1
|
Tang W, Liu W, Li Z, Liu K, Jiang T, Wang S, Qu K, Li J, Zhang X, Zhu Y. Sensitive detection of persulfate by a novel self-powered electrochemical sensor with carbon cloth electrodes modified with tin-doped cobalt tetroxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60451-60464. [PMID: 39379657 DOI: 10.1007/s11356-024-35214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
The accurate and rapid detection of persulfate concentration is important for environmental decontamination and human health protection. In this work, a novel self-powered electrochemical sensor for the sensitive monitoring of persulfate was developed, which utilized cobalt tetroxide (Co3O4@CC) or tin-doped cobalt tetroxide (SnxCo3-xO4@CC) cathode as the sensing element and anode with electrogenic microorganisms as the power supplier. The Co3O4@CC and SnxCo3-xO4@CC electrodes were fabricated by in situ growing nanostructured Co3O4 or SnxCo3-xO4 catalysts on carbon cloth. Electrochemical tests revealed that these electrodes exhibited excellent catalytic reduction performance toward persulfate because of the synergistic catalysis by Co3O4 and electrode electrons, well-exposed Co2+/Co3+ catalytic sites, and high electron transfer efficiency. Tin doping could enhance the catalytic persulfate reduction by improving the conductivity and electron transfer of the Co3O4 catalyst. The electrode prepared at a hydrothermal temperature of 90 °C and a tin dosage of 0.286 g·cm-2 achieved the highest persulfate reduction activity under pH 7. The sensing properties of the self-powered sensors toward persulfate were explored in detail. Results showed that under the optimal external load of 300 Ω, the proposed sensor could display a broad detection range of 0 to 1500 μmol L-1 K2S2O8 with sensitivities of 1.13 and 0.12 μA μmol-1 L, a detection limit of 1.11 μmol L-1 (S/N = 3), and a fast response time within 30 s. The sensors also presented satisfactory reproducibility and selectivity during the detection of persulfate. The proposed sensor will provide a new approach for sensitive, on-site, and real-time monitoring of persulfate for a wide range of applications.
Collapse
Affiliation(s)
- Wanting Tang
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Weifeng Liu
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China.
| | - Zhe Li
- Baowu Group Environmental Resources Technology Co. Ltd, Shanghai, 201900, China
| | - Ke Liu
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Tao Jiang
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Shanhui Wang
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Kai Qu
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Jiayi Li
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Xingzhu Zhang
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Yimin Zhu
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| |
Collapse
|
2
|
Shenbagavalli K, Suganya K, Sundaram E, Murugan M, Sivasamy Vasantha V. First organic fluorescence immunoassay for the detection of Enterobacter cloacae in food matrixes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3927-3937. [PMID: 38832637 DOI: 10.1039/d4ay00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
For the first time, a novel fluorescent moiety, 2-amino-4-(7-formyl-1,8-dihydropyren-2-yl)-7-hydroxy-4H-chromene-3-carbonitrile (ACC), was synthesized by an ultrasonication method. The synthesis of this moiety was confirmed via structural elucidation using FTIR and NMR spectroscopy techniques. Further, photophysical properties of the fluorescent moiety were tested using UV-visible and emission spectroscopy techniques. In this case, the moiety was tagged with an antibody of Enterobacter cloacae via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide (EDC/NHS) coupling and applied as a sensing element for the detection of Enterobacter cloacae (E. cloacae) by UV-visible and emission spectroscopy techniques. The developed fluorescent sensor detected E. cloacae via a FRET mechanism. Under optimized conditions, ACC-anti-E. cloacae detected E. cloacae in the linear range from 101 to 1010 CFU mL-1 with a limit of detection (LOD) of 10.55 CFU mL-1. The developed sensor was applied for the detection of E. cloacae in food samples such as orange, pomegranate, milk, rice, tomato, potato and onion.
