1
|
Massaglia G, Serra T, Pirri FC, Quaglio M. A Nanofiber-Based Gas Diffusion Layer for Improved Performance in Air Cathode Microbial Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2801. [PMID: 37887951 PMCID: PMC10609324 DOI: 10.3390/nano13202801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
This work investigates a new nanostructured gas diffusion layer (nano-GDL) to improve the performance of air cathode single-chamber microbial fuel cells (a-SCMFCs). The new nano-GDLs improve the direct oxygen reduction reaction by exploiting the best qualities of nanofibers from electrospinning in terms of high surface-area-to-volume ratio, high porosity, and laser-based processing to promote adhesion. By electrospinning, nano-GDLs were fabricated directly by collecting two nanofiber mats on the same carbon-based electrode, acting as the substrate. Each layer was designed with a specific function: water-resistant, oxygen-permeable polyvinylidene-difluoride (PVDF) nanofibers served as a barrier to prevent water-based electrolyte leakage, while an inner layer of cellulose nanofibers was added to promote oxygen diffusion towards the catalytic sites. The maximum current density obtained for a-SCMFCs with the new nano-GDLs is 132.2 ± 10.8 mA m-2, and it doubles the current density obtained with standard PTFE-based GDL (58.5 ± 2.4 mA m-2) used as reference material. The energy recovery (EF) factor, i.e., the ratio of the power output to the inner volume of the device, was then used to evaluate the overall performance of a-SCMFCs. a-SCMFCs with nano-GDL provided an EF value of 60.83 mJ m-3, one order of magnitude higher than the value of 3.92 mJ m-3 obtained with standard GDL.
Collapse
Affiliation(s)
- Giulia Massaglia
- Department of Applied Science and Technology, Politecnico of Turin, Corso Duca degli Abruzzi 29, 10129 Torino, Italy; (T.S.); (F.C.P.)
- Center for Sustainable Future and Technologies, Italian Institute of Technology, Via Livorno 60, 10100 Torino, Italy
| | - Tommaso Serra
- Department of Applied Science and Technology, Politecnico of Turin, Corso Duca degli Abruzzi 29, 10129 Torino, Italy; (T.S.); (F.C.P.)
- Center for Sustainable Future and Technologies, Italian Institute of Technology, Via Livorno 60, 10100 Torino, Italy
| | - Fabrizio Candido Pirri
- Department of Applied Science and Technology, Politecnico of Turin, Corso Duca degli Abruzzi 29, 10129 Torino, Italy; (T.S.); (F.C.P.)
- Center for Sustainable Future and Technologies, Italian Institute of Technology, Via Livorno 60, 10100 Torino, Italy
| | - Marzia Quaglio
- Department of Applied Science and Technology, Politecnico of Turin, Corso Duca degli Abruzzi 29, 10129 Torino, Italy; (T.S.); (F.C.P.)
