1
|
Radzevičiūtė-Valčiukė E, Gečaitė J, Balevičiūtė A, Szewczyk A, Želvys A, Lekešytė B, Malyško-Ptašinskė V, Mickevičiūtė E, Malakauskaitė P, Kulbacka J, Novickij V. Effects of buffer composition and plasmid toxicity on electroporation-based non-viral gene delivery in mammalian cells using bursts of nanosecond and microsecond pulses. Front Bioeng Biotechnol 2024; 12:1430637. [PMID: 39050682 PMCID: PMC11266100 DOI: 10.3389/fbioe.2024.1430637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Gene electrotransfer (GET) is non-viral gene delivery technique, also known as electroporation-mediated gene delivery or electrotransfection. GET is a method used to introduce foreign genetic material (such as DNA or RNA) into cells by applying external pulsed electric fields (PEFs) to create temporary pores in the cell membrane. This study was undertaken to examine the impact of buffer composition on the efficiency of GET in mammalian cells Also, we specifically compared the effectiveness of high-frequency nanosecond (ns) pulses with standard microsecond (µs) pulses. For the assessment of cell transfection efficiency and viability, flow cytometric analysis, luminescent assays, and measurements of metabolic activity were conducted. The efficiency of electrotransfection was evaluated using two different proteins encoding plasmids (pEGFP-N1 and Luciferase-pcDNA3). The investigation revealed that the composition of the electroporation buffer significantly influences the efficacy of GET in CHO-K1 cell line. The different susceptibility of cell lines to the electric field and the plasmid cytotoxicity were reported. It was also shown that electroporation with nanosecond duration PEF protocols ensured equivalent or even better transfection efficiency than standard µsPEF. Additionally, we successfully performed long-term transfection of the murine 4T1 cell line using high-frequency nanosecond PEFs and confirmed its' applicability in an in vivo model. The findings from the study can be applied to optimize electrotransfection conditions.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jovita Gečaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Austėja Balevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Anna Szewczyk
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Augustinas Želvys
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Barbora Lekešytė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Paulina Malakauskaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
2
|
Urbanskas E, Jakštys B, Venckus J, Malakauskaitė P, Šatkauskienė I, Morkvėnaitė-Vilkončienė I, Šatkauskas S. Interplay between Electric Field Strength and Number of Short-Duration Pulses for Efficient Gene Electrotransfer. Pharmaceuticals (Basel) 2024; 17:825. [PMID: 39065676 PMCID: PMC11279932 DOI: 10.3390/ph17070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Electroporation is a method that shows great promise as a non-viral approach for delivering genes by using high-voltage electric pulses to introduce DNA into cells to induce transient gene expression. This research aimed to evaluate the interplay between electric pulse intensity and 100 µs-duration pulse numbers as an outcome of gene electrotransfer efficacy and cell viability. Our results indicated a close relationship between pulse number and electric field strength regarding gene electrotransfer efficacy; higher electric pulse intensity resulted in fewer pulses needed to achieve the same gene electrotransfer efficacy. Subsequently, an increase in pulse number had a more negative impact on overall gene electrotransfer by significantly reducing cell viability. Based on our data, the best pulse parameters to transfect CHO cells with the pMax-GFP plasmid were using 5 HV square wave pulses of 1000 V/cm and 2 HV of 1600 V/cm, correspondingly resulting in 55 and 71% of transfected cells and maintaining 79 and 54% proliferating cells. This shows ESOPE-like 100 µs-duration pulse protocols can be used simultaneously to deliver cytotoxic drugs as well as immune response regulating genetically encoded cytokines.
