1
|
Perchikov R, Cheliukanov M, Plekhanova Y, Tarasov S, Kharkova A, Butusov D, Arlyapov V, Nakamura H, Reshetilov A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. BIOSENSORS 2024; 14:302. [PMID: 38920606 PMCID: PMC11201457 DOI: 10.3390/bios14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial biofilms present one of the most widespread forms of life on Earth. The formation of microbial communities on various surfaces presents a major challenge in a variety of fields, including medicine, the food industry, shipping, etc. At the same time, this process can also be used for the benefit of humans-in bioremediation, wastewater treatment, and various biotechnological processes. The main direction of using electroactive microbial biofilms is their incorporation into the composition of biosensor and biofuel cells This review examines the fundamental knowledge acquired about the structure and formation of biofilms, the properties they have when used in bioelectrochemical devices, and the characteristics of the formation of these structures on different surfaces. Special attention is given to the potential of applying the latest advances in genetic engineering in order to improve the performance of microbial biofilm-based devices and to regulate the processes that take place within them. Finally, we highlight possible ways of dealing with the drawbacks of using biofilms in the creation of highly efficient biosensors and biofuel cells.
Collapse
Affiliation(s)
- Roman Perchikov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Maxim Cheliukanov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Yulia Plekhanova
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Sergei Tarasov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Anna Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Denis Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg 197022, Russia;
| | - Vyacheslav Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Tokyo, Japan;
| | - Anatoly Reshetilov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| |
Collapse
|
2
|
Stelmachowski P, Maj D, Grzybek G, Kruczała K, Kotarba A. Functionalization of Graphite with Oxidative Plasma. Int J Mol Sci 2022; 23:ijms23179650. [PMID: 36077050 PMCID: PMC9456250 DOI: 10.3390/ijms23179650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Surface-modified graphite is studied as an electrode material, an adsorbent, and a membrane component, among other applications. Modifying the graphite with plasma can be used to create relevant surface functionalities, in particular, various oxygen groups. The application of surface-oxidized graphite often requires its use in an aqueous environment. The application in an aqueous environment is not an issue for acid-oxidized carbons, but a discrepancy in the structure–activity relationship may arise because plasma-oxidized carbons show a time-dependent decrease in the degree of functionalization and related properties. Moreover, plasma-oxidized materials are often characterized in terms of their chemical and physical properties, most notably their degree of functionalization after plasma treatment, without contact with water. In this study, we used low-temperature plasma oxidation with pure oxygen and carbon dioxide and sample-washing with concentrated nitric and sulfuric acids. To evaluate the electronic properties of modified graphite, the work function changes and surface oxygen content were measured just after plasma modification and after water immersion. We show that water immersion drastically decreases the work function of plasma-treated samples, which is accompanied by a decrease in the number of radicals introduced by plasma. Our results demonstrate that the increase in stable work function as a result of plasma treatment, brought about by an increase in the surface oxygen species concentration, can be realized most effectively for the acid-washed graphite.
Collapse
|
3
|
Zięba M, Rusak T, Misztal T, Zięba W, Marcińczyk N, Czarnecka J, Al-Gharabli S, Kujawa J, Terzyk AP. Nitrogen plasma modification boosts up the hemocompatibility of new PVDF-carbon nanohorns composite materials with potential cardiological and circulatory system implants application. BIOMATERIALS ADVANCES 2022; 138:212941. [PMID: 35913257 DOI: 10.1016/j.bioadv.2022.212941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
To design new material for blood-related applications one needs to consider various factors such as cytotoxicity, platelet adhesion, or anti-thrombogenic properties. The aim of this work is the design of new, highly effective materials possessing high blood compatibility. To do this, the new composites based on the poly(vinylidene fluoride) (PVDF) support covered with a single-walled carbon nanohorns (CNHs) layer were prepared. The PVDF-CNHs composites were subsequently used for the first time in the hemocompatibility studies. To raise the hemocompatibility a new, never applied before for CNHs, plasma-surface modifications in air, nitrogen and ammonia were implemented. This relatively cheap, facile and easy method allows generating the new hybrid materials with high effectiveness and significant differences in surface properties (water contact angle, surface ζ-potential, and surface functional groups composition). Changing those properties made it possible to select the most promising samples for blood-related applications. This was done in a fully controlled way by applying Taguchi's "orthogonal array" procedure. It is shown for the first time that nitrogen plasma treatment of new surfaces is the best tool for hemocompatibility rise and leads to very low blood platelet adhesion, no cytotoxicity, and excellent performance in thromboelastometry and hemolysis tests. We propose a possible mechanism explaining this behavior. The optimisation results are coherent with biological characterisation and are supported with Hansen Solubility Parameters. New surfaces can find potential applications in cardiological and circulatory system implants as well as other blood-related biomaterials.