- Center for Sustainable Future and Technologies, Italian Institute of Technology, Via Livorno 60, 10100 Torino, Italy
| |
Collapse
|
2
|
Marzorati S, Cristiani P, Longhi M, Trasatti SP, Traversa E. Nanoceria acting as oxygen reservoir for biocathodes in microbial fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Metallic Organic Framework-Derived Fe, N, S co-doped Carbon as a Robust Catalyst for the Oxygen Reduction Reaction in Microbial Fuel Cells. ENERGIES 2019. [DOI: 10.3390/en12203846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxygen reduction reaction (ORR) provides a vital role for microbial fuel cells (MFCs) due to its slow reaction kinetics compared with the anodic oxidation reaction. How to develop new materials with low cost, high efficacy, and eco-friendliness which could replace platinum-based electrocatalysis is a challenge that we have to resolve. In this work, we accomplished this successfully by means of a facile strategy to synthesize a metallic organic framework-derived Fe, N, S co-doped carbon with FeS as the main phase. The Fe/S@N/C-0.5 catalyst demonstrated outstandingly enhanced ORR activity in neutral PBS and alkaline media, compared to that of commercial 20% Pt-C catalyst. Here, we started-up and operated two parallel single-chamber microbial fuel cells of an air cathode, and those cathode catalysts were Fe/S@N/C-0.5 and commercial Pt-C (20% Pt), respectively. Scanning electron microscopy (SEM) elaborated that the Fe/S@N/C-0.5 composite did not change the polyhedron morphology of ZIF-8. According to X-ray diffractometry(XRD) curves, the main crystal phase of the resulted Fe/S@N/C-0.5 was FeS. The chemical environment of N, S, and Fe which are anticipated to be the high-efficiency active sites of ORR for MFCs were investigated by X-ray photoelectron spectroscopic(XPS). Nitrogen adsorption/desorption techniques were used to calculate the pore diameter distribution. In brief, the obtained Fe/S@N/C-0.5 material exhibited a pronounced reduction potential at 0.861 V (versus Reversible Hydrogen Electrode(RHE)) in 0.1M KOH solution and –0.03 V (vs. SCE) in the PBS solution, which both outperform the benchmark platinum-based catalysts. Fe/S@N/C-0.5-MFC had a higher Open Circuit Voltage(OCV) (0.71 V), stronger maximum power density (1196 mW/m2), and larger output voltage (0.47 V) than the Pt/C-MFC under the same conditions.
Collapse
|
4
|
Santoro C, Walter XA, Soavi F, Greenman J, Ieropoulos I. Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine. Electrochim Acta 2019; 307:241-252. [PMID: 31217626 PMCID: PMC6559283 DOI: 10.1016/j.electacta.2019.03.194] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
A self-stratified microbial fuel cell fed with human urine with a total internal volume of 0.55 ml was investigated as an internal supercapacitor, for the first time. The internal self-stratification allowed the development of two zones within the cell volume. The oxidation reaction occurred on the bottom electrode (anode) and the reduction reaction on the top electrode (cathode). The electrodes were discharged galvanostatically at different currents and the two electrodes were able to recover their initial voltage value due to their red-ox reactions. Anode and cathode apparent capacitance was increased after introducing high surface area activated carbon embedded within the electrodes. Peak power produced was 1.20 ± 0.04 mW (2.19 ± 0.06 mW ml-1) for a pulse time of 0.01 s that decreased to 0.65 ± 0.02 mW (1.18 ± 0.04 mW ml-1) for longer pulse periods (5 s). Durability tests were conducted over 44 h with ≈2600 discharge/recharge cycles. In this relatively long-term test, the equivalent series resistance increased only by 10% and the apparent capacitance decreased by 18%.
Collapse
Affiliation(s)
- Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Francesca Soavi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - John Greenman
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
5
|
Qiao M, Titirici MM. Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. Chemistry 2018; 24:18374-18384. [PMID: 30307068 DOI: 10.1002/chem.201804610] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 01/19/2023]
Abstract
The aqueous oxygen reduction reaction (ORR) has recently received increased attention due to its critical role in clean and sustainable energy-generation technologies, such as proton exchange membranes (PEM) fuel cells, alkaline fuel cells and Zn-air batteries. The sluggish kinetics associated with ORR result from multistep electron-transfer process. The slow kinetics are partially related to the O2 adsorption process onto the catalyst, which happens at the triple-phase boundary (TPB) of the electrocatalyst-electrolyte-oxygen interface. Hence, tremendous efforts have been devoted to improving the intrinsic properties of electrocatalysts such as active sites, electrical conductivity and porosity. Engineering the electrocatalyst's interfacial properties is another critical issue in ORR, however less described in the literature. The surface of the catalyst provides the microenvironment for the triple boundary interface reaction, which directly influences its electrocatalytic activity and the kinetics. This Minireview is a summary of the existing literature on manipulating the interfacial surface of non-precious metal catalysts at the triple point between the solid catalyst, the aqueous electrolyte and the O2 gas with the aim of improving the ORR efficiency. Various approaches towards improving the wettability and nanostructuring the catalyst surface to boost the activity of the surface-active sites and provide improved stability are discussed.