Collapse
Affiliation(s)
- Ernestas Urbanskas
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Baltramiejus Jakštys
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania;
| | - Justinas Venckus
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Paulina Malakauskaitė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Ingrida Šatkauskienė
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 02300 Vilnius, Lithuania;
| | - Saulius Šatkauskas
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| |
Collapse
|
3
|
Rezaei F, Bolhassani A, Sadat SM, Arashkia A, Fotouhi F, Milani A, Pordanjani PM. Development of novel HPV therapeutic vaccine constructs based on engineered exosomes and tumor cell lysates. Life Sci 2024; 340:122456. [PMID: 38266814 DOI: 10.1016/j.lfs.2024.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
AIMS Human papillomavirus (HPV) infections are highly prevalent globally. While preventive HPV vaccines exist, therapeutic vaccines are needed to treat existing HPV lesions and malignancies. This study evaluated the immunostimulatory and anti-tumor effects of three therapeutic vaccine candidates based on the recombinant protein, tumor cell lysate (TCL), and engineered exosome (Exo) harboring the heat shock protein 27 (Hsp27)-E7 fusion construct in mouse model. MAIN METHODS At first, the recombinant Hsp27-E7 protein was generated in E. coli expression system. Then, tumor cell lysates-based and engineered exosomes-based vaccine constructs harboring green fluorescent protein (GFP) and Hsp27-E7 were produced using lentiviral system. Finally, their immunological and antitumor effects were investigated in both prophylactic and therapeutic experiments. KEY FINDINGS Our data showed that the recombinant Hsp27-E7 protein, TCL-Hsp27-E7 and Exo-Hsp27-E7 regimens can induce the highest level of IFN-γ, TNF-α and Granzyme B, respectively. The percentage of tumor-free mice was identical for three vaccine strategies (survival rate: 75 %) in both prophylactic and therapeutic experiments. Generally, the TCL-Hsp27-E7, Exo-Hsp27-E7 and recombinant Hsp27-E7 protein regimens induced effective immune responses toward Th1 and CTL activity, and subsequently antitumor effects in mouse model. SIGNIFICANCE Regarding to higher Granzyme B secretion, lower tumor growth and more safety, the Exo-Hsp27-E7 regimen can be considered as the most promising HPV vaccination strategy.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran; Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | |
Collapse
|
4
|
Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, Miklavčič D. Effect of Experimental Electrical and Biological Parameters on Gene Transfer by Electroporation: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14122700. [PMID: 36559197 PMCID: PMC9786189 DOI: 10.3390/pharmaceutics14122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The exact mechanisms of nucleic acid (NA) delivery with gene electrotransfer (GET) are still unknown, which represents a limitation for its broader use. Further, not knowing the effects that different experimental electrical and biological parameters have on GET additionally hinders GET optimization, resulting in the majority of research being performed using a trial-and-error approach. To explore the current state of knowledge, we conducted a systematic literature review of GET papers in in vitro conditions and performed meta-analyses of the reported GET efficiency. For now, there is no universal GET strategy that would be appropriate for all experimental aims. Apart from the availability of the required electroporation device and electrodes, the choice of an optimal GET approach depends on parameters such as the electroporation medium; type and origin of cells; and the size, concentration, promoter, and type of the NA to be transfected. Equally important are appropriate controls and the measurement or evaluation of the output pulses to allow a fair and unbiased evaluation of the experimental results. Since many experimental electrical and biological parameters can affect GET, it is important that all used parameters are adequately reported to enable the comparison of results, as well as potentially faster and more efficient experiment planning and optimization.
Collapse
Affiliation(s)
- Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Matej Reberšek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
5
|
Radzevičiūtė E, Malyško-Ptašinskė V, Novickij J, Novickij V, Girkontaitė I. Transfection by Electroporation of Cancer and Primary Cells Using Nanosecond and Microsecond Electric Fields. Pharmaceutics 2022; 14:1239. [PMID: 35745814 PMCID: PMC9230780 DOI: 10.3390/pharmaceutics14061239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022] Open
Abstract
Gene transfer into primary immune cells as well as into cell lines is essential for scientific and therapeutical applications. One of the methods used for gene transfer is electroporation (EP). EP is a method where a pulsed electric field (PEF) causes a highly transient permeability of the targeted cell membrane. In this work, we present the electrotransfection of CHO-K1, 4T1 cell lines, and primary murine DCs with detectable protein-encoding plasmids in the sub-microsecond range. Microsecond (µs)- and nanosecond (ns)-range pulsed electric field transfection protocols were used. The efficiency of electrotransfection was evaluated using green fluorescent protein (GFP)-encoding plasmids (4.7 kbp; p-EGFP-N1) and plasmids expressing a firefly luciferase and red fluorescent protein (tdTomato) (8.5 kbp; pcDNA3.1(+)/Luc2 = tdT)). It was shown that the used nsPEFs protocol (7 kV/cm × 300 ns × 100, 1 MHz) ensured a better transfection efficiency than µsPEFs (1.2 kV/cm × 100 µs × 8, 1 Hz). Plasmid size and concentration had a strong impact on the cell transfection efficiency too. We also showed that there were no significant differences in transfection efficiency between immature and mature DCs. Finally, the nsPEF protocols were successfully applied for the stable transfection of the CHO-K1 cell line with the linearized pcDNA3.1(+)/Luc2 = tdT plasmid. The results of the study are applicable in gene therapy and DNA vaccination studies for the derivation of optimal electrotransfection conditions.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania;