Collapse
Affiliation(s)
- Kathiravan Shenbagavalli
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai- 625021, TamilNadu, India.
| | - Kannan Suganya
- Central Research Laboratory, Vinayaka Mission's,Medical College and Hospital, Vinayaka Mission's Research Foundation, Karaikal- 609609, India
| | - Ellairaja Sundaram
- Depatment of Chemistry, Vivekanada College, Tiruvedakam, West, Madurai- 625234, Tamilnadu, India
| | - Marudhamuthu Murugan
- Department of Microbial Technology, School of Biological Science, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
| | - Vairathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai- 625021, TamilNadu, India.
| |
Collapse
|
3
|
Benjamin Ocheja O, Wahid E, Honorio Franco J, Trotta M, Guaragnella C, Marsili E, Guaragnella N, Grattieri M. Polydopamine-immobilized yeast cells for portable electrochemical biosensors applied in environmental copper sensing. Bioelectrochemistry 2024; 157:108658. [PMID: 38309107 DOI: 10.1016/j.bioelechem.2024.108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
The coupling of biological organisms with electrodes enables the development of sustainable, low cost, and potentially self-sustained biosensors. A critical aspect is to obtain portable bioelectrodes where the biological material is immobilized on the electrode surface to be utilized on demand. Herein, we developed an approach for the rapid entrapment and immobilization of metabolically active yeast cells in a biocompatible polydopamine layer, which does not require a separate and time-consuming synthesis. The reported approach allows obtaining the "electrical wire" of intact and active yeast cells with resulting current generation from glucose oxidation. Additionally, the electrochemical performance of the biohybrid yeast-based system has been characterized in the presence of CuSO4, a widely used pesticide, in the environmentally relevant concentration range of 20-100 μM. The system enabled the rapid preliminary monitoring of the contaminant based on variations in current generation, with a limit of detection of 12.5 μM CuSO4. The present approach for the facile preparation of portable yeast-based electrochemical biosensors paves the way for the future development of sustainable systems for environmental monitoring.
Collapse
Affiliation(s)
- Ohiemi Benjamin Ocheja
- Department of Biosciences, Biotechnologies and Environment - University of Bari "A. Moro", Bari, Italy
| | - Ehthisham Wahid
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Jefferson Honorio Franco
- Department of Chemistry, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, Bari 70125, Italy
| | - Massimo Trotta
- Istituto per i Processi Chimico Fisici (CNR-IPCF), Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| | - Cataldo Guaragnella
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, China
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment - University of Bari "A. Moro", Bari, Italy.
| | - Matteo Grattieri
- Department of Chemistry, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, Bari 70125, Italy; Istituto per i Processi Chimico Fisici (CNR-IPCF), Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy.
| |
Collapse
|
4
|
Zakaria BS, Azizi SMM, Pramanik BK, Hai FI, Elbeshbishy E, Dhar BR. Responses of syntrophic microbial communities and their interactions with polystyrene nanoplastics in a microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166082. [PMID: 37544438 DOI: 10.1016/j.scitotenv.2023.166082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Microbial electrochemical technologies are promising for simultaneous energy recovery and wastewater treatment. Although the inhibitory effects of emerging pollutants, particularly micro/nanoplastics (MPs/NPs), on conventional wastewater systems have been extensively studied, the current understanding of their impact on microbial electrochemical systems is still quite limited. Microplastics are plastic particles ranging from 1 μm to 5 mm. However, nanoplastics are smaller plastic particles ranging from 1 to 100 nm. Due to their smaller size and greater surface area, they can penetrate deeper into biofilm structures and cell membranes, potentially disrupting their integrity and leading to changes in biofilm composition and function. This study first reports the impact of polystyrene nanoplastics (PsNPs) on syntrophic anode microbial communities in a microbial electrolysis cell. Low concentrations of PsNPs (50 and 250 μg/L) had a minimal impact on current density and hydrogen production. However, 500 μg/L of PsNPs decreased the maximum current density and specific hydrogen production rate by ∼43 % and ∼48 %, respectively. Exposure to PsNPs increased extracellular polymeric substance (EPS) levels, with a higher ratio of carbohydrates to proteins, suggesting a potential defense mechanism through EPS secretion. The downregulation of genes associated with extracellular electron transfer was observed at 500 μg/L of PsNPs. Furthermore, the detrimental impact of 500 μg/L PsNPs on the microbiome was evident from the decrease in 16S rRNA gene copies, microbial diversity, richness, and relative abundances of key electroactive and fermentative bacteria. For the first time, this study presents the inhibitory threshold of any NPs on syntrophic electroactive biofilms within a microbial electrochemical system.
