1
|
K R, Roy Choudury AN, Dubey AK, Kumaran V, Basu B. On the origin of the biological effects of time varying magnetic fields: quantitative insights. J Mater Chem B 2024. [PMID: 38958687 DOI: 10.1039/d4tb00362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In a number of recently published experimental studies from our research group, the positive impact of magnetic stimuli (static/pulsed) on cell functionality modulation or bactericidal effects, in vitro, has been established. In order to develop a theoretical understanding of such magnetobiological effects, the present study aimed to present two quantitative models to determine magnetic Maxwell stresses as well as pressure acting on the cell membrane, under the influence of a time varying magnetic field. The model predicts that magnetic field-induced stress on the cell/bacteria is dependent on the conductivity properties of the extracellular region, which is determined to be too low to cause any significant effect. However, the force on the cell/bacteria due to the induced electric field is more influential than that of the magnetic field, which has been used to determine the membrane tension that can cause membrane poration. With a known critical membrane tension for cells, the field parameters necessary to cause membrane rupture have been estimated. Based on the experimental results and theoretically predicted values, the field parameters can be classified into three regimes, wherein the magnetic fields cause no effect or result in biophysical stimulation or induce cell death due to membrane damage. Taken together, this work provides some quantitative insights into the impact of magnetic fields on biological systems.
Collapse
Affiliation(s)
- Ravikumar K
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA, USA
| | - Aditya N Roy Choudury
- Department of Energy Science and Engineering, Indian Institute of Technology, Mumbai, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - V Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
2
|
Cai R, Ma Y, Wang Z, Yuan Y, Guo H, Sheng Q, Yue T. Inactivation activity and mechanism of pulsed light against Alicyclobacillus acidoterrestris vegetative cells and spores in concentrated apple juice. Int J Food Microbiol 2024; 413:110576. [PMID: 38246025 DOI: 10.1016/j.ijfoodmicro.2024.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Alicyclobacillus acidoterrestris has received much attention due to its unique thermo-acidophilic property and implication in the spoilage of pasteurized juices. The objective of this study was to evaluate the sterilization characteristics and mechanisms of pulsed light (PL) against A. acidoterrestris vegetative cells and spores in apple juice. The results indicated that bacteria cells in apple juice (8-20°Brix) can be completely inactivated within the fluence range of 20.25-47.25 J/cm2, which mainly depended on the soluble solids content (SSC) of juice, and the spores in apple juice (12°Brix) can be completely inactivated by PL with the fluence of 54.00 J/cm2. The PL treatment can significantly increase the leakage of reactive oxygen species (ROS) and proteins from cells and spores. Fluorescence studies of bacterial adenosine triphosphate (ATP) indicated that the loss of ATP was evident. Scanning electron microscopy and confocal laser scanning microscope presented that PL-treated cells or spores had serious morphological damage, which reduced the integrity of cell membrane and led to intracellular electrolyte leakage. In addition, there were no significant negative effects on total sugars, total acids, total phenols, pH value, SSC and soluble sugars, and organic acid content decreased slightly during the PL treatment. The contents of esters and acids in aroma components had a certain loss, while that of alcohols, aldehydes and ketones were increased. These results demonstrated that PL treatment can effectively inactivate the bacteria cells and spores in apple juice with little effect on its quality. This study provides an efficient method for the inactivation of A. acidoterrestris in fruit juice.
Collapse
Affiliation(s)
- Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'An, Shaanxi 710069, China
| | - Yali Ma
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'An, Shaanxi 710069, China
| | - Hong Guo
- College of Food Science and Engineering, Northwest University, Xi'An, Shaanxi 710069, China
| | - Qinglin Sheng
- College of Food Science and Engineering, Northwest University, Xi'An, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'An, Shaanxi 710069, China.