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania;
| |
Collapse
|
6
|
Abstract
Electrotransfection (ET) is a nonviral method for delivery of various types of molecules into cells both in vitro and in vivo. Close to 90 clinical trials that involve the use of ET have been performed, and approximately half of them are related to cancer treatment. Particularly, ET is an attractive technique for cancer immunogene therapy because treatment of cells with electric pulses alone can induce immune responses to solid tumors, and the responses can be further enhanced by ET of plasmid DNA (pDNA) encoding therapeutic genes. Compared to other gene delivery methods, ET has several unique advantages. It is relatively inexpensive, flexible, and safe in clinical applications, and introduces only naked pDNA into cells without the use of additional chemicals or viruses. However, the efficiency of ET is still low, partly because biological mechanisms of ET in cells remain elusive. In previous studies, it was believed that pDNA entered the cells through transient pores created by electric pulses. As a result, the technique is commonly referred to as electroporation. However, recent discoveries have suggested that endocytosis plays an important role in cellular uptake and intracellular transport of electrotransfected pDNA. This review will discuss current progresses in the study of biological mechanisms underlying ET and future directions of research in this area. Understanding the mechanisms of pDNA transport in cells is critical for the development of new strategies for improving the efficiency of gene delivery in tumors.
Collapse
Affiliation(s)
- Lisa D Cervia
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Fan Yuan
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
7
|
Electroporation Loading and Dye Transfer: A Safe and Robust Method to Probe Gap Junctional Coupling. Methods Mol Biol 2016; 1437:155-69. [PMID: 27207293 DOI: 10.1007/978-1-4939-3664-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intercellular communication occurring via gap junction channels is considered a key mechanism for synchronizing physiological functions of cells and for the maintenance of tissue homeostasis. Gap junction channels are protein channels that are situated between neighboring cells and that provide a direct, yet selective route for the passage of small hydrophilic biomolecules and ions. Here, an electroporation method is described to load a localized area within an adherent cell monolayer with a gap junction-permeable fluorescent reporter dye. The technique results in a rapid and efficient labeling of a small patch of cells within the cell culture, without affecting cellular viability. Dynamic and quantitative information on gap junctional communication can subsequently be extracted by tracing the intercellular movement of the dye via time-lapse microscopy.
Collapse
|
8
|
García-Sánchez T, Guitart M, Rosell-Ferrer J, Gómez-Foix AM, Bragós R. A new spiral microelectrode assembly for electroporation and impedance measurements of adherent cell monolayers. Biomed Microdevices 2014; 16:575-90. [DOI: 10.1007/s10544-014-9860-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Dunki-Jacobs EM, Philips P, Martin RCG. Evaluation of Resistance as a Measure of Successful Tumor Ablation During Irreversible Electroporation of the Pancreas. J Am Coll Surg 2014; 218:179-87. [DOI: 10.1016/j.jamcollsurg.2013.10.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/19/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
|
10
|
Wu M, Zhao D, Wei Z, Zhong W, Yan H, Wang X, Liang Z, Li Z. Method for electric parametric characterization and optimization of electroporation on a chip. Anal Chem 2013; 85:4483-91. [PMID: 23547687 DOI: 10.1021/ac400017x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a rapid method to optimize the electric parameters of cell electroporation. In our design, a pair of ring-dot formatted electrodes was used to generate a radial distribution of electric field from the center to the periphery. Varied electric field intensity was acquired in different annulus when an electric pulse was applied. Cells were cultured on the microchips for adherent cell electroporation and in situ observation. The electroporation parameters of electric field intensity were explored and evaluated in terms of cell viability and transfection efficiency. The optimization was performed in consideration of both cell viability, which was investigated to decrease as electric field increases, and the transfection rate, which normally increases at stronger electric field. The electroporation characteristics HEK-293A and Hela cells were investigated, and the optimum parameters were obtained. Verified by a commercial electroporation system as well as self-made microchips endowed the optimization with wider meaning. At last, as applications, we acquired the optimal electroporation pulse intensity of Neuro-2A cells and a type of primary cell (human umbilical vein endothelial cell, HUVEC) by one time electroporation using the proposed method.
