1
|
Karthik C, Mavelil-Sam R, Thomas S, Thomas V. Cold Plasma Technology Based Eco-Friendly Food Packaging Biomaterials. Polymers (Basel) 2024; 16:230. [PMID: 38257029 PMCID: PMC10821393 DOI: 10.3390/polym16020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Biopolymers have intrinsic drawbacks compared to traditional plastics, such as hydrophilicity, poor thermo-mechanical behaviours, and barrier characteristics. Therefore, biopolymers or their film modifications offer a chance to create packaging materials with specified properties. Cold atmospheric plasma (CAP) or Low temperature plasma (LTP) has a wide range of applications and has recently been used in the food industry as a potent tool for non-thermal food processing. Though its original purpose was to boost polymer surface energy for better adherence and printability, it has since become an effective technique for surface decontamination of food items and food packaging materials. These revolutionary innovative food processing methods enable the balance between the economic constraints and higher quality while ensuring food stability and minimal processing. For CAP to be considered as a viable alternative food processing technology, it must positively affect food quality. Food products may have their desired functional qualities by adjusting the conditions for cold plasma formation. Cold plasma is a non-thermal method that has little effects on the treated materials and is safe for the environment. In this review, we focus on recent cold plasma advances on various food matrices derived from plants and animals with the aim of highlighting potential applications, ongoing research, and market trends.
Collapse
Affiliation(s)
- Chandrima Karthik
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA;
| | - Rubie Mavelil-Sam
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India;
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India;
- Trivandrum Engineering Science and Technology Research Park (TrEST), Thiruvananthapuram 695016, India
| | - Vinoy Thomas
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA;
| |
Collapse
|
2
|
An NN, Shang N, Zhao X, Tie XY, Guo WB, Li D, Wang LJ, Wang Y. Occurrence, Regulation, and Emerging Detoxification Techniques of Aflatoxins in Maize: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nan-nan An
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Nan Shang
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Xia Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Xiao-yu Tie
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Wen-bo Guo
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
3
|
Birania S, Attkan AK, Kumar S, Kumar N, Singh VK. Cold plasma in food processing and preservation: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering and Technology, Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| |
Collapse
|
4
|
Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods- a review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108338] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives. J Fungi (Basel) 2021; 7:jof7080650. [PMID: 34436189 PMCID: PMC8401644 DOI: 10.3390/jof7080650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
In view of the ever-growing human population and global environmental crisis, new technologies are emerging in all fields of our life. In the last two decades, the development of cold plasma (CP) technology has offered a promising and environmentally friendly solution for addressing global food security problems. Besides many positive effects, such as promoting seed germination, plant growth, and development, CP can also serve as a surface sterilizing agent. It can be considered a method for decontamination of microorganisms on the seed surface alternative to the traditional use of fungicides. This review covers basics of CP technology and its application in seed decontamination. As this is a relatively young field of research, the data are scarce and hard to compare due to various plasma setups and parameters. On the other hand, the rapidly growing research field offers opportunities for novel findings and applications.
Collapse
|
6
|
Volkov AG. Cold atmospheric pressure He-plasma jet and plasma ball interactions with the Venus flytrap: Electrophysiology and side effects. Bioelectrochemistry 2021; 140:107833. [PMID: 33989989 DOI: 10.1016/j.bioelechem.2021.107833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Cold atmospheric pressure radio frequency plasma (CAPP) can play an important role in agriculture, medicine, biophysical and bioelectrochemical applications, disinfection and sterilization, synthesis of different compounds, nitrogen fixation, and treatment of surfaces. Here we found that reactive oxygen and nitrogen species, UV-Vis photons, and high-frequency strong electromagnetic fields with an amplitude of a few kV produced by a cold plasma jet can interact with bio-tissue and damage it if the plasma treatment is long enough. The electrophysiological effects of CAPP treatment of bio-tissue and electrical signals transmission were measured in the Venus flytrap. The plasma ball does not produce any visible side effects on the Venus flytrap, but induces electrical signals in bio-tissue with very high amplitude. Plasma (Kirlian) photography shows the existence of a blue aura around the plasma ball due to a corona discharge. Understanding the mechanisms of interactions between CAPP and bio-tissue and preventing side effects can contribute to the application of plasma technology in medicine and agriculture. The use of cold plasma in medicine and agriculture should be monitored for side effects from strong high-frequency electro-magnetic fields, UV photons, and reactive oxygen and nitrogen species to protect against undesirable consequences.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA.