| |
Collapse
|
3
|
Antimicrobial activity and mechanism of preservatives against Alicyclobacillus acidoterrestris and its application in apple juice. Int J Food Microbiol 2023; 386:110039. [PMID: 36473316 DOI: 10.1016/j.ijfoodmicro.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Alicyclobacillus acidoterrestris has great influence on the quality of apple juice products. In this study, the antibacterial activity of five preservatives (ε-polylysine, propylparaben, monocaprin, octyl gallate and heptylparaben) against A. acidoterrestris and its underlying mechanism were investigated. Results showed that these five preservatives all exerted antibacterial activity through a multiple bactericidal mechanism, and monocaprin and octyl gallate had the highest antibacterial activity, with the minimum inhibitory concentration (MIC) values of 22.5 and 6.25 mg/L, respectively. Five preservatives all changed the permeability of the cell membrane and destroyed the complete cell morphology, with the leakages of the intracellular electrolytes. Moreover, the treatment of ε-polylysine, propylparaben and monocaprin increased the leakage of intracellular protein; propylparaben and octyl gallate reduced the levels of cellular adenosine triphosphate. Also, monocaprin and octyl gallate may stimulate bacteria to release a large amount of reactive oxygen species, so that certain oxidative damage can kill the bacteria. Furthermore, monocaprin and octyl gallate could effectively inactivate the contamination of A. acidoterrestris in apple juices, with the slightly decrease of soluble sugars and organic acids, without significant adverse effects on total sugars and titratable acids. This research highlights the great promise of using monocaprin and octyl gallate as the safe multi-functionalized food additives for food preservations.
Collapse
|
4
|
Wahia H, Fakayode OA, Mustapha AT, Zhou C, Dabbour M. Application and potential of multifrequency ultrasound in juice industry: Comprehensive analysis of inactivation and germination of Alicyclobacillus acidoterrestris spores. Crit Rev Food Sci Nutr 2022; 64:4561-4586. [PMID: 36412233 DOI: 10.1080/10408398.2022.2143475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The majority of acidic fruits are perishable owing to their high-water activity, which promotes microbial activity, thus exhibiting metabolic functions that cause spoilage. Along with sanitary practices, several treatments are used during processing and/or storage to inhibit the development of undesirable bacteria. To overcome the challenges caused by mild heat treatment, juice manufacturers have recently increased their involvement in developing novel non-thermal processing procedures. Ultrasonication alone or in combination with other hurdle technologies may be used to pasteurize processed fruit juices. Multifrequency ultrasound has gained popularity due to the fact that mono-frequency ultrasound has less impact on bacterial inactivation and bioactive compound enhancement of fruit juice. Here, we present and discuss the fundamental information and technological knowledge of how spoilage bacteria, specifically Alicyclobacillus acidoterrestris, assemble resistant spores and inactivate and germinate dormant spores in response to nutrient germinants and physical treatments such as heat and ultrasound. To the authors' knowledge, no prior review of ultrasonic inactivation and germination of A. acidoterrestris in fruit juice exists. Therefore, this article aims to provide a review of previously published research on the inactivation and germination of A. acidoterrestris in fruit juice by ultrasound and heat.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | | | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, PR China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia, Egypt
| |
Collapse
|
5
|
Simulation study of cell transmembrane potential and electroporation induced by time-varying magnetic fields. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Wahia H, Zhang L, Zhou C, Mustapha AT, Fakayode OA, Amanor-Atiemoh R, Ma H, Dabbour M. Pulsed multifrequency thermosonication induced sonoporation in Alicyclobacillus acidoterrestris spores and vegetative cells. Food Res Int 2022; 156:111087. [DOI: 10.1016/j.foodres.2022.111087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
|
7
|