Collapse
Affiliation(s)
- Mo Qiao
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Maria-Magdalena Titirici
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Materials Research Institute, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
6
|
Majidi MR, Shahbazi Farahani F, Hosseini M, Ahadzadeh I. Low-cost nanowired α-MnO 2/C as an ORR catalyst in air-cathode microbial fuel cell. Bioelectrochemistry 2018; 125:38-45. [PMID: 30261369 DOI: 10.1016/j.bioelechem.2018.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
In this work, low cost α-MnO2 nanowires and α-MnO2 nanowires supported on carbon Vulcan (α-MnO2/C) have been synthesized via a simple and facile hydrothermal method for application in microbial fuel cells. The prepared samples have been characterized by X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FE-SEM). Electrocatalytic activities of the samples have been evaluated by means of cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) in a neutral phosphate buffer solution. EIS was performed at different potentials to gain further insight into the kinetic properties of α-MnO2/C. Both catalysts were used in air cathode microbial fuel cells to achieve power densities of 180 and 111 mWm-2 for α-MnO2/C and pristine α-MnO2 nanowires, respectively. α-MnO2/C functions as a good and economical alternative for Pt free catalysts in practical MFC applications, as shown by the findings of stability test and voltage generation cycles in long-term operation of MFC.
Collapse
Affiliation(s)
- Mir Reza Majidi
- Deptartment of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51664 Tabriz, Iran.
| | - Fatemeh Shahbazi Farahani
- Deptartment of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51664 Tabriz, Iran.
| | - Mirghasem Hosseini
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Tabriz University, Tabriz, Iran
| | - Iraj Ahadzadeh
- Research Laboratory for Electrochemical Instrumentation and Energy Systems, Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Erable B, Oliot M, Lacroix R, Bergel A, Serov A, Kodali M, Santoro C, Atanassov P. Iron-Nicarbazin derived platinum group metal-free electrocatalyst in scalable-size air-breathing cathodes for microbial fuel cells. Electrochim Acta 2018; 277:127-135. [PMID: 29970929 PMCID: PMC6004532 DOI: 10.1016/j.electacta.2018.04.190] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this work, a platinum group metal-free (PGM-free) catalyst based on iron as transitional metal and Nicarbazin (NCB) as low cost organic precursor was synthesized using Sacrificial Support Method (SSM). The catalyst was then incorporated into a large area air-breathing cathode fabricated by pressing with a large diameter pellet die. The electrochemical tests in abiotic conditions revealed that after a couple of weeks of successful operation, the electrode experienced drop in performances in reason of electrolyte leakage, which was not an issue with the smaller electrodes. A decrease in the hydrophobic properties over time and a consequent cathode flooding was suspected to be the cause. On the other side, in the present work, for the first time, it was demonstrated the proof of principle and provided initial guidance for manufacturing MFC electrodes with large geometric areas. The tests in MFCs showed a maximum power density of 1.85 W m-2. The MFCs performances due to the addition of Fe-NCB were much higher compared to the iron-free material. A numerical model using Nernst-Monod and Butler-Volmer equations were used to predict the effect of electrolyte solution conductivity and distance anode-cathode on the overall MFC power output. Considering the existing conditions, the higher overall power predicted was 3.6 mW at 22.2 S m-1 and at inter-electrode distance of 1 cm.