| |
Collapse
|
7
|
Huang M, Zhuang H, Zhao J, Wang J, Yan W, Zhang J. Differences in cellular damage induced by dielectric barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus. Bioelectrochemistry 2020; 132:107445. [DOI: 10.1016/j.bioelechem.2019.107445] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022]
|
8
|
Cold plasma poration and corrugation of pumpkin seed coats. Bioelectrochemistry 2019; 128:175-185. [DOI: 10.1016/j.bioelechem.2019.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 11/18/2022]
|
9
|
López M, Calvo T, Prieto M, Múgica-Vidal R, Muro-Fraguas I, Alba-Elías F, Alvarez-Ordóñez A. A Review on Non-thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Front Microbiol 2019; 10:622. [PMID: 31001215 PMCID: PMC6454144 DOI: 10.3389/fmicb.2019.00622] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
Non-thermal Atmospheric Plasma (NTAP) is a cutting-edge technology which has gained much attention during the last decade in the food-processing sector as a promising technology for food preservation and maintenance of food safety, with minimal impact on the quality attributes of foods, thanks to its effectiveness in microbial inactivation, including of pathogens, spoilage fungi and bacterial spores, simple design, ease of use, cost-effective operation, short treatment times, lack of toxic effects, and significant reduction of water consumption. This review article provides a general overview of the principles of operation and applications of NTAP in the agri-food sector. In particular, the numerous studies carried out in the last decade aimed at deciphering the influence of different environmental factors and processing parameters on the microbial inactivation attained are discussed. In addition, this review also considers some important studies aimed at elucidating the complex mechanism of microbial inactivation by NTAP. Finally, other potential applications of NTAP in the agri-food sector, apart from food decontamination, are briefly described, and some limitations for the immediate industrial implementation of NTAP are discussed (e.g., impact on the nutritional and sensory quality of treated foods; knowledge on the plasma components and reactive species responsible for the antimicrobial activity; possible toxicity of some of the chemical species generated; scale-up by designing fit-for-purpose equipment).
Collapse
Affiliation(s)
- Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Tamara Calvo
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | | | | | - Fernando Alba-Elías
- Department of Mechanical Engineering, Universidad de La Rioja, Logroño, Spain
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| |
Collapse
|
10
|
|
11
|
In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids. Bioelectrochemistry 2018; 121:125-134. [DOI: 10.1016/j.bioelechem.2018.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
|
12
|
Volkov AG, Xu KG, Kolobov VI. Cold plasma interactions with plants: Morphing and movements of Venus flytrap and Mimosa pudica induced by argon plasma jet. Bioelectrochemistry 2017; 118:100-105. [DOI: 10.1016/j.bioelechem.2017.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023]
|
13
|
Calvo T, Alvarez-Ordóñez A, Prieto M, Bernardo A, López M. Stress adaptation has a minor impact on the effectivity of Non-Thermal Atmospheric Plasma (NTAP) against Salmonella spp. Food Res Int 2017; 102:519-525. [DOI: 10.1016/j.foodres.2017.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 11/28/2022]
|
14
|
Neuber JU, Song S, Malik MA, Heller L, Jiang C. Nanosecond Pulsed Plasma Brush for Bacterial Inactivation on Laminate. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017. [DOI: 10.1109/trpms.2017.2697760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Calvo T, Álvarez-Ordóñez A, Prieto M, González-Raurich M, López M. Influence of processing parameters and stress adaptation on the inactivation of Listeria monocytogenes by Non-Thermal Atmospheric Plasma (NTAP). Food Res Int 2016; 89:631-637. [PMID: 28460960 DOI: 10.1016/j.foodres.2016.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022]
Abstract
This study evaluated the effectiveness of Non-Thermal Atmospheric Plasma (NTAP) treatments against Listeria. Firstly, the impact of gas composition and flow rate on L. monocytogenes and L. innocua (used as a surrogate) inactivation by NTAP was monitored. Secondly, the influence of stress adaptation (growth under suboptimal conditions, using a wide range of temperatures and media acidified up to pH5.5 with citric, lactic, malic or hydrochloric acid, or short-term exposure to acid, cold or thermal shocks) on L. monocytogenes NTAP resistance was assessed. Survival curves obtained were concave upward. A mathematical model based on the Weibull distribution accurately described the inactivation kinetics. Both L. monocytogenes and L. innocua showed a higher sensitivity to plasma when the treatment was performed using air than when nitrogen was used. In fact, the use of nitrogen as working gas made the plasma treatment almost ineffective. The effect of gas flow rate on the effectiveness of the NTAP treatment depended on the type of gas used to generate plasma. Increases in flow rate from 5 to 10L/min caused an acceleration of bacterial inactivation when air was used, while an additional increase of gas flow from 10 to 15L/min had a minor impact on microbial inactivation. On the other hand, gas flow rate hardly affected NTAP treatment efficiency when nitrogen was used to generate plasma. L. monocytogenes growth under sub-optimal temperature or pH conditions or short-term exposure to acid, heat or cold stress conditions did not significantly modify its NTAP resistance. This suggests that temperature and pH stress adaptation does not induce a cross-protection response against NTAP treatments in L. monocytogenes, what makes NTAP an attractive technology for food decontamination within minimal processing strategies targeting this pathogenic microorganism.
