increased triton-insoluble Ser262 phosphorylation of native tau, which is only visible in cells seeded with higher concentrations (12.5 nM or 100 nM) of R2 and R3 aggregates, despite the seeding by the lower concentrations of R2 aggregates after 72 h. However, the accumulation of triton-insoluble pSer262 tau was visible earlier in cells induced with R2 than in R3 aggregates. Our findings suggest that the R2 region may contribute to the early and enhanced induction of tau aggregation and define the difference in disease progression and neuropathology of 4R tauopathies.
Collapse
Affiliation(s)
- Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Jiří Hrubý
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Agáta Kubíčková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic; Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic; Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic.
| |
Collapse
|
9
|
Golan N, Schwartz-Perov S, Landau M, Lipke PN. Structure and Conservation of Amyloid Spines From the Candida albicans Als5 Adhesin. Front Mol Biosci 2022; 9:926959. [PMID: 35874616 PMCID: PMC9306254 DOI: 10.3389/fmolb.2022.926959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
Candida Als family adhesins mediate adhesion to biological and abiotic substrates, as well as fungal cell aggregation, fungal-bacterial co-aggregation and biofilm formation. The activity of at least two family members, Als5 and Als1, is dependent on amyloid-like protein aggregation that is initiated by shear force. Each Als adhesin has a ∼300-residue N-terminal Ig-like/invasin region. The following 108-residue, low complexity, threonine-rich (T) domain unfolds under shear force to expose a critical amyloid-forming segment 322SNGIVIVATTRTV334 at the interface between the Ig-like/invasin domain 2 and the T domain of Candida albicans Als5. Amyloid prediction programs identified six potential amyloidogenic sequences in the Ig-like/invasin region and three others in the T domain of C. albicans Als5. Peptides derived from four of these sequences formed fibrils that bound thioflavin T, the amyloid indicator dye, and three of these revealed atomic-resolution structures of cross-β spines. These are the first atomic-level structures for fungal adhesins. One of these segments, from the T domain, revealed kinked β-sheets, similarly to LARKS (Low-complexity, Amyloid-like, Reversible, Kinked segments) found in human functional amyloids. Based on the cross-β structures in Als proteins, we use evolutionary arguments to identify functional amyloidogenic sequences in other fungal adhesins, including adhesins from Candida auris. Thus, cross-β structures are often involved in fungal pathogenesis and potentially in antifungal therapy.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- European Molecular Biology Laboratory (EMBL) and Centre for Structural Systems Biology, Hamburg, Germany
| | - Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY, United States
| |
Collapse
|