1
|
Sun X, Tian T, Lian Y, Cui Z. Current Advances in Viral Nanoparticles for Biomedicine. ACS NANO 2024; 18:33827-33863. [PMID: 39648920 DOI: 10.1021/acsnano.4c13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Viral nanoparticles (VNPs) have emerged as crucial tools in the field of biomedicine. Leveraging their biological and physicochemical properties, VNPs exhibit significant advantages in the prevention, diagnosis, and treatment of human diseases. Through techniques such as chemical bioconjugation, infusion, genetic engineering, and encapsulation, these VNPs have been endowed with multifunctional capabilities, including the display of functional peptides or proteins, encapsulation of therapeutic drugs or inorganic particles, integration with imaging agents, and conjugation with bioactive molecules. This review provides an in-depth analysis of VNPs in biomedicine, elucidating their diverse types, distinctive features, production methods, and complex design principles behind multifunctional VNPs. It highlights recent innovative research and various applications, covering their roles in imaging, drug delivery, therapeutics, gene delivery, vaccines, immunotherapy, and tissue regeneration. Additionally, the review provides an assessment of their safety and biocompatibility and discusses challenges and future opportunities in the field, underscoring the vast potential and evolving nature of VNP research.
Collapse
Affiliation(s)
- Xianxun Sun
- School of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Tao Tian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yindong Lian
- School of Life Sciences, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
2
|
Sun X, Lian Y, Tian T, Cui Z. Advancements in Functional Nanomaterials Inspired by Viral Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402980. [PMID: 39058214 DOI: 10.1002/smll.202402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Virus-like particles (VLPs) are nanostructures composed of one or more structural proteins, exhibiting stable and symmetrical structures. Their precise compositions and dimensions provide versatile opportunities for modifications, enhancing their functionality. Consequently, VLP-based nanomaterials have gained widespread adoption across diverse domains. This review focuses on three key aspects: the mechanisms of viral capsid protein self-assembly into VLPs, design methods for constructing multifunctional VLPs, and strategies for synthesizing multidimensional nanomaterials using VLPs. It provides a comprehensive overview of the advancements in virus-inspired functional nanomaterials, encompassing VLP assembly, functionalization, and the synthesis of multidimensional nanomaterials. Additionally, this review explores future directions, opportunities, and challenges in the field of VLP-based nanomaterials, aiming to shed light on potential advancements and prospects in this exciting area of research.
Collapse
Affiliation(s)
- Xianxun Sun
- College of Life Science, Jiang Han University, Wuhan, 430056, China
| | - Yindong Lian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Tian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
3
|
Wendlandt T, Britz B, Kleinow T, Hipp K, Eber FJ, Wege C. Getting Hold of the Tobamovirus Particle-Why and How? Purification Routes over Time and a New Customizable Approach. Viruses 2024; 16:884. [PMID: 38932176 PMCID: PMC11209083 DOI: 10.3390/v16060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
This article develops a multi-perspective view on motivations and methods for tobamovirus purification through the ages and presents a novel, efficient, easy-to-use approach that can be well-adapted to different species of native and functionalized virions. We survey the various driving forces prompting researchers to enrich tobamoviruses, from the search for the causative agents of mosaic diseases in plants to their increasing recognition as versatile nanocarriers in biomedical and engineering applications. The best practices and rarely applied options for the serial processing steps required for successful isolation of tobamoviruses are then reviewed. Adaptations for distinct particle species, pitfalls, and 'forgotten' or underrepresented technologies are considered as well. The article is topped off with our own development of a method for virion preparation, rooted in historical protocols. It combines selective re-solubilization of polyethylene glycol (PEG) virion raw precipitates with density step gradient centrifugation in biocompatible iodixanol formulations, yielding ready-to-use particle suspensions. This newly established protocol and some considerations for perhaps worthwhile further developments could serve as putative stepping stones towards preparation procedures appropriate for routine practical uses of these multivalent soft-matter nanorods.