Collapse
Affiliation(s)
- Mengxi Wu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Guo H, Hao R, Wei Y, Sun D, Sun S, Zhang Z. Optimization of electrotransfection conditions of mammalian cells with different biological features. J Membr Biol 2012; 245:789-95. [PMID: 22836669 DOI: 10.1007/s00232-012-9480-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 06/30/2012] [Indexed: 11/29/2022]
Abstract
We introduced eukaryotic expression plasmid pEGFP-N1 encoding green fluorescent protein (GFP) genes into cells with different biological features through electroporation. The effects of conditions, including voltage, capacitor flow, pulse cycle, DNA dosage and buffer, on transfection efficiency were investigated based on fluorescent microscopy and posttransfection survival rate of cells by staining with trypan blue. Better electrotransfection outcomes were achieved in the following epithelial cells: Vero cells at 300 V/850 μF, PK15 cells at 300 V/500 μF, MDCK cells at 200 V/600 μF, F81 cells at 200 V/500 μF, cancer cells MB49 at 300 V/400 μF, Hela cells at 200 V/450 μF, HF-29 cells at 300 V/800 μF and B16F1 cells at 200 V/650 μF. Among fibroblast cells, better electrotransfection was achieved in BHK21 cells at 300 V/600 μF and ST cells at 200 V/750 μF. RPMI-1640 medium without antibiotics and serum demonstrated higher electrotransfection efficiency and cell survival rate than other cell culture media as electroporation buffer. Our findings further prove that electroporation transfection is an effective method for genetic transfection. Cells with different biological features require varying transfection conditions to obtain higher transfection efficiency of target genes.
Collapse
Affiliation(s)
- Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046 Gansu, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
12
|
Kirschbaum M, Guernth-Marschner CR, Cherré S, de Pablo Peña A, Jaeger MS, Kroczek RA, Schnelle T, Mueller T, Duschl C. Highly controlled electrofusion of individually selected cells in dielectrophoretic field cages. LAB ON A CHIP 2012; 12:443-50. [PMID: 22124613 DOI: 10.1039/c1lc20818g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The prospect of novel therapeutic approaches has renewed the current interest in the fusion of rare cells, like stem cells or primary immune cells. While conventional techniques are only capable of mass fusion, lab-on-a-chip systems often still lack an acceptable method for making the cells available after processing. Here, we present a microfluidic approach for electrofusion on the single-cell level that offers high control over the cells both before and after fusion. For cell pairing and fusion, we employed dielectrophoresis and AC voltage pulses, respectively. Each cell has been characterized and selected before they were paired, fused and released from the fluidic system for subsequent analysis and cultivation. The successful experimental evaluation of our system was further corroborated by numerical simulations. We obtained fusion efficiencies of more than 30% for individual pairs of mouse myeloma and B cell blasts and showed the proliferating ability of the hybrid cells 3 d after fusion. Since aggregates of more than two cells can be fused, the technique could also be developed further for generating giant cells for low-noise electrophysiology in the context of semi-automated pharmaceutical screening procedures.
Collapse
Affiliation(s)
- Michael Kirschbaum
- Fraunhofer Institute for Biomedical Engineering (IBMT), Potsdam, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gong X, Yi X, Xiao K, Li S, Kodzius R, Qin J, Wen W. Wax-bonding 3D microfluidic chips. LAB ON A CHIP 2010; 10:2622-7. [PMID: 20689865 DOI: 10.1039/c004744a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.