Collapse
Affiliation(s)
- Monika Zięba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland; Interdisciplinary PhD School "Academia Copernicana", Nicolaus Copernicus University in Toruń, Lwowska Street 1, 87-100 Toruń, Poland
| | - Tomasz Rusak
- Department of Physical Chemistry, Medical University of Bialystok, Adama Mickiewicza 2A, 15-089 Bialystok, Poland
| | - Tomasz Misztal
- Department of Physical Chemistry, Medical University of Bialystok, Adama Mickiewicza 2A, 15-089 Bialystok, Poland
| | - Wojciech Zięba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland; Interdisciplinary PhD School "Academia Copernicana", Nicolaus Copernicus University in Toruń, Lwowska Street 1, 87-100 Toruń, Poland
| | - Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Bialystok, Adama Mickiewicza 2C, 15-089 Bialystok, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska Street 1, 87-100 Toruń, Poland
| | - Samer Al-Gharabli
- Pharmaceutical and Chemical Engineering Department, German Jordanian University, Amman 11180, Jordan
| | - Joanna Kujawa
- Faculty of Chemistry, Department of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland.
| | - Artur P Terzyk
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland.
| |
Collapse
|
4
|
Yi Y, Zhao T, Zang Y, Xie B, Liu H. Different mechanisms for riboflavin to improve the outward and inward extracellular electron transfer of Shewanella loihica. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
5
|
Generation of a Highly Efficient Electrode for Ethanol Oxidation by Simply Electrodepositing Palladium on the Oxygen Plasma-Treated Carbon Fiber Paper. Catalysts 2021. [DOI: 10.3390/catal11020248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, a highly efficient carbon-supported Pd catalyst for the direct ethanol fuel cell was developed by electrodepositing nanostructured Pd on oxygen plasma-treated carbon fiber paper (Pd/pCFP). The oxygen plasma treatment has been shown to effectively remove the surface organic contaminants and add oxygen species onto the CFP to facilitate the deposition of nano-structured Pd on the surface of carbon fibers. Under the optimized and controllable electrodeposition method, nanostructured Pd of ~10 nm can be easily and evenly deposited onto the CFP. The prepared Pd/pCFP electrode exhibited an extraordinarily high electrocatalytic activity towards ethanol oxidation, with a current density of 222.8 mA mg−1 Pd. Interestingly, the electrode also exhibited a high tolerance to poisoning species and long-term stability, with a high ratio of the forward anodic peak current density to the backward anodic peak current density. These results suggest that the Pd/pCFP catalyst may be a promising anodic material for the development of highly efficient direct alcohol fuel cells.