Basu B, Gowtham N, Xiao Y, Kalidindi SR, Leong KW. Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials. Acta Biomater 2022; 143:1-25. [PMID: 35202854 DOI: 10.1016/j.actbio.2022.02.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Conventional approaches to developing biomaterials and implants require intuitive tailoring of manufacturing protocols and biocompatibility assessment. This leads to longer development cycles, and high costs. To meet existing and unmet clinical needs, it is critical to accelerate the production of implantable biomaterials, implants and biomedical devices. Building on the Materials Genome Initiative, we define the concept 'biomaterialomics' as the integration of multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools throughout the entire pipeline of biomaterials development. The Data Science-driven approach is envisioned to bring together on a single platform, the computational tools, databases, experimental methods, machine learning, and advanced manufacturing (e.g., 3D printing) to develop the fourth-generation biomaterials and implants, whose clinical performance will be predicted using 'digital twins'. While analysing the key elements of the concept of 'biomaterialomics', significant emphasis has been put forward to effectively utilize high-throughput biocompatibility data together with multiscale physics-based models, E-platform/online databases of clinical studies, data science approaches, including metadata management, AI/ Machine Learning (ML) algorithms and uncertainty predictions. Such integrated formulation will allow one to adopt cross-disciplinary approaches to establish processing-structure-property (PSP) linkages. A few published studies from the lead author's research group serve as representative examples to illustrate the formulation and relevance of the 'Biomaterialomics' approaches for three emerging research themes, i.e. patient-specific implants, additive manufacturing, and bioelectronic medicine. The increased adaptability of AI/ML tools in biomaterials science along with the training of the next generation researchers in data science are strongly recommended. STATEMENT OF SIGNIFICANCE: This leading opinion review paper emphasizes the need to integrate the concepts and algorithms of the data science with biomaterials science. Also, this paper emphasizes the need to establish a mathematically rigorous cross-disciplinary framework that will allow a systematic quantitative exploration and curation of critical biomaterials knowledge needed to drive objectively the innovation efforts within a suitable uncertainty quantification framework, as embodied in 'biomaterialomics' concept, which integrates multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools, like machine learning. The formulation of this approach has been demonstrated for patient-specific implants, additive manufacturing, and bioelectronic medicine.
Collapse
|
8
|
Naskar S, Chandan, Baskaran D, Roy Choudhury AN, Chatterjee S, Karunakaran S, Murthy BVS, Basu B. Dosimetry of pulsed magnetic field towards attaining bacteriostatic effect on Enterococcus faecalis: Implications for endodontic therapy. Int Endod J 2021; 54:1878-1891. [PMID: 34046919 DOI: 10.1111/iej.13580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
AIM To examine in a laboratory setting the efficacy of moderate to high strength magnetic fields, as a potential bacteriostatic stimulus, against Enterococcus faecalis, one of the causative agents for infection during root canal treatments. METHODOLOGY Four different strengths (1, 2, 3 and 4 T) of the pulsed magnetic field (PMF) were applied in thirty repetitions to bacterial suspension. A pickup coil setup was used to measure the electromotive force induced inside the bacterial suspensions. The optical density (OD) was monitored over time (for 16 h 40 min) during the post-treatment period to assess bacterial growth. Along with the change in OD values, live/dead assay, membrane depolarization study, atomic force microscopy (AFM), scanning electron microscopy (SEM) and reactive oxygen species (ROS) assay on selected samples were studied to evaluate the effect of PMFs. All results were analysed using one-way ANOVA followed by post hoc Tukey test and considered significant at p < .05. Regression analysis (at a confidence of 95%, α = 0.05) was performed on the bacterial growth and membrane depolarization studies to determine progressive changes of the outcomes. RESULTS The peak value of the induced electromotive force was recorded as 0.25 V, for the 4 T magnetic field pulse with a pulse width of 16 ms. There was a significant arrest of bacterial cell growth after an exposure to PMFs of 1 T, 3 T and 4 T (ANOVA score: F (4, 495) =395.180 at p = .05). The image-based qualitative results of the live/dead assay using fluorescence microscopy techniques indicated that an exposure to higher PMFs (3 T/ 4 T) induced a bacteriostatic effect in a longer post-exposure timescale. Evidence of altered membrane potential within the 2 h of exposure to 4 T PMF was supported by the incidence of elevated ROS. For the ROS assay, a significant difference occurred for 4 T exposed samples (ANOVA score: calculated F (1, 3) =20.2749 at p = .05). SEM and AFM observations corroborated with the outcomes, by portraying significant membrane damage. CONCLUSION In a laboratory setting, PMFs with higher magnitudes (3 T and 4 T) were capable of inducing bacteriostatic effects on E. faecalis.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India.,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.,Translational Centre on Biomaterials for Orthopedic and Dental Applications, Bangalore, India