Collapse
Affiliation(s)
- Xiuqing Gong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
14
|
Analysis and Comparison of Electrical Pulse Parameters for Gene Electrotransfer of Two Different Cell Lines. J Membr Biol 2010; 236:97-105. [DOI: 10.1007/s00232-010-9282-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
|
15
|
Ušaj M, Trontelj K, Miklavčič D, Kandušer M. Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells. J Membr Biol 2010; 236:107-16. [DOI: 10.1007/s00232-010-9272-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/11/2010] [Indexed: 12/19/2022]
|
16
|
Lin WZ, Lee SS, Cheung WT. Efficient expression of foreign genes in CHO DHFR− cellsby electroporation. Biologicals 2009; 37:277-81. [DOI: 10.1016/j.biologicals.2009.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022] Open
|
17
|
Ivorra A, Al-Sakere B, Rubinsky B, Mir LM. In vivoelectrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys Med Biol 2009; 54:5949-63. [DOI: 10.1088/0031-9155/54/19/019] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Towhidi L, Kotnik T, Pucihar G, Firoozabadi SMP, Mozdarani H, Miklavcic D. Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation. Electromagn Biol Med 2009; 27:372-85. [PMID: 19037786 DOI: 10.1080/15368370802394644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We present a study of the variability of the minimal transmembrane voltage resulting in detectable electroporation of the plasma membrane of spherical and irregularly shaped CHO cells (we denote this voltage by ITVc). Electroporation was detected by monitoring the influx of Ca(2+), and the transmembrane voltage was computed on a 3D finite-elements model of each cell constructed from its cross-section images. We found that ITVc was highly variable, particularly in irregularly shaped cells, where it ranged from 512-1028 mV. We show that this range is much too large to be an artifact due to numerical errors and experimental inaccuracies, implying that for cells of the same type and exposed to the same number of pulses with the same duration, the value of ITVc can differ considerably from one cell to another. We also observed that larger cells are in many cases characterized by a higher ITVc than a smaller one. This is in qualitative agreement with the reports that higher membrane curvature facilitates electroporation, but quantitative considerations suggest that the observed variability of ITVc cannot be attributed entirely to the differences in membrane curvature.
Collapse
Affiliation(s)
- Leila Towhidi
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
19
|
Electroporation in Biological Cell and Tissue: An Overview. ELECTROTECHNOLOGIES FOR EXTRACTION FROM FOOD PLANTS AND BIOMATERIALS 2009. [DOI: 10.1007/978-0-387-79374-0_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Ferreira E, Potier E, Logeart-Avramoglou D, Salomskaite-Davalgiene S, Mir LM, Petite H. Optimization of a gene electrotransfer method for mesenchymal stem cell transfection. Gene Ther 2008; 15:537-44. [PMID: 18256695 DOI: 10.1038/gt.2008.9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene electrotransfer is an efficient and reproducible nonviral gene transfer technique useful for the nonpermanent expression of therapeutic transgenes. The present study established optimal conditions for the electrotransfer of reporter genes into mesenchymal stem cells (MSCs) isolated from rat bone marrow by their selective adherence to tissue-culture plasticware. The electrotransfer of the lacZ reporter gene was optimized by adjusting the pulse electric field intensity, electric pulse type, electropulsation buffer conductivity and electroporation temperature. LacZ electrotransfection into MSCs was optimal at 1500 V cm(-1) with pre-incubation in Spinner's minimum essential medium buffer at 22 degrees C. Under these conditions beta-galactosidase expression was achieved in 29+/-3% of adherent cells 48 h post transfection. The kinetics of beta-galactosidase activity revealed maintenance of beta-galactosidase production for at least 10 days. Moreover, electroporation did not affect the MSC potential for multidifferentiation; electroporated MSCs differentiated into osteoblastic, adipogenic and chondrogenic lineages to the same extent as cells that were not exposed to electric pulses. Thus, this study demonstrates the feasibility of efficient transgene electrotransfer into MSCs while preserving cell viability and multipotency.
