1
|
Baccile N, Lorthioir C, Ba AA, Le Griel P, Pérez J, Hermida-Merino D, Soetaert W, Roelants SLKW. Topological Connection between Vesicles and Nanotubes in Single-Molecule Lipid Membranes Driven by Head-Tail Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14574-14587. [PMID: 36410028 DOI: 10.1021/acs.langmuir.2c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipid nanotube-vesicle networks are important channels for intercellular communication and transport of matter. Experimentally observed in neighboring mammalian cells but also reproduced in model membrane systems, a broad consensus exists on their formation and stability. Lipid membranes must be composed of at least two molecular components, each stabilizing low (generally a phospholipid) and high curvatures. Strong anisotropy or enhanced conical shape of the second amphiphile is crucial for the formation of nanotunnels. Anisotropic driving forces generally favor nanotube protrusions from vesicles. In this work, we report the unique case of topologically connected nanotubes-vesicles obtained in the absence of directional forces, in single-molecule membranes, composed of an anisotropic bolaform glucolipid, above its melting temperature, Tm. Cryo-TEM and fluorescence confocal microscopy show the interconnection between vesicles and nanotubes in a single-phase region, between 60 and 90 °C under diluted conditions. Solid-state NMR demonstrates that the glucolipid can assume two distinct configurations, head-head and head-tail. These arrangements, seemingly of comparable energy above the Tm, could explain the existence and stability of the topologically connected vesicles and nanotubes, which are generally not observed for classical single-molecule phospholipid-based membranes above their Tm.
Collapse
Affiliation(s)
- Niki Baccile
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Cédric Lorthioir
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Abdoul Aziz Ba
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Patrick Le Griel
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris75005, France
| | - Javier Pérez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48, Gif-sur-Yvette Cedex91192, France
| | - Daniel Hermida-Merino
- Netherlands Organisation for Scientific Research (NWO), DUBBLE@ESRF BP CS40220, Grenoble38043, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo36310, Spain
| | - Wim Soetaert
- InBio, Department of Biotechnology, Ghent University, Ghent9000, Belgium
| | | |
Collapse
|
2
|
Mesarec L, Drab M, Penič S, Kralj-Iglič V, Iglič A. On the Role of Curved Membrane Nanodomains, and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding. Int J Mol Sci 2021; 22:2348. [PMID: 33652934 PMCID: PMC7956631 DOI: 10.3390/ijms22052348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/03/2023] Open
Abstract
Biological membranes are composed of isotropic and anisotropic curved nanodomains. Anisotropic membrane components, such as Bin/Amphiphysin/Rvs (BAR) superfamily protein domains, could trigger/facilitate the growth of membrane tubular protrusions, while isotropic curved nanodomains may induce undulated (necklace-like) membrane protrusions. We review the role of isotropic and anisotropic membrane nanodomains in stability of tubular and undulated membrane structures generated or stabilized by cyto- or membrane-skeleton. We also describe the theory of spontaneous self-assembly of isotropic curved membrane nanodomains and derive the critical concentration above which the spontaneous necklace-like membrane protrusion growth is favorable. We show that the actin cytoskeleton growth inside the vesicle or cell can change its equilibrium shape, induce higher degree of segregation of membrane nanodomains or even alter the average orientation angle of anisotropic nanodomains such as BAR domains. These effects may indicate whether the actin cytoskeleton role is only to stabilize membrane protrusions or to generate them by stretching the vesicle membrane. Furthermore, we demonstrate that by taking into account the in-plane orientational ordering of anisotropic membrane nanodomains, direct interactions between them and the extrinsic (deviatoric) curvature elasticity, it is possible to explain the experimentally observed stability of oblate (discocyte) shapes of red blood cells in a broad interval of cell reduced volume. Finally, we present results of numerical calculations and Monte-Carlo simulations which indicate that the active forces of membrane skeleton and cytoskeleton applied to plasma membrane may considerably influence cell shape and membrane budding.