Collapse
Affiliation(s)
- Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, Australia
| | - Elsayed Elbeshbishy
- Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Yang S, Xiao N, Wang J, Zhang B, Huang JJ. Development of miniature self-powered single-chamber microbial fuel cell and its response mechanism to copper ions in high and trace concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155367. [PMID: 35461944 DOI: 10.1016/j.scitotenv.2022.155367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Copper ions are widely present in water environment and are involved in various biochemical reaction processes, causing irreversible damage to the human body. In this study, we design and establish a self-powered miniature single-chamber microbial fuel cell (SCMFC) reactor using xurography technology. Optimal volume of 188 μL is obtained by controlling the distance between the anode and cathode. Copper ions in two concentration gradients are tested and good linear response curves are obtained. The opposite responses to copper ions in the trace concentration range (0-0.4 mg/L) and high concentration range (1.0-8.0 mg/L) are observed. The results show that at trace concentration range, the inhibitory effect of copper ions on the biofilm activity of micro-SCMFC is dominant; while high concentration copper ions are involved in chemical reactions that produce Cu2O, which may act as a catalyst and promote electron transfer. A good linear response to trace concentration (0-0.4 mg/L) of copper ions with detection limits of 0.05 mg/L is obtained in this study. It could be used in drinking water for trace copper ion detection. The investigation of the mechanisms provides the scientific basis for the design of the efficient detection of copper ions by SCMFC.
Collapse
Affiliation(s)
- Shasha Yang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Nan Xiao
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Jingshu Wang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Beichen Zhang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Pandey A, Sharma P, Varjani S, Nguyen TAH, Hoang NB. A dual chamber microbial fuel cell based biosensor for monitoring copper and arsenic in municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152261. [PMID: 34902426 DOI: 10.1016/j.scitotenv.2021.152261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 05/15/2023]
Abstract
This study investigated a dual-chamber microbial fuel cell-based biosensor (DC-MFC-B) for monitoring copper and arsenic in municipal wastewater. Operational conditions, including pH, flow rate, a load of organic substrate and external resistance load, were optimized to improve the biosensor's sensitivity. The DC-MFC-B's toxicity response was established under the electroactive bacteria inhibition rate function to a specific heavy metal level as well as the recovery of the DC-MFC-B. Results show that the DC-MFC-B was optimized at the operating conditions of 1000 Ω external resistance, COD 300 mg L-1 and 50 mM K3Fe(CN)6 as a catholyte solution. The voltage output of the DC-MFC-B decreased with increasing in the copper and arsenic concentrations. A significant linear relationship between the maximum voltage of the biosensor and the heavy metal concentration was obtained with a coefficient of R2 = 0.989 and 0.982 for copper and arsenic, respectively. The study could detect copper (1-10 mg L-1) and arsenic (0.5-5 mg L-1) over wider range compared to other studies. The inhibition ratio for both copper and arsenic was proportional to the concentrations, indicating the electricity changes are mainly dependent on the activity of the electrogenic bacteria on the anode surface. Moreover, the DC-MFC-B was also recovered in few hours after being cleaned with a fresh medium. It was found that the concentration of the toxicant effected on the recovery time and the recovery time was varied between 4 and 12 h. In short, this work provided new avenues for the practical application of microbial fuel cells as a heavy metal biosensor.
Collapse
Affiliation(s)
- Minh Hang Do
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Ashok Pandey
- Center for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology 12Research, Lucknow 226 001, India
| | - Pooja Sharma
- Center for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Thi An Hang Nguyen
- Vietnam National University, Vietnam - Japan University, Nam Tu Liem Dist., Ha Noi, Viet Nam
| | - Ngoc Bich Hoang
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
7
|
Zakaria BS, Ranjan Dhar B. An intermittent power supply scheme to minimize electrical energy input in a microbial electrolysis cell assisted anaerobic digester. BIORESOURCE TECHNOLOGY 2021; 319:124109. [PMID: 33035866 DOI: 10.1016/j.biortech.2020.124109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
From the perspective of energy saving in the operation of microbial electrolysis cell assisted anaerobic digester (MEC-AD), this study focused on developing an intermittent power supply scheme. The applied potential was switched off for 12 and 6 hours/day during the operation of a laboratory-scale MEC-AD system fed with glucose. The results from the operation under continuous applied potential served as the control. The overall biomethane generation and net energy income from the process were unaffected when the applied potential turned off for 6 hours/day. Both quantitative and qualitative analyses of microbial communities suggested that a balanced microbiome could be maintained under short-term switching-off the applied potential. However, performance substantially deteriorated when the applied potential turned off for 12 hours/day. Overall, the results of this study suggest that MEC-AD operation does not need a continuous power supply, and higher energy efficiency can be effectively achieved by intermittently powering the reactor.
