1
|
Maróti P. Thermodynamic View of Proton Activated Electron Transfer in the Reaction Center of Photosynthetic Bacteria. J Phys Chem B 2019; 123:5463-5473. [PMID: 31181159 DOI: 10.1021/acs.jpcb.9b03506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The temperature dependence of the sequential coupling of proton transfer to the second interquinone electron transfer is studied in the reaction center proteins of photosynthetic bacteria modified by different mutations and treatment by divalent cations. The Eyring plots of kinetics were evaluated by the Marcus theory of electron and proton transfer. In mutants of electron transfer limitation (including the wild type), the observed thermodynamic parameters had to be corrected for those of the fast proton pre-equilibrium. The electron transfer is nonadiabatic with transmission coefficient 6 × 10-4, and the reorganization energy amounts to 1.2 eV. If the proton transfer is the rate limiting step, the reorganization energy and the works terms fall in the range of 200-500 meV, depending on the site of damage in the proton transfer chain. The product term is 100-150 meV larger than the reactant term. While the electron transfer mutants have a low free energy of activation (∼200 meV), the proton transfer variants show significantly elevated levels of the free energy barrier (∼500 meV). The second electron transfer in the bacterial reaction center can serve as a model system of coupled electron and proton transfer in other proteins or ion channels.
Collapse
Affiliation(s)
- Péter Maróti
- Institute of Medical Physics , University of Szeged , Rerrich Béla tér 1 , Szeged , H-6720 , Hungary
| |
Collapse
|
2
|
Kis M, Sipka G, Maróti P. Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2017; 132:197-209. [PMID: 28260133 DOI: 10.1007/s11120-017-0357-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/13/2017] [Indexed: 05/27/2023]
Abstract
Mercury adsorption on the cell surface and intracellular uptake by bacteria represent the key first step in the production and accumulation of highly toxic mercury in living organisms. In this work, the biophysical characteristics of mercury bioaccumulation are studied in intact cells of photosynthetic bacteria by use of analytical (dithizone) assay and physiological photosynthetic markers (pigment content, fluorescence induction, and membrane potential) to determine the amount of mercury ions bound to the cell surface and taken up by the cell. It is shown that the Hg(II) uptake mechanism (1) has two kinetically distinguishable components, (2) includes co-opted influx through heavy metal transporters since the slow component is inhibited by Ca2+ channel blockers, (3) shows complex pH dependence demonstrating the competition of ligand binding of Hg(II) ions with H+ ions (low pH) and high tendency of complex formation of Hg(II) with hydroxyl ions (high pH), and (4) is not a passive but an energy-dependent process as evidenced by light activation and inhibition by protonophore. Photosynthetic bacteria can accumulate Hg(II) in amounts much (about 105) greater than their own masses by well-defined strong and weak binding sites with equilibrium binding constants in the range of 1 (μM)-1 and 1 (mM)-1, respectively. The strong binding sites are attributed to sulfhydryl groups as the uptake is blocked by use of sulfhydryl modifying agents and their number is much (two orders of magnitude) smaller than the number of weak binding sites. Biofilms developed by some bacteria (e.g., Rvx. gelatinosus) increase the mercury binding capacity further by a factor of about five. Photosynthetic bacteria in the light act as a sponge of Hg(II) and can be potentially used for biomonitoring and bioremediation of mercury-contaminated aqueous cultures.
Collapse
Affiliation(s)
- Mariann Kis
- Institute of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary
| | - Gábor Sipka
- Institute of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary
| | - Péter Maróti
- Institute of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary.
| |
Collapse
|
3
|
Purple-bacterial photosynthetic reaction centers and quantum‐dot hybrid‐assemblies in lecithin liposomes and thin films. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:73-82. [DOI: 10.1016/j.jphotobiol.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022]
|
4
|
Zagidullin VE, Lukashev EP, Knox PP, Seifullina NK, Sokolova OS, Pechnikova EV, Lokstein H, Paschenko VZ. Properties of hybrid hybrid complexes composed of photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides and quantum dots in lecithin liposomes. BIOCHEMISTRY (MOSCOW) 2014; 79:1183-91. [DOI: 10.1134/s0006297914110054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:301-15. [PMID: 24824111 DOI: 10.1007/s00249-014-0963-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/07/2014] [Accepted: 04/25/2014] [Indexed: 12/29/2022]
Abstract
Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.