Collapse
Affiliation(s)
- E Ferreira
- Laboratoire de Recherches Orthopédiques (B2OA), CNRS UMR 7052, Paris, France
| | | | | | | | | | | |
Collapse
|
21
|
De Vuyst E, De Bock M, Decrock E, Van Moorhem M, Naus C, Mabilde C, Leybaert L. In situ bipolar electroporation for localized cell loading with reporter dyes and investigating gap junctional coupling. Biophys J 2008; 94:469-79. [PMID: 17872956 PMCID: PMC2157259 DOI: 10.1529/biophysj.107.109470] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 09/05/2007] [Indexed: 11/18/2022] Open
Abstract
Electroporation is generally used to transfect cells in suspension, but the technique can also be applied to load a defined zone of adherent cells with substances that normally do not permeate the plasma membrane. In this case a pulsed high-frequency oscillating electric field is applied over a small two-wire electrode positioned close to the cells. We compared unipolar with bipolar electroporation pulse protocols and found that the latter were ideally suited to efficiently load a narrow longitudinal strip of cells in monolayer cultures. We further explored this property to determine whether electroporation loading was useful to investigate the extent of dye spread between cells coupled by gap junctions, using wild-type and stably transfected C6 glioma cells expressing connexin 32 or 43. Our investigations show that the spatial spread of electroporation-loaded 6-carboxyfluorescein, as quantified by the standard deviation of Gaussian dye spread or the spatial constant of exponential dye spread, was a reliable approach to investigate the degree of cell-cell coupling. The spread of reporter dye between coupled cells was significantly larger with electroporation loading than with scrape loading, a widely used method for dye-coupling studies. We conclude that electroporation loading and dye transfer is a robust technique to investigate gap-junctional coupling that combines minimal cell damage with accurate probing of the degree of cell-cell communication.
Collapse
Affiliation(s)
- Elke De Vuyst
- Department of Physiology and Pathophysiology, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim JA, Cho K, Shin YS, Jung N, Chung C, Chang JK. A multi-channel electroporation microchip for gene transfection in mammalian cells. Biosens Bioelectron 2007; 22:3273-7. [PMID: 17395450 DOI: 10.1016/j.bios.2007.02.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 02/01/2007] [Accepted: 02/06/2007] [Indexed: 11/29/2022]
Abstract
We developed a multi-channel electroporation microchip made of polydimethylsiloxane (PDMS) and glass for gene transfer in mammalian cells. This chip produces multiple electric field gradients in a single microchip by varying the lengths of the microchannels from 2 to 4 cm. Electric fields of 0.65, 0.57, 0.49, 0.41, and 0.33 kV/cm were simultaneously produced in a single chip when the voltage of 1.3 kV was applied. We transferred enhanced green fluorescent protein genes (pEGFP) into HEK-293 and CHO cells, which were cultured within the microchannels. The feasibility of our device was demonstrated because it was able to produce five different transfection rates and survival rates at different electric fields produced in a single microchip. This system is expected to optimize the experimental conditions in gene transfection research more easily and faster than conventional electroporation methods.
Collapse
Affiliation(s)
- Jeong Ah Kim
- Digital Bio Technology Co., Institute of Advanced Machinery & Design, San 56-1, Seoul National University, Shinlim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Ivorra A, Rubinsky B. In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry 2007; 70:287-95. [DOI: 10.1016/j.bioelechem.2006.10.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 10/03/2006] [Accepted: 10/11/2006] [Indexed: 11/16/2022]
|
24
|
Wang HY, Lu C. High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity. Biotechnol Bioeng 2007; 95:1116-25. [PMID: 16817188 DOI: 10.1002/bit.21066] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electroporation has been widely accepted as an important tool for the delivery of exogenous molecules into cells. Previous mechanistic studies have been carried out by observing either the average behavior from a large population of cells or the response from a small number of single cells. In this study, we demonstrated a novel microfluidic method with high throughput (up to 30 Hz) for real-time studies of single cell electroporation events. Electroporation occurred when cells flowed through a section of a microfluidic channel defined by special geometry. A CCD camera was used to monitor the response of cells starting from the onset of the electroporation. We studied the swelling of Chinese hamster ovary cells and the rupture of cell membrane during electroporation using this technique. We applied buffers with different osmolarities to investigate the effects of medium osmolarity, based on results from a population of single cells. We were able to establish the distributions of the rates of swelling and membrane rupture in the cell population. We also explored establishing the correlation between the property (the cell diameter) and the behavior (the swelling rate) of single cells. Our results indicated that the processes of swelling and rupture occurred more rapidly in the hypotonic or hypertonic buffers than in the isotonic buffer. Statistical analysis did not reveal strong linear correlation between the cell size and the swelling rate. These proof-of-concept studies reveal the potential of applying microfluidics to study electroporation of a cell population at single cell level in real time with high throughput. The limitations associated with this approach were also addressed.