Collapse
|
6
|
Young TD, Liau WT, Lee CK, Mellody M, Wong GCL, Kasko AM, Weiss PS. Selective Promotion of Adhesion of Shewanella oneidensis on Mannose-Decorated Glycopolymer Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35767-35781. [PMID: 32672931 DOI: 10.1021/acsami.0c04329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using glycopolymer surfaces, we have stimulated Shewanella oneidensis bacterial colonization and induced where the bacteria attach on a molecular pattern. When adherent bacteria were rinsed with methyl α-d-mannopyranoside, the glycopolymer-functionalized surfaces retained more cells than self-assembled monolayers terminated by a single mannose unit. These results suggest that the three-dimensional multivalency of the glycopolymers both promotes and retains bacterial attachment. When the methyl α-d-mannopyranoside competitor was codeposited with the cell culture, however, the mannose-based polymer was not significantly different from bare gold surfaces. The necessity for equilibration between methyl α-d-mannopyranoside and the cell culture to remove the enhancement suggests that the retention of cells on glycopolymer surfaces is kinetically controlled and is not a thermodynamic result of the cluster glycoside effect. The MshA lectin appears to facilitate the improved adhesion observed. Our findings that the surfaces studied here can induce stable initial attachment and influence the ratio of bacterial strains on the surface may be applied to harness useful microbial communities.
Collapse
Affiliation(s)
- Thomas D Young
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Walter T Liau
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Calvin K Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michael Mellody
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Gerard C L Wong
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Andrea M Kasko
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Paul S Weiss
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Anode surface modification regulates biofilm community population and the performance of micro-MFC based biochemical oxygen demand sensor. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Li C, Cheng S. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system. Crit Rev Biotechnol 2019; 39:1015-1030. [PMID: 31496297 DOI: 10.1080/07388551.2019.1662367] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Various new energy technologies have been developed to reduce reliance on fossil fuels. The bioelectrochemical system (BES), an integrated microbial-electrochemical energy conversion process, is projected to be a sustainable and environmentally friendly energy technology. However, low power density is still one of the main limiting factors restricting the practical application of BESs. To enhance power output, functional group modification on anode surfaces has been primarily developed to improve the bioelectrochemical performances of BESs in terms of startup, power density, chemical oxygen demand (COD) removal and coulombic efficiency (CE). This modification could change the anode surface characteristics: roughness, hydrophobicity, biocompatibility, chemical bonding and electrochemically active surface area. This will facilitate bacterial adhesion, biofilm formation and extracellular electron transfer (EET). Additionally, some antibacterial functional groups are applied on air cathodes in order to suppress aerobic biofilms and enhance cathodic oxygen reduction reactions (ORRs). Various modification strategies such as: soaking, heat treatment and plasma modification have been reported to introduce functional groups typically as O-, N- and S-containing groups. In this review, the effects of anode functional groups on electroactive bacteria through the whole biofilm formation process are summarized. In addition, the application of those modification technologies to improve bioelectricity generation, resource recovery, bioelectrochemical analysis and the production of value-added chemicals and biofuels is also discussed. Accordingly, this review aims to help scientists select the most appropriate functional groups and up-to-date methods to improve biofilm formation.
Collapse
Affiliation(s)
- Chaochao Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University , Hangzhou , China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University , Hangzhou , China
| |
Collapse
|
9
|
Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis /graphite felt microbial fuel cells. Bioelectrochemistry 2018; 120:1-9. [DOI: 10.1016/j.bioelechem.2017.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 11/20/2022]
|
10
|
Efficient electrochemical generation of hydrogen peroxide by means of plasma-treated graphite electrode and activation in electro-Fenton. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. JOURNAL OF POWER SOURCES 2017; 356:225-244. [PMID: 28717261 PMCID: PMC5465942 DOI: 10.1016/j.jpowsour.2017.03.109] [Citation(s) in RCA: 542] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/23/2017] [Indexed: 05/03/2023]
Abstract
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), University of New Mexico, 87106, Albuquerque, NM, USA
| | - Catia Arbizzani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Benjamin Erable
- University of Toulouse, CNRS, Laboratoire de Génie Chimique, CAMPUS INP – ENSIACET, 4 Allée Emile Monso, CS 84234, 31432, Toulouse Cedex 4, France