Collapse
|
6
|
Szabó T, Bencsik G, Magyar M, Visy C, Gingl Z, Nagy K, Váró G, Hajdu K, Kozák G, Nagy L. Photosynthetic reaction centers/ITO hybrid nanostructure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 33:769-73. [PMID: 25427486 DOI: 10.1016/j.msec.2012.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/03/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022]
Abstract
Photosynthetic reaction center proteins purified from Rhodobacter sphaeroides purple bacterium were deposited on the surface of indium tin oxide (ITO), a transparent conductive oxide, and the photochemical/-physical properties of the composite were investigated. The kinetics of the light induced absorption change indicated that the RC was active in the composite and there was an interaction between the protein cofactors and the ITO. The electrochromic response of the bacteriopheophytine absorption at 771 nm showed an increased electric field perturbation around this chromophore on the surface of ITO compared to the one measured in solution. This absorption change is associated with the charge-compensating relaxation events inside the protein. Similar life time, but smaller magnitude of this absorption change was measured on the surface of borosilicate glass. The light induced change in the conductivity of the composite as a function of the concentration showed the typical sigmoid saturation characteristics unlike if the photochemically inactive chlorophyll was layered on the ITO. In this later case the light induced change in the conductivity was oppositely proportional to the chlorophyll concentration due to the thermal dissipation of the excitation energy. The sensitivity of the measurement is very high; few picomole RC can change the light induced resistance of the composite.
Collapse
Affiliation(s)
- Tibor Szabó
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Melinda Magyar
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Visy
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Zoltán Gingl
- Department of Technical Informatics, University of Szeged, Szeged, Hungary
| | - Krisztina Nagy
- Institute of Biophysics, Hungarian Academy of Sciences, Biological Research Center, Szeged, Hungary
| | - György Váró
- Institute of Biophysics, Hungarian Academy of Sciences, Biological Research Center, Szeged, Hungary
| | - Kata Hajdu
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Kozák
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - László Nagy
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
7
|
Italiano F, D’Amici GM, Rinalducci S, De Leo F, Zolla L, Gallerani R, Trotta M, Ceci LR. The photosynthetic membrane proteome of Rhodobacter sphaeroides R-26.1 exposed to cobalt. Res Microbiol 2011; 162:520-7. [DOI: 10.1016/j.resmic.2011.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
|
8
|
Chamorovsky CS, Chamorovsky SK, Knox PP. Study of effect of molecular mobility in chromatophore membranes of the bacterium E. shaposhnikovii on processes of photoinduced electron transport using the NMR-spin-echo method with isotope substitution and dehydration. BIOCHEMISTRY (MOSCOW) 2010; 75:423-7. [PMID: 20618130 DOI: 10.1134/s0006297910040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of dehydration and (2)H2O/H2O isotope substitution on electron transport reactions and relaxation of proton-containing groups was studied in chromatophore membranes of Ectothiorhodospira shaposhnikovii. During dehydration (including isotope substitution of hydrate water) of preliminarily dehydrated isolated photosynthetic membranes there was a partial correlation between hydration intervals within which activation of electron transport from high-potential cytochrome c to photoactive bacteriochlorophyll dimer P890 of photosynthetic reaction center and variation of spin-lattice and spin-spin proton relaxation time was observed. Partial correlation between hydration intervals can be considered as evidence of correlation between mobility of non-water proton-containing groups with proton relaxation frequency approximately 10(8) sec(-1) with efficiency of electron transfer at the donor side of the chain.
Collapse
Affiliation(s)
- C S Chamorovsky
- Department of Biophysics, Biology Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | |
Collapse
|
9
|
Milano F, Italiano F, Agostiano A, Trotta M. Characterisation of RC-proteoliposomes at different RC/lipid ratios. PHOTOSYNTHESIS RESEARCH 2009; 100:107-112. [PMID: 19387862 DOI: 10.1007/s11120-009-9423-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/06/2009] [Indexed: 05/27/2023]
Abstract
Reconstitution of membrane proteins in phospholipid vesicles allows the investigation of such macromolecules in a biomimetic simplified environment. The often employed micelle-to-vesicle-transition method for proteoliposome preparation is a fast and reproducible technique. In this, communication is shown that the lipid/protein ratio influences the size of the proteoliposomes and the actual protein reconstitution. The results indicate that for photosynthetic reaction centres, the best conditions for ligand-interaction experiments are achieved with a lipid/protein value of 1000:1, while for complete protein incorporation, the 2000:1 ratio should be chosen.
Collapse
Affiliation(s)
- Francesco Milano
- CNR, Istituto per i Processi Chimico-Fisici, Sezione di Bari, c/o Dipartimento di Chimica, Via Orabona, 4 I-70124, Bari, Italy
| | | | | | | |
Collapse
|