Collapse
Affiliation(s)
- Luka Mesarec
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Mitja Drab
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Samo Penič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Veronika Kralj-Iglič
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Institute of Biosciences and Bioresources, National Research Council, 80131 Napoli, Italy
| | - Aleš Iglič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
- Institute of Biosciences and Bioresources, National Research Council, 80131 Napoli, Italy
| |
Collapse
|
3
|
Alimohamadi H, Ovryn B, Rangamani P. Modeling membrane nanotube morphology: the role of heterogeneity in composition and material properties. Sci Rep 2020; 10:2527. [PMID: 32054874 PMCID: PMC7018976 DOI: 10.1038/s41598-020-59221-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 01/27/2020] [Indexed: 01/14/2023] Open
Abstract
Membrane nanotubes are dynamic structures that may connect cells over long distances. Nanotubes are typically thin cylindrical tubes, but they may occasionally have a beaded architecture along the tube. In this paper, we study the role of membrane mechanics in governing the architecture of these tubes and show that the formation of bead-like structures along the nanotubes can result from local heterogeneities in the membrane either due to protein aggregation or due to membrane composition. We present numerical results that predict how membrane properties, protein density, and local tension compete to create a phase space that governs the morphology of a nanotube. We also find that there exists a discontinuity in the energy that impedes two beads from fusing. These results suggest that the membrane-protein interaction, membrane composition, and membrane tension closely govern the tube radius, number of beads, and the bead morphology.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Ben Ovryn
- Department of Physics, New York Institute of Technology, New York, NY, 11568, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
4
|
Drab M, Stopar D, Kralj-Iglič V, Iglič A. Inception Mechanisms of Tunneling Nanotubes. Cells 2019; 8:cells8060626. [PMID: 31234435 PMCID: PMC6627088 DOI: 10.3390/cells8060626] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/13/2023] Open
Abstract
Tunneling nanotubes (TNTs) are thin membranous tubes that interconnect cells, representing a novel route of cell-to-cell communication and spreading of pathogens. TNTs form between many cell types, yet their inception mechanisms remain elusive. We review in this study general concepts related to the formation and stability of membranous tubular structures with a focus on a deviatoric elasticity model of membrane nanodomains. We review experimental evidence that tubular structures initiate from local membrane bending facilitated by laterally distributed proteins or anisotropic membrane nanodomains. We further discuss the numerical results of several theoretical and simulation models of nanodomain segregation suggesting the mechanisms of TNT inception and stability. We discuss the coupling of nanodomain segregation with the action of protruding cytoskeletal forces, which are mostly provided in eukaryotic cells by the polymerization of f-actin, and review recent inception mechanisms of TNTs in relation to motor proteins.
Collapse
Affiliation(s)
- Mitja Drab
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana,1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - David Stopar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana,1000 Ljubljana, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Mesarec L, Góźdź W, Kralj S, Fošnarič M, Penič S, Kralj-Iglič V, Iglič A. On the role of external force of actin filaments in the formation of tubular protrusions of closed membrane shapes with anisotropic membrane components. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:705-718. [PMID: 28488019 DOI: 10.1007/s00249-017-1212-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
Biological membranes are composed of different components and there is no a priori reason to assume that all components are isotropic. It was previously shown that the anisotropic properties of membrane components may explain the stability of membrane tubular protrusions even without the application of external force. Our theoretical study focuses on the role of anisotropic membrane components in the stability of membrane tubular structures generated or stabilized by actin filaments. We show that the growth of the actin cytoskeleton inside the vesicle can induce the partial lateral segregation of different membrane components. The entropy of mixing of membrane components hinders the total lateral segregation of the anisotropic and isotropic membrane components. Self-assembled aggregates formed by anisotropic membrane components facilitate the growth of long membrane tubular protrusions. Protrusive force generated by actin filaments favors strong segregation of membrane components by diminishing the opposing effect of mixing entropy.