Collapse
Affiliation(s)
- Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Manon Oliot
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Rémy Lacroix
- 6T-MIC Ingénieries, 9 rue du développement, 31320, Castanet-Tolosan, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Alexey Serov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, University of New Mexico Albuquerque, NM, 87131, USA
| | - Mounika Kodali
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, University of New Mexico Albuquerque, NM, 87131, USA
| | - Carlo Santoro
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, University of New Mexico Albuquerque, NM, 87131, USA
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), Advanced Materials Lab, 1001 University Blvd. SE Suite 103, MSC 04 2790, University of New Mexico Albuquerque, NM, 87131, USA
| |
Collapse
|
8
|
Wang G, Duan X, Wang D, Dong X, Zhang X. Polyvinylidene fluoride effects on the electrocatalytic properties of air cathodes in microbial fuel cells. Bioelectrochemistry 2018; 120:138-144. [DOI: 10.1016/j.bioelechem.2017.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 11/26/2022]
|
9
|
Kumar R, Singh L, Wahid ZA, Mahapatra DM, Liu H. Novel mesoporous MnCo 2O 4 nanorods as oxygen reduction catalyst at neutral pH in microbial fuel cells. BIORESOURCE TECHNOLOGY 2018; 254:1-6. [PMID: 29413909 DOI: 10.1016/j.biortech.2018.01.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to evaluate the comparative performance of hybrid metal oxide nanorods i.e. MnCo2O4 nanorods (MCON) and single metal oxide nanorods i.e. Co3O4 nanorods (CON) as oxygen reduction catalyst in microbial fuel cells (MFC). Compared to the single metal oxide, the hybrid MCON exhibited a higher BET surface area and provided additional positively charged ions, i.e., Co2+/Co3+ and Mn3+/Mn4+ on its surfaces, which increased the electro-conductivity of the cathode and improved the oxygen reduction kinetics significantly, achieved an io of 6.01 A/m2 that was 12.4% higher than CON. Moreover, the porous architecture of MCON facilitated the diffusion of electrolyte, reactants and electrons during the oxygen reduction, suggested by lower diffusion (Rd), activation (Ract) and ohmic resistance (Rohm) values. This enhanced oxygen reduction by MCON boosted the power generation in MFC, achieving a maximum power density of 587 mW/m2 that was ∼29% higher than CON.
Collapse
Affiliation(s)
- Ravinder Kumar
- Faculty of Engineering Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia
| | - Lakhveer Singh
- Faculty of Engineering Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia; Biological and Ecological Engineering, 116 Gilmore Hall, Oregon State University, Corvallis, OR 97331, USA.
| | - Zularisam Ab Wahid
- Faculty of Engineering Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia
| | - Durga Madhab Mahapatra
- Biological and Ecological Engineering, 116 Gilmore Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Hong Liu
- Biological and Ecological Engineering, 116 Gilmore Hall, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Abstract
Iron aminoantipyrine (Fe-AAPyr), graphene nanosheets (GNSs) derived catalysts and their physical mixture Fe-AAPyr-GNS were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR) with the activated carbon (AC) as a baseline. Fe-AAPyr catalyst was prepared by Sacrificial Support Method (SSM) with silica as a template and aminoantipyrine (AAPyr) as the organic precursor. 3D-GNS was prepared using modified Hummers method technique. The Oxygen Reduction Reaction (ORR) activity of these catalysts at different loadings was investigated by using rotating ring disk (RRDE) electrode setup in the neutral electrolyte. The performance of the catalysts integrated into air-breathing cathode was also investigated. The co-presence of GNS (2 mg cm−2) and Fe-AAPyr (2 mg cm−2) catalyst within the air-breathing cathode resulted in the higher power generation recorded in MFC of 235 ± 1 μW cm−2. Fe-AAPyr catalyst itself showed high performance (217 ± 1 μW cm−2), higher compared to GNS (150 ± 5 μW cm−2) while AC generated power of roughly 104 μW cm−2. Fe-AAPyr and GNS were synthesized and characterized. Rotating ring disk electrode (RRDE) setup was performed in the neutral electrolyte. Fe-AAPyr had higher half wave potential and lower H2O2 production. The combination of Fe-AAPyr and GNS led to a power generation of 235 ± 1 μWcm−2. Both Fe-AAPyr and GNS outperformed compared to activated carbon control.