Collapse
Affiliation(s)
- Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
8
|
Zakaria BS, Dhar BR. Changes in syntrophic microbial communities, EPS matrix, and gene-expression patterns in biofilm anode in response to silver nanoparticles exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139395. [PMID: 32454336 DOI: 10.1016/j.scitotenv.2020.139395] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 05/25/2023]
Abstract
Understanding the toxic effect of silver nanoparticles (AgNPs) on various biological wastewater treatment systems is of significant interest to researchers. In recent years, microbial electrochemical technologies have opened up new opportunities for bioenergy and chemicals production from organic wastewater. However, the effects of AgNPs on microbial electrochemical systems are yet to be understood fully. Notably, no studies have investigated the impact of AgNPs on a microbial electrochemical system fed with a complex fermentable substrate. Here, we investigated the impact of AgNPs (50 mg/L) exposure to a biofilm anode in a microbial electrolysis cell (MEC) fed with glucose. The volumetric current density was 29 ± 2.0 A/m3 before the AgNPs exposure, which decreased to 20 ± 2.2 A/m3 after AgNPs exposure. The biofilms produced more extracellular polymeric substances (EPS) to cope with the AgNPs exposure, while carbohydrate to protein ratio in EPS considerably increased from 0.4 to 0.7. Scanning electron microscope (SEM) imaging also confirmed the marked excretion of EPS, forming a thick layer covering the anode biofilms after AgNPs injection. Transmission electron microscope (TEM) imaging showed that AgNPs still penetrated some microbial cells, which could explain the deterioration of MEC performance after AgNPs exposure. The relative expression level of the quorum signalling gene (LuxR) increased by 30%. Microbial community analyses suggested that various fermentative bacterial species (e.g., Bacteroides, Synergistaceae_vadinCA02, Dysgonomonas, etc.) were susceptible to AgNPs toxicity, which led to the disruption of their syntrophic partnership with electroactive bacteria. The abundance of some specific electroactive bacteria (e.g., Geobacter species) also decreased. Moreover, decreased relative expressions of various extracellular electron transfer associated genes (omcB, omcC, omcE, omcZ, omcS, and pilA) were observed. However, the members of family Enterobacteriaceae, known to perform a dual function of fermentation and anodic respiration, became dominant after biofilm anode exposed to AgNPs. Thus, EPS extraction provided partial protection against AgNPs exposure.
Collapse
Affiliation(s)
- Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
9
|
A Self-Powered Biosensor for the Detection of Glutathione. BIOSENSORS-BASEL 2020; 10:bios10090114. [PMID: 32899114 PMCID: PMC7558183 DOI: 10.3390/bios10090114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022]
Abstract
Glutathione is an important biological molecule which can be an indicator of numerous diseases. A method for self-powered detection of glutathione levels in solution has been developed using an enzymatic biofuel cell. The device consists of a glucose oxidase anode and a bilirubin oxidase cathode. For the detection of glutathione, the inhibition of bilirubin oxidase leads to a measurable decrease in current and power output. The reported method has a detection limit of 0.043 mM and a linear range up to 1.7 mM. Being able to detect a range of concentrations can be useful in evaluating a patient’s health. This method has the potential to be implemented as a quick, low-cost alternative to previously reported methods.