| | - Chandan
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - Divya Baskaran
- Department of Conservative Dentistry & Endodontics, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Aditya N Roy Choudhury
- Translational Centre on Biomaterials for Orthopedic and Dental Applications, Bangalore, India
| | - Subhomoy Chatterjee
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
| | | | - B V Sreenivasa Murthy
- Department of Conservative Dentistry & Endodontics, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India.,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.,Translational Centre on Biomaterials for Orthopedic and Dental Applications, Bangalore, India
| |
Collapse
|
9
|
Wahia H, Zhou C, Fakayode OA, Amanor-Atiemoh R, Zhang L, Taiye Mustapha A, Zhang J, Xu B, Zhang R, Ma H. Quality attributes optimization of orange juice subjected to multi-frequency thermosonication: Alicyclobacillus acidoterrestris spore inactivation and applied spectroscopy ROS characterization. Food Chem 2021; 361:130108. [PMID: 34038826 DOI: 10.1016/j.foodchem.2021.130108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 12/01/2022]
Abstract
This is the first time to investigate the synergistic inactivation effect and mechanism of multifrequency ultrasound (MTUS) on A. acidoterrestris (AAT) vegetative cells and spores, nutrients and enzymes of orange juice. The optimized results of MTUS (using Box Behnken design- surface responsemethodology) and further comparison with different mode of ultrasound (mono-and multi-frequency) revealed that 20/40 kHz, 24 min and 64 °C were the best optimum results. The AAT spores and vegetative cells were inactivated by 2 and 4 logs, respectively, without deteriorating orange juice contents. In addition, AAT inactivation indicated an inversely proportional relationship with ROS production. FT-IR and UV-Vis spectroscopy characterization confirmed the existence of ROS in treated orange juice and LF-NMR analysis confirmed the inactivation of AAT spores. The findings illustrated the successfully used dual-frequency ultrasound technology for fruit beverages, promoting beneficial changes in physical properties without any significant effects on the quality of ascorbic acid.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Biological and Food Engineering, Chuzhou University, Chuzhou 239000, PR China.
| | | | - Robert Amanor-Atiemoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Long Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | - Jin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Rong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
10
|
Robby AI, Park SY. Recyclable metal nanoparticle-immobilized polymer dot on montmorillonite for alkaline phosphatase-based colorimetric sensor with photothermal ablation of Bacteria. Anal Chim Acta 2019; 1082:152-164. [DOI: 10.1016/j.aca.2019.07.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 01/25/2023]
|
11
|
Tang D, Gao Q, Zhao Y, Li Y, Chen P, Zhou J, Xu R, Wu Z, Xu Y, Li H. Mg2+ reduces biofilm quantity in Acidithiobacillus ferrooxidans through inhibiting Type IV pili formation. FEMS Microbiol Lett 2019; 365:4835517. [PMID: 29408987 DOI: 10.1093/femsle/fnx266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/06/2017] [Indexed: 11/14/2022] Open
Abstract
Bioleaching is a promising process for 350 million tons of Jinchuan low-grade pentlandite. But high concentration of Mg2+ is harmful to bioleaching microorganisms. Interestingly, biofilm formation can improve leaching rate. Thus, it is actually necessary to investigate the effect of Mg2+ stress on Acidithiobacillus ferrooxidans biofilms formation. In this study, we found that 0.1 and 0.5 M Mg2+ stress significantly reduced the total biomass of biofilm in a dose-dependent manner. The observation results of extracellular polymeric substances and bacteria using confocal laser scanning microscopy showed that the biofilm became thinner and looser under Mg2+ stress. Whereas 0.1 and 0.5 M Mg2+ stress had no remarkable effect on the bacterial viability, the attachment rate of Acidithiobacillus ferrooxidans to pentlandite was reduced by Mg2+ stress. Furthermore, sliding motility, twitching motility and the gene expression level of pilV and pilW were inhibited under Mg2+ stress. These results suggested that Mg2+ reduced biofilm formation through inhibiting pilV and pilW gene expression, decreasing Type IV pili formation and then attenuating the ability of attachment, subduing the active expansion of biofilms mediated by twitching motility. This study provided more information about the effect of Mg2+ stress on biofilm formation and may be useful for increasing the leaching rate in low-grade pentlandit.