Collapse
Affiliation(s)
- Luka Mesarec
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| | - Wojciech Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Samo Kralj
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.,Jožef Stefan Institute, PO Box 3000, 1000, Ljubljana, Slovenia
| | - Miha Fošnarič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Samo Penič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, 1000, Ljubljana, Slovenia.,Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Zaloška 9, 1000, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.,Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Zaloška 9, 1000, Ljubljana, Slovenia
| |
Collapse
|
6
|
In vitro effects of cocaine on tunneling nanotube formation and extracellular vesicle release in glioblastoma cell cultures. J Mol Neurosci 2014; 55:42-50. [PMID: 24996625 DOI: 10.1007/s12031-014-0365-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/26/2014] [Indexed: 12/15/2022]
Abstract
The effects of cocaine (150 nM, 300 nM, and 150 μM) on human glioblastoma cell cultures were studied on tunneling nanotube formation (1-h cocaine treatment) and extracellular vesicle release (1-, 3-, and 8-h cocaine treatment). Cocaine significantly increased the number of tunneling nanotubes only at the lowest concentration used. The release of extracellular vesicles (mainly exosomes) into the medium was stimulated by cocaine at each concentration used with a maximum effect at the highest concentration tested (150 μM). Moreover, cocaine (150 nM) significantly increased the number of vesicles with 61-80 nm diameter while at concentrations of 300 nM and 150 μM, and the smaller vesicles (30-40 nm diameter) were significantly increased with a reduction of the larger vesicles (41-60 nm diameter). A time dependence in the release of extracellular vesicles was observed. In view of the proposed role of these novel intercellular communication modes in the glial-neuronal plasticity, it seems possible that they can participate in the processes leading to cocaine addiction. The molecular target/s involved in these cocaine effects could be specific molecular components of plasma membrane lipid rafts and/or cocaine-induced modifications in cytoplasmic lipid composition.
Collapse
|
7
|
Lou E, Fujisawa S, Barlas A, Romin Y, Manova-Todorova K, Moore MAS, Subramanian S. Tunneling Nanotubes: A new paradigm for studying intercellular communication and therapeutics in cancer. Commun Integr Biol 2012; 5:399-403. [PMID: 23060969 PMCID: PMC3460850 DOI: 10.4161/cib.20569] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Tunneling nanotubes are actin-based cytoplasmic extensions that function as intercellular channels in a wide variety of cell types.There is a renewed and keen interest in the examination of modes of intercellular communication in cells of all types, especially in the field of cancer biology. Tunneling nanotubes –which in the literature have also been referred to as “membrane nanotubes,” “’intercellular’ or ‘epithelial’ bridges,” or “cytoplasmic extensions” – are under active investigation for their role in facilitating direct intercellular communication. These structures have not, until recently, been scrutinized as a unique and previously unrecognized form of direct cell-to-cell transmission of cellular cargo in the context of human cancer. Our recent study of tunneling nanotubes in human malignant pleural mesothelioma and lung adenocarcinomas demonstrated efficient transfer of cellular contents, including proteins, Golgi vesicles, and mitochondria, between cells derived from several well-established cancer cell lines. Further, we provided effective demonstration that such nanotubes can form between primary malignant cells from human patients. For the first time, we also demonstrated the in vivo relevance of these structures in humans, having effectively imaged nanotubes in intact solid tumors from patients. Here we provide further analysis and discussion on our findings, and offer a prospective ‘road map’ for studying tunneling nanotubes in the context of human cancer. We hope that further understanding of the mechanisms, methods of transfer, and particularly the role of nanotubes in tumor-stromal cross-talk will lead to identification of new selective targets for cancer therapeutics.
Collapse
Affiliation(s)
- Emil Lou
- Division of Hematology; Oncology and Transplantation; University of Minnesota; Minneapolis, MN USA
| | | | | | | | | | | | | |
Collapse
|