Collapse
|
10
|
Lazzarini Behrmann IC, Grattieri M, Minteer SD, Ramirez SA, Vullo DL. Online self-powered Cr(VI) monitoring with autochthonous Pseudomonas and a bio-inspired redox polymer. Anal Bioanal Chem 2020; 412:6449-6457. [DOI: 10.1007/s00216-020-02620-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
|
11
|
Sevda S, Garlapati VK, Naha S, Sharma M, Ray SG, Sreekrishnan TR, Goswami P. Biosensing capabilities of bioelectrochemical systems towards sustainable water streams: Technological implications and future prospects. J Biosci Bioeng 2020; 129:647-656. [PMID: 32044271 DOI: 10.1016/j.jbiosc.2020.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/07/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022]
Abstract
Bioelectrochemical systems (BESs) have been intensively investigated over the last decade owing to its wide-scale environmentally friendly applications, among which wastewater treatment, power generation and environmental monitoring for pollutants are prominent. Different variants of BES such as microbial fuel cell, microbial electrolysis cell, microbial desalination cell, enzymatic fuel cell, microbial solar cell, have been studied. These microbial bioelectrocatalytic systems have clear advantages over the existing analytical techniques for sustainable on-site application in wide environmental conditions with minimum human intervention, making the technology irrevocable and economically feasible. The key challenges to establish this technology are to achieve stable and efficient interaction between the electrode surface and microorganisms, reduction of time for start-up and toxic-shock recovery, sensitivity improvement in real-time conditions, device miniaturization and its long-term economically feasible commercial application. This review article summarizes the recent technical progress regarding bio-electrocatalytic processes and the implementation of BESs as a biosensor for determining various compositional characteristics of water and wastewater.
Collapse
Affiliation(s)
- Surajbhan Sevda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; Department of Biotechnology, National Institute of Technology Warangal, Telangana 506004, India.
| | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Himachal Pradesh 173234, India
| | - Sunandan Naha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mohita Sharma
- Department of Biological Sciences, University of Calgary, Calgary T2N1N4, Canada
| | - Sreemoyee Ghosh Ray
- Department of Civil Engineering, Royal Military College of Canada, Kingston ONK7K3B4, Canada
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
12
|
Hao S, Sun X, Zhang H, Zhai J, Dong S. Recent development of biofuel cell based self-powered biosensors. J Mater Chem B 2020; 8:3393-3407. [DOI: 10.1039/c9tb02428j] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BFC-based SPBs have been used as power sources for other devices and as sensors for detecting toxicity and BOM.
Collapse
Affiliation(s)
- Shuai Hao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xiaoxuan Sun
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
13
|
Grattieri M. Purple bacteria photo-bioelectrochemistry: enthralling challenges and opportunities. Photochem Photobiol Sci 2020; 19:424-435. [DOI: 10.1039/c9pp00470j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Perspective of research directions exploring purple bacteria photo-bioelectrochemistry: from harvesting photoexcited electrons to bioelectrochemical systems development.
Collapse
|
14
|
Liu W, Yin L, Jin Q, Zhu Y, Zhao J, Zheng L, Zhou Z, Zhu B. Sensing performance of a self-powered electrochemical sensor for H2O2 detection based on microbial fuel cell. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Lienemann M, TerAvest MA, Pitkänen J, Stuns I, Penttilä M, Ajo‐Franklin CM, Jäntti J. Towards patterned bioelectronics: facilitated immobilization of exoelectrogenic Escherichia coli with heterologous pili. Microb Biotechnol 2018; 11:1184-1194. [PMID: 30296001 PMCID: PMC6196383 DOI: 10.1111/1751-7915.13309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/02/2018] [Accepted: 08/07/2018] [Indexed: 12/01/2022] Open
Abstract
Biosensors detect signals using biological sensing components such as redox enzymes and biological cells. Although cellular versatility can be beneficial for different applications, limited stability and efficiency in signal transduction at electrode surfaces represent a challenge. Recent studies have shown that the Mtr electron conduit from Shewanella oneidensis MR-1 can be produced in Escherichia coli to generate an exoelectrogenic model system with well-characterized genetic tools. However, means to specifically immobilize this organism at solid substrates as electroactive biofilms have not been tested previously. Here, we show that mannose-binding Fim pili can be produced in exoelectrogenic E. coli and can be used to selectively attach cells to a mannose-coated material. Importantly, cells expressing fim genes retained current production by the heterologous Mtr electron conduit. Our results demonstrate the versatility of the exoelectrogenic E. coli system and motivate future work that aims to produce patterned biofilms for bioelectronic devices that can respond to various biochemical signals.