Collapse
|
11
|
Santoro C, Kodali M, Herrera S, Serov A, Ieropoulos I, Atanassov P. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs. JOURNAL OF POWER SOURCES 2018; 378:169-175. [PMID: 29527091 PMCID: PMC5840685 DOI: 10.1016/j.jpowsour.2017.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 05/05/2023]
Abstract
Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e- transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm-2 and 10 mgcm-2. Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm-2 and 262 ± 4 μWcm-2 with catalyst loading of 0.1 mgcm-2 and 10 mgcm-2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico Albuquerque, New Mexico 87131, USA
| | - Mounika Kodali
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico Albuquerque, New Mexico 87131, USA
| | - Sergio Herrera
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico Albuquerque, New Mexico 87131, USA
| | - Alexey Serov
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico Albuquerque, New Mexico 87131, USA
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico Albuquerque, New Mexico 87131, USA
| |
Collapse
|
12
|
Salar-García M, Ortiz-Martínez V, Gajda I, Greenman J, Hernández-Fernández F, Ieropoulos I. Electricity production from human urine in ceramic microbial fuel cells with alternative non-fluorinated polymer binders for cathode construction. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Oxygen Reduction Reaction Affected by Sulfate-Reducing Bacteria: Different Roles of Bacterial Cells and Metabolites. Indian J Microbiol 2017; 57:344-350. [PMID: 28904420 DOI: 10.1007/s12088-017-0667-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) were found to be capable of tolerating a certain amount of oxygen (O2), but how they affect oxygen reduction reaction (ORR) has not been clear. The present work investigated the impact of SRB on ORR in 3.5 wt% sodium chloride solution with the cyclic voltammetry method. The addition of SRB culture solution hampered both the reduction of O2 to superoxide (O2·-) and hydrogen peroxide (H2O2) to water (H2O), and the influence of SRB metabolites was much larger than that of bacterial cells. Sulfide and extracellular polymeric substances (EPS), typical inorganic and organic metabolic products, had great impact on ORR. Sulfide played an important role in the decrease of cathodic current for H2O2 reduction due to its hydrolysis and chemical reaction activity with H2O2. EPS were sticky, easy to adsorb on the electrode surface and abundant in functional groups, which hindered the transformation of O2 into O2·- and favored the reduction of H2O2 to H2O.
Collapse
|
14
|
Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. JOURNAL OF POWER SOURCES 2017; 356:225-244. [PMID: 28717261 PMCID: PMC5465942 DOI: 10.1016/j.jpowsour.2017.03.109] [Citation(s) in RCA: 546] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/23/2017] [Indexed: 05/03/2023]
Abstract
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), University of New Mexico, 87106, Albuquerque, NM, USA
| | - Catia Arbizzani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Benjamin Erable
- University of Toulouse, CNRS, Laboratoire de Génie Chimique, CAMPUS INP – ENSIACET, 4 Allée Emile Monso, CS 84234, 31432, Toulouse Cedex 4, France
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T Block, University of the West of England, Frenchay Campus, Coldharbour Ln, Bristol, BS16 1QY, United Kingdom
| |
Collapse
|
15
|
Santoro C, Kodali M, Kabir S, Soavi F, Serov A, Atanassov P. Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell. JOURNAL OF POWER SOURCES 2017; 356:371-380. [PMID: 28717262 PMCID: PMC5465940 DOI: 10.1016/j.jpowsour.2017.03.135] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 05/21/2023]
Abstract
Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm-2). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm-2, 1.855 ± 0.007 Wm-2 and 1.503 ± 0.005 Wm-2 for loading of 10, 6 and 2 mgcm-2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm-2). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm-2) to have the maximum power (Pmax) of 5.746 ± 0.186 Wm-2. At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm-2) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm-2).
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mounika Kodali
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sadia Kabir
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Francesca Soavi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum Universita’ di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Alexey Serov
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
16
|
Wang Z, Mahadevan GD, Wu Y, Zhao F. Progress of air-breathing cathode in microbial fuel cells. JOURNAL OF POWER SOURCES 2017; 356:245-255. [DOI: 10.1016/j.jpowsour.2017.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
|
17
|
Kodali M, Santoro C, Serov A, Kabir S, Artyushkova K, Matanovic I, Atanassov P. Air Breathing Cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing Platinum Group Metal-free Catalysts. Electrochim Acta 2017; 231:115-124. [PMID: 28413228 PMCID: PMC5384433 DOI: 10.1016/j.electacta.2017.02.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
The oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in "clean" environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showed that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm-2, followed by Co-AAPyr with 196 ± 1.5 μWcm-2, Ni-AAPyr with 171 ± 3.6 μWcm-2, Mn-AAPyr with 160 ± 2.8 μWcm-2 and AC 129 ± 4.2 μWcm-2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm-1 to 63.1 mScm-1. A maximum power density of 482 ± 5 μWcm-2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.