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T Block, University of the West of England, Frenchay Campus, Coldharbour Ln, Bristol, BS16 1QY, United Kingdom
| |
Collapse
|
12
|
Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up. Enzyme Microb Technol 2017; 96:1-13. [DOI: 10.1016/j.enzmictec.2016.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
|
13
|
Anodic biofilms as the interphase for electroactive bacterial growth on carbon veil. Biointerphases 2016; 11:031013. [PMID: 27609094 DOI: 10.1116/1.4962264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The structure and activity of electrochemically active biofilms (EABs) are usually investigated on flat electrodes. However, real world applications such as wastewater treatment and bioelectrosynthesis require tridimensional electrodes to increase surface area and facilitate EAB attachment. The structure and activity of thick EABs grown on high surface area electrodes are difficult to characterize with electrochemical and microscopy methods. Here, the authors adopt a stacked electrode configuration to simulate the high surface and the tridimensional structure of an electrode for large-scale EAB applications. Each layer of the stacked electrode is independently characterized using confocal laser scanning microscopy (CLSM) and digital image processing. Shewanella oneidensis MR-1 biofilm on stacked carbon veil electrodes is grown under constant oxidative potentials (0, +200, and +400 mV versus Ag/AgCl) until a stable current output is obtained. The textural, aerial, and volumetric parameters extracted from CLSM images allow tracking of the evolution of morphological properties within the stacked electrodes. The electrode layers facing the bulk liquid show higher biovolumes compared with the inner layer of the stack. The electrochemical performance of S. oneidensis MR-1 is directly linked to the overall biofilm volume as well as connectivity between cell clusters.
Collapse
|
14
|
Ding S, Kingshott P, Thissen H, Pera M, Wang PY. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng 2016; 114:260-280. [DOI: 10.1002/bit.26075] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sheryl Ding
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | | | - Martin Pera
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
- CSIRO Manufacturing; Clayton Victoria Australia
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
- Graduate Institute of Nanomedicine and Medical Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
15
|
Blanchet E, Erable B, De Solan ML, Bergel A. Two-dimensional carbon cloth and three-dimensional carbon felt perform similarly to form bioanode fed with food waste. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.02.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Zhao C, Ding C, Lv M, Wang Y, Jiang L, Liu H. Hydrophilicity boosted extracellular electron transfer in Shewanella loihica PV-4. RSC Adv 2016. [DOI: 10.1039/c5ra24369f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A superhydrophilic electrode enables the drastically boosted bacterial EET activity ofShewanella loihicaPV-4. It is proposed that a hydrophilic electrode favors the reduced state of OMCs, and consequently both the EET activity and cell proliferation are highly facilitated.
Collapse
Affiliation(s)
- Chen Zhao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Chunmei Ding
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Meiling Lv
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Yuan Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- P. R. China
| | - Huan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education
- School of Chemistry and Environment
- Beihang University
- Beijing 100191
- P. R. China
| |
Collapse
|
17
|
Doyle LE, Marsili E. Methods for enrichment of novel electrochemically-active microorganisms. BIORESOURCE TECHNOLOGY 2015; 195:273-282. [PMID: 26189782 DOI: 10.1016/j.biortech.2015.07.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
Electrochemically-active microorganisms (EAM) are relevant to metal biogeochemistry and have applications in microbial fuel cells (MFCs), bioremediation, and bioelectrocatalysis. Most research conducted to date focuses on EAM hailing from two distinct genera, namely Shewanella and Geobacter, with a relatively limited number of EAM discovered in recent years. This review article summarises current approaches to novel EAM enrichment, in terms of inoculum choice, growth medium, reactor configuration, electrochemical characterisation and community profiling through metagenomics and metatranscriptomics. A novel roadmap for EAM enrichment and subsequent characterisation using environmental samples as a starting material is provided in order to increase throughput and hence the likelihood of discovering novel EAM.
Collapse
Affiliation(s)
- Lucinda Elizabeth Doyle
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Enrico Marsili
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore; School of Biotechnology, Dublin City University, Collins Avenue, Dublin, Ireland.
| |
Collapse
|
18
|
Sarjit A, Mei Tan S, A. Dykes G. Surface modification of materials to encourage beneficial biofilm formation. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.4.404] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|