Collapse
Affiliation(s)
- Tamara Calvo
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, León, Spain.
| | - Miguel Prieto
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, León, Spain
| | - Montserrat González-Raurich
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, León, Spain
| |
Collapse
|
16
|
Edelblute CM, Heller LC, Malik MA, Bulysheva A, Heller R. Plasma-activated air mediates plasmid DNA delivery in vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16028. [PMID: 27110584 PMCID: PMC4830379 DOI: 10.1038/mtm.2016.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/10/2016] [Accepted: 03/07/2016] [Indexed: 11/12/2022]
Abstract
Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets.
Collapse
Affiliation(s)
- Chelsea M Edelblute
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; Department of Biology, College of Science, Old Dominion University, Norfolk, VA, USA
| | - Loree C Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Muhammad A Malik
- Frank Reidy Research Center for Bioelectrics, Old Dominion University , Norfolk, VA, USA
| | - Anna Bulysheva
- Frank Reidy Research Center for Bioelectrics, Old Dominion University , Norfolk, VA, USA
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
17
|
Edelblute CM, Malik MA, Heller LC. Antibacterial efficacy of a novel plasma reactor without an applied gas flow against methicillin resistant Staphylococcus aureus on diverse surfaces. Bioelectrochemistry 2016; 112:106-11. [PMID: 27095606 DOI: 10.1016/j.bioelechem.2016.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/24/2022]
Abstract
The use of nonthermal plasma in the clinic has gained recent interest, as the need for alternative or supplementary strategies are necessary for preventing multi-drug resistant infections. The purpose of this study was to evaluate the antibacterial efficacy of a novel plasma reactor based on a high current version of sliding discharge and operated by nanosecond voltage pulses without an applied gas flow. This modification is advantageous for both portability and convenience. Bacterial inactivation was determined within a chamber by direct quantification of colony Jing units. Plasma exposure significantly inhibited the growth of Escherichia coli and Staphylococcus epidermidis following a 1-min application (p<0.001). S. epidermidis was more susceptible to the plasma after a 5-min exposure compared to E. coli. Temperature and pH measurements taken immediately before and after plasma exposure determined neither heat nor pH changes play a role in bacterial inactivation. Because of the notable effect on S. epidermidis, the effect of plasma exposure on several isolates and strains of the related opportunistic pathogen Staphylococcus aureus was quantified. While S. aureus isolates and strains were efficiently inactivated on an agar surface, subsequent testing on other clinically relevant surfaces demonstrated that the inactivation level, although significant, was reduced. This reduction appeared to depend on both the surface texture and the surface moisture content. These findings suggest this novel plasma source lacking an applied gas flow has potential application for surface bacterial decontamination.
Collapse
Affiliation(s)
- C M Edelblute
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, United States
| | - M A Malik
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, United States
| | - L C Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508, United States; School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA 23529, United States.
| |
Collapse
|
18
|
Edelblute CM, Heller LC, Malik MA, Heller R. Activated air produced by shielded sliding discharge plasma mediates plasmid DNA delivery to mammalian cells. Biotechnol Bioeng 2015; 112:2583-90. [PMID: 26041378 DOI: 10.1002/bit.25660] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/29/2015] [Accepted: 05/21/2015] [Indexed: 11/12/2022]
Abstract
Cold plasma is emerging as a potential method for medical applications. The current study assessed the efficacy of a novel cold plasma reactor based on shielded sliding discharge producing cathode-directed streamers generated in ambient air for the delivery of plasmid DNA. Experiments were performed with mouse melanoma cells (B16F10) and human keratinocyte cells (HaCaT) inoculated with plasmid DNA encoding luciferase. Quantitative results measured over a 72-h period displayed luciferase expression levels as high as 5-fold greater in cells exposed to plasma-activated air (PAA) than levels obtained from the inoculation of plasmid DNA alone (P < 0.05, P < 0.01). No effect on cell viability was observed. Delivery of plasmid encoding GFP to HaCaT cells seeded on polycaprolactone (PCL) scaffolds was confirmed by immunostaining. The use of cold plasma for DNA delivery is attractive as it provides a non-viral, non-invasive method where the electrode or the plasma itself never directly contacts the exposed site. The current device design provides localized DNA transfer using a novel technology. Our report suggests PAA warrants further exploration as an alternative or supplemental approach for DNA transfer.
Collapse
Affiliation(s)
- Chelsea M Edelblute
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.,Department of Biology, College of Science, Old Dominion University, Norfolk, Virginia
| | - Loree C Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.,School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia, 23529
| | - Muhammad A Malik
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia. .,School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia, 23529.
| |
Collapse
|