Collapse
Affiliation(s)
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
- The Molecular FoundryLawrence Berkeley National LaboratoryMolecular Biophysics and Integrated Bioimaging DivisionSynthetic Biology InstituteBerkeleyCAUSA
| | - Juha‐Pekka Pitkänen
- VTT Technical Research Centre of Finland LtdEspooFinland
- Current affiliation: Solar Foods LtdHelsinkiFinland
| | - Ingmar Stuns
- VTT Technical Research Centre of Finland LtdEspooFinland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland LtdEspooFinland
| | - Caroline M. Ajo‐Franklin
- The Molecular FoundryLawrence Berkeley National LaboratoryMolecular Biophysics and Integrated Bioimaging DivisionSynthetic Biology InstituteBerkeleyCAUSA
| | - Jussi Jäntti
- VTT Technical Research Centre of Finland LtdEspooFinland
| |
Collapse
|
16
|
Bioelectrochemical Systems for Removal of Selected Metals and Perchlorate from Groundwater: A Review. ENERGIES 2018. [DOI: 10.3390/en11102643] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Groundwater contamination is a major issue for human health, due to its largely diffused exploitation for water supply. Several pollutants have been detected in groundwater; amongst them arsenic, cadmium, chromium, vanadium, and perchlorate. Various technologies have been applied for groundwater remediation, involving physical, chemical, and biological processes. Bioelectrochemical systems (BES) have emerged over the last 15 years as an alternative to conventional treatments for a wide variety of wastewater, and have been proposed as a feasible option for groundwater remediation due to the nature of the technology: the presence of two different redox environments, the use of electrodes as virtually inexhaustible electron acceptor/donor (anode and cathode, respectively), and the possibility of microbial catalysis enhance their possibility to achieve complete remediation of contaminants, even in combination. Arsenic and organic matter can be oxidized at the bioanode, while vanadium, perchlorate, chromium, and cadmium can be reduced at the cathode, which can be biotic or abiotic. Additionally, BES has been shown to produce bioenergy while performing organic contaminants removal, lowering the overall energy balance. This review examines the application of BES for groundwater remediation of arsenic, cadmium, chromium, vanadium, and perchlorate, focusing also on the perspectives of the technology in the groundwater treatment field.
Collapse
|
17
|
Evaluation of Kefir as a New Anodic Biocatalyst Consortium for Microbial Fuel Cell. Appl Biochem Biotechnol 2018; 185:1118-1131. [DOI: 10.1007/s12010-018-2718-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022]
|
18
|
Santoro C, Mohidin AF, Grasso LL, Seviour T, Palanisamy K, Hinks J, Lauro FM, Marsili E. Sub-toxic concentrations of volatile organic compounds inhibit extracellular respiration of Escherichia coli cells grown in anodic bioelectrochemical systems. Bioelectrochemistry 2016; 112:173-7. [DOI: 10.1016/j.bioelechem.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
|
19
|
Biosensoric potential of microbial fuel cells. Appl Microbiol Biotechnol 2016; 100:7001-9. [DOI: 10.1007/s00253-016-7707-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 02/01/2023]
|
20
|
Li Y, Zhang B, Cheng M, Li Y, Hao L, Guo H. Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:8-12. [PMID: 26685120 DOI: 10.1016/j.jhazmat.2015.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/20/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
Arsenic is one of the most toxic elements commonly found in groundwater. With initial concentration of 200μgL(-1), spontaneous As(III) oxidation is realized completely during 7 days operation in single-chamber microbial fuel cells (MFCs) in the present study, with the maximum power density of 752.6±17mWm(-2). The product is less toxic and mobile As(V), which can be removed from aqueous solution more easily. High-throughput 16S rRNA gene pyrosequencing analysis indicates the existence of arsenic-resistant bacteria as Actinobacteria, Comamonas, Pseudomonas and arsenic-oxidizing bacteria as Enterobacter, with electrochemically active bacteria as Lactococcus, Enterobacter. They interact together and are responsible for As(III) oxidation and bioelectricity generation in MFCs. This study offers a potential attractive method for remediation of arsenic-polluted groundwater.
Collapse
Affiliation(s)
- Yunlong Li
- School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China.
| | - Ming Cheng
- School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| | - Yalong Li
- School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| | - Liting Hao
- School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| | - Huaming Guo
- School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| |
Collapse
|