Collapse
Affiliation(s)
- Deping Tang
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China.,The School of Chemical & Biological Engineering, Lanzhou Jiaotong University, West Anning Road No. 88, Lanzhou 730070, PR China
| | - Qiyu Gao
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China
| | - Yang Zhao
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China
| | - Yang Li
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Peng Chen
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Jianping Zhou
- Institute of Biology, Gansu Academy of Sciences, South Dingxi Road No. 229, Lanzhou 730000, PR China
| | - Ruixiang Xu
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Zhengrong Wu
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Yuandong Xu
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Hongyu Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China.,Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| |
Collapse
|
12
|
Liu Q, Li H, Lam KY. Optimization of the cell microenvironment in a dual magnetic-pH-sensitive hydrogel-based scaffold by multiphysics modeling. Bioelectrochemistry 2019; 129:90-99. [PMID: 31132529 DOI: 10.1016/j.bioelechem.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022]
Abstract
A dual magnetic-pH-sensitive hydrogel-based scaffold was studied for optimization of a cell microenvironment by scaffold mechanical deformation and its biochemical response. In particular, the positions of the seeding cells and the concentration of potassium (K+) within the scaffold were optimized by a multieffect-coupling magnetic-pH-stimuli (MECmpH) model based on (i) the threshold of the mechanical force required for a mechanotransduction effect at the cellular level, and (ii) the common biological requirement for cell growth. In this model, the physicochemical mechanisms of a magnetic hydrogel were characterized using magneto-chemo-electro-mechanical coupled effects, including hydrogel magnetization, diffusion of the solvent and ions, ionic polarization, and nonlinear deformation. After validation of the model with experimental data, it was found that a higher pH and current intensity at the electromagnet and a shorter hydrogel-magnet distance contribute to larger scaffold deformation and thus a stronger mechanical force on the cells. Moreover, the cell seeding positions within the magnetic scaffold were optimized for improved cell culture through controlled current intensity in the electromagnet. Furthermore, the physiological concentration of K+ was also optimized by the initial fixed charge density within the scaffold. We concluded that this optimized magnetic scaffold via the MECmpH model may provide an appropriate microenvironment for efficient cell growth.
Collapse
Affiliation(s)
- Qimin Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.