Collapse
Affiliation(s)
- Hsiang-Yu Wang
- School of Chemical Engineering, Purdue University, Indiana 47907, USA
| | | |
Collapse
|
25
|
Sitton G, Hansgate A, Srienc F. Transient gene expression in CHO cells monitored with automated flow cytometry. Cytotechnology 2006; 52:13-24. [PMID: 19002862 DOI: 10.1007/s10616-006-9020-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 08/22/2006] [Indexed: 12/01/2022] Open
Abstract
Transient gene expression is frequently used in industry to rapidly generate usable quantities of a protein from cultured cells. In gene therapy applications it is used to express a therapeutic protein in vivo. A quantitative assessment of the expression kinetics is important because it enables optimization and control of culture conditions for higher productivity. Previous experimental studies show a characteristic peak in average protein expression per cell after transfection followed by an exponential decrease of the expressed protein. Here, we show that the exponential decrease in single cell expression of enhanced Green Fluorescent Protein (eGfp) occurs in discrete steps. We attribute this to the absence of plasmid replication and to symmetric partitioning of plasmid and eGfp between dividing cells. This is reflected in the total eGfp in the bioreactor, which increased at a constant rate throughout the experiment. Additionally, the data provide a detailed time course of cell physiology during recovery from electroporation. The time course of cell physiology precisely indicates when the culture shifts growth phases. Furthermore, the data indicate two unique stationary phases. One type of stationary phase occurs when proliferation ceases while cells decrease their cell size, maintain granularity, and mean eGfp content decreases. The second type occurs when proliferation ceases while cells increase their cell size, increase granularity, and surprisingly maintain eGfp content. The collected data demonstrate the utility of automated flow cytometry for unique bioreactor monitoring and control capabilities in accordance with the US Food and Drug Administration's Process Analytical Technology initiative.
Collapse
Affiliation(s)
- Greg Sitton
- Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN, 55455-0312, USA
| | | | | |
Collapse
|
26
|
Sukhorukov VL, Reuss R, Zimmermann D, Held C, Müller KJ, Kiesel M, Gessner P, Steinbach A, Schenk WA, Bamberg E, Zimmermann U. Surviving High-Intensity Field Pulses: Strategies for Improving Robustness and Performance of Electrotransfection and Electrofusion. J Membr Biol 2005; 206:187-201. [PMID: 16456714 DOI: 10.1007/s00232-005-0791-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 09/08/2005] [Indexed: 11/25/2022]
Abstract
Electrotransfection and electrofusion, both widely used in research and medical applications, still have to face a range of problems, including the existence of electroporation-resistant cell types, cell mortality and also great batch-to-batch variations of the transfection and fusion yields. In the present study, a systematic analysis of the parameters critical for the efficiency and robustness of electromanipulation protocols was performed on five mammalian cell types. Factors examined included the sugar composition of hypotonic pulse media (trehalose, sorbitol or inositol), the kinetics of cell volume changes prior to electropulsing, as well as the growth medium additives used for post-pulse cell cultivation. Whereas the disaccharide trehalose generally allowed regulatory volume decrease (RVD), the monomeric sugar alcohols sorbitol and inositol inhibited RVD or even induced secondary swelling. The different volume responses could be explained by the sugar selectivity of volume-sensitive channels (VSC) in the plasma membrane of all tested cell types. Based on the volumetric data, highest transfection and fusion yields were mostly achieved when the target cells were exposed to hypotonicity for about 2 min prior to electropulsing. Longer hypotonic treatment (10-20 min) decreased the yields of viable transfected and hybrid cells due to (1) the cell size reduction upon RVD (trehalose) or (2) the excessive losses of cytosolic electrolytes through VSC (inositol/sorbitol). Doping the plasma membrane with lipophilic anions prevented both cell shrinkage and ion losses (probably due to VSC inhibition), which in turn resulted in increased transfection and fusion efficiencies.
Collapse
Affiliation(s)
- V L Sukhorukov
- Lehrstuhl für Biotechnologie, Biozentrum, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|