Collapse
Affiliation(s)
- Mounika Kodali
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Carlo Santoro
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Alexey Serov
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Sadia Kabir
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Kateryna Artyushkova
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Ivana Matanovic
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.,Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Plamen Atanassov
- Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
18
|
Grattieri M, Hasan K, Minteer SD. Bioelectrochemical Systems as a Multipurpose Biosensing Tool: Present Perspective and Future Outlook. ChemElectroChem 2016. [DOI: 10.1002/celc.201600507] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Matteo Grattieri
- Departments of Chemistry and Materials Science & Engineering University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Kamrul Hasan
- Departments of Chemistry and Materials Science & Engineering University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science & Engineering University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| |
Collapse
|
19
|
Catalysis of oxygen reduction reaction by an iron-reducing bacterium isolated from marine corrosion product layers. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Gas Diffusion Electrodes Manufactured by Casting Evaluation as Air Cathodes for Microbial Fuel Cells (MFC). MATERIALS 2016; 9:ma9070601. [PMID: 28773723 PMCID: PMC5456910 DOI: 10.3390/ma9070601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 02/05/2023]
Abstract
One of the most intriguing renewable energy production methods being explored currently is electrical power generation by microbial fuel cells (MFCs). However, to make MFC technology economically feasible, cost efficient electrode manufacturing processes need to be proposed and demonstrated. In this context, VITO has developed an innovative electrode manufacturing process based on film casting and phase inversion. The screening and selection process of electrode compositions was done based on physicochemical properties of the active layer, which in turn maintained a close relation with their composition A dual hydrophilic-hydrophobic character in the active layer was achieved with values of εhydrophilic up to 10% while εTOTAL remained in the range 65 wt % to 75 wt %. Eventually, selected electrodes were tested as air cathodes for MFC in half cell and full cell modes. Reduction currents, up to -0.14 mA·cm2- at -100 mV (vs. Ag/AgCl) were reached in long term experiments in the cathode half-cell. In full MFC, a maximum power density of 380 mW·m-2 was observed at 100 Ω external load.
Collapse
|
21
|
Tursun H, Liu R, Li J, Abro R, Wang X, Gao Y, Li Y. Carbon Material Optimized Biocathode for Improving Microbial Fuel Cell Performance. Front Microbiol 2016; 7:6. [PMID: 26858695 PMCID: PMC4726804 DOI: 10.3389/fmicb.2016.00006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022] Open
Abstract
To improve the performance of microbial fuel cells (MFCs), the biocathode electrode material of double-chamber was optimized. Alongside the basic carbon fiber brush, three carbon materials namely graphite granules, activated carbon granules (ACG) and activated carbon powder, were added to the cathode-chambers to improve power generation. The result shows that the addition of carbon materials increased the amount of available electroactive microbes on the electrode surface and thus promote oxygen reduction rate, which improved the generation performance of the MFCs. The Output current (external resistance = 1000 Ω) greatly increased after addition of the three carbon materials and maximum power densities in current stable phase increased by 47.4, 166.1, and 33.5%, respectively. Additionally, coulombic efficiencies of the MFC increased by 16.3, 64.3, and 20.1%, respectively. These results show that MFC when optimized with ACG show better power generation, higher chemical oxygen demands removal rate and coulombic efficiency.
Collapse
Affiliation(s)
- Hairti Tursun
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Rui Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Jing Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Rashid Abro
- Beijing Key Laboratory of Membrane Science and Technology, College of Chemical Engineering, Beijing University of Chemical Technology Beijing, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Yanmei Gao
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Yuan Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| |
Collapse
|
22
|
Three-dimensional X-ray microcomputed tomography of carbonates and biofilm on operated cathode in single chamber microbial fuel cell. Biointerphases 2015; 10:031009. [DOI: 10.1116/1.4930239] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|