Collapse
Affiliation(s)
- Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Beate Britz
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Tatjana Kleinow
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany;
| | - Fabian J. Eber
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany;
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| |
Collapse
|
4
|
Tatarūnas V, Čiapienė I, Giedraitienė A. Precise Therapy Using the Selective Endogenous Encapsidation for Cellular Delivery Vector System. Pharmaceutics 2024; 16:292. [PMID: 38399346 PMCID: PMC10893373 DOI: 10.3390/pharmaceutics16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Interindividual variability in drug response is a major problem in the prescription of pharmacological treatments. The therapeutic effect of drugs can be influenced by human genes. Pharmacogenomic guidelines for individualization of treatment have been validated and used for conventional dosage forms. However, drugs can often target non-specific areas and produce both desired and undesired pharmacological effects. The use of nanoparticles, liposomes, or other available forms for drug formulation could help to overcome the latter problem. Virus-like particles based on retroviruses could be a potential envelope for safe and efficient drug formulations. Human endogenous retroviruses would make it possible to overcome the host immune response and deliver drugs to the desired target. PEG10 is a promising candidate that can bind to mRNA because it is secreted like an enveloped virus-like extracellular vesicle. PEG10 is a retrotransposon-derived gene that has been domesticated. Therefore, formulations with PEG10 may have a lower immunogenicity. The use of existing knowledge can lead to the development of suitable drug formulations for the precise treatment of individual diseases.
Collapse
Affiliation(s)
- Vacis Tatarūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Ieva Čiapienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Agnė Giedraitienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eiveniu 4, LT 50161 Kaunas, Lithuania
| |
Collapse
|
5
|
Sator C, Lico C, Pannucci E, Marchetti L, Baschieri S, Warzecha H, Santi L. Plant-Produced Viral Nanoparticles as a Functionalized Catalytic Support for Metabolic Engineering. PLANTS (BASEL, SWITZERLAND) 2024; 13:503. [PMID: 38498408 PMCID: PMC10893517 DOI: 10.3390/plants13040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
Substrate channeling could be very useful for plant metabolic engineering; hence, we propose that functionalized supramolecular self-assembly scaffolds can act as enzymatic hubs able to perform reactions in close contiguity. Virus nanoparticles (VNPs) offer an opportunity in this context, and we present a functionalization strategy to display different enzymes on the outer surface of three different VNPs produced in plants. Tomato bushy stunt virus (TBSV) and Potato virus X (PVX) plant viruses were functionalized by the genetic fusion of the E-coil peptide coding sequence to their respective coat proteins genes, while the enzyme lichenase was tagged with the K-coil peptide. Immobilized E-coil VNPs were able to interact in vitro with the plant-produced functionalized lichenase, and catalysis was demonstrated by employing a lichenase assay. To prove this concept in planta, the Hepatitis B core (HBc) virus-like particles (VLPs) were similarly functionalized by genetic fusion with the E-coil sequence, while acyl-activating enzyme 1, olivetolic acid synthase, and olivetolic acid cyclase enzymes were tagged with the K-coil. The transient co-expression of the K-coil-enzymes together with E-coil-VLPs allowed the establishment of the heterologous cannabinoid precursor biosynthetic pathway. Noteworthy, a significantly higher yield of olivetolic acid glucoside was achieved when the scaffold E-coil-VLPs were employed.
Collapse
Affiliation(s)
- Christian Sator
- Plant Biotechnology and Metabolic Engineering, Technical University of Darmstadt, Schnittspahnstrasse 4, 65287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 65287 Darmstadt, Germany
| | - Chiara Lico
- Laboratory of Biotechnologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (C.L.); (S.B.)
| | - Elisa Pannucci
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.M.); (L.S.)
| | - Luca Marchetti
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.M.); (L.S.)
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Selene Baschieri
- Laboratory of Biotechnologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (C.L.); (S.B.)
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technical University of Darmstadt, Schnittspahnstrasse 4, 65287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 65287 Darmstadt, Germany
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (E.P.); (L.M.); (L.S.)
| |
Collapse
|