| | - K Y Lam
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| |
Collapse
|
13
|
Singh A, Dubey AK. Various Biomaterials and Techniques for Improving Antibacterial Response. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00033] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Angaraj Singh
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi-221005, Uttar Pradesh, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
14
|
Zhu N, Yu N, Zhu Y, Wei Y, Hou Y, Zhang H, Sun AD. Identification of spoilage microorganisms in blueberry juice and their inactivation by a microchip pulsed electric field system. Sci Rep 2018; 8:8160. [PMID: 29802290 PMCID: PMC5970226 DOI: 10.1038/s41598-018-26513-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/11/2018] [Indexed: 01/08/2023] Open
Abstract
Blueberry juice is a healthy and nutritious food that has become increasingly popular worldwide. However, little is known about the microbial groups of this juice that can cause its spoilage. This study aimed to identify the main spoilage microorganisms in blueberry juice and explore whether a microchip pulsed electric field (MPEF) can effectively inactivate them. We performed polymerase chain reaction (PCR) amplification, as well as 16S rDNA, 18S rDNA, internal transcribed spacer (ITS), and 26S rDNA gene sequence analyses. Nine species belonging to eight genera, including Pantoea, Burkholderia, Pichia, Meyerozyma, Cryptococcus, Aureobasidium, Cladosporium, and Penicillium were identified as spoilage microorganisms. Cryptococcus sp., Meyerozyma sp., and Pichia sp. were specific spoilage organisms (SSO) owing to their rising numbers throughout spoilage progression. The effect of MPEF on the potential inactivation of these microorganisms was to induce significant inactivation of viable Cryptococcus sp., Meyerozyma sp., and Pichia sp. This research provides a theoretical basis for the application of MPEF in improving the quality of blueberry juice.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ning Yu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yulong Wei
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanan Hou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Haiping Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ai-Dong Sun
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Li J, Wang J, Wang D, Guo G, Yeung KWK, Zhang X, Liu X. Band Gap Engineering of Titania Film through Cobalt Regulation for Oxidative Damage of Bacterial Respiration and Viability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27475-27490. [PMID: 28748698 DOI: 10.1021/acsami.7b06867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biomaterial-related bacterial infections cause patient suffering, mortality, and extended periods of hospitalization and impose a substantial burden on medical systems. In this context, understanding the interactions between nanomaterials and bacteria is clinically significant. Herein, TiO2-based heterojunctions, including Co-TiO2, CoO-TiO2, and Co3O4-TiO2, were first designed by optimizing magnetron sputtering to establish a platform to explore the interactions between nanomaterials and bacteria. We found that the energy band bending and band gap narrowing were effectively promoted at the contact interface of the heterojunctions, which have the ability to induce abiotic reactive oxygen species formation. Using methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis, in vitro studies showed that the heterojunctions of Co-TiO2, CoO-TiO2, and especially Co3O4-TiO2 can effectively downregulate the expression levels of bacterial respiratory genes and cause oxidative damage to bacterial membrane respiration and viability. As a result, the surfaces of the heterojunctions possess a favorable antiadherent bacterial activity. Moreover, using an osteomyelitis model, the preclinical study on rats further confirmed the favorable anti-infection effect of the elaborately designed heterojunctions (especially Co3O4-TiO2). We hope this study can provide new insights into the surface antibacterial design of biomaterials using energy band engineering for both basic research and clinical needs. Meanwhile, this attempt may also contribute to expanding the biomedical applications of cobalt-based nanoparticles for the treatment of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital , Shenzhen 518053, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Donghui Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital , Shenzhen 518053, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| |
Collapse
|
16
|
Pérez-Tanoira R, Han X, Soininen A, Aarnisalo AA, Tiainen VM, Eklund KK, Esteban J, Kinnari TJ. Competitive colonization of prosthetic surfaces by staphylococcus aureus and human cells. J Biomed Mater Res A 2016; 105:62-72. [PMID: 27513443 DOI: 10.1002/jbm.a.35863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
Abstract
Implantation of a biomaterial provides an adhesion substratum both to host cell integration and to contaminating bacteria. We studied simultaneous competitive adhesion of Staphylococcus aureus in serial 1:10 dilutions of 108 colony forming units (CFU)/mL and human osteogenic sarcoma (SaOS-2) or primary osteoblast (hOB) cells, both 1x105 cells/mL, to the surfaces of titanium, polydimethylsiloxane and polystyrene. The bacterial adherence and human cell proliferation, cytotoxicity and production of reactive oxygen species (ROS) were studied using fluorometric (fluorescent microscopy and flow cytometry) and colorimetric methods (MTT, LDH and crystal violet). The bacterial cell viability was also evaluated using the drop plate method. The presence of bacteria resulted in reduced adherence of human cells to the surface of the biomaterials, increased production of ROS, and into increased apoptosis. On the other hand, the presence of either type of human cells was associated with a reduction of bacterial colonization of the biomaterial with Staphylococcus aureus. These results suggest that increasing colonization of the biomaterial surface in vitro by one negatively affects colonization by the other. Host cell integration to an implant surface reduces bacterial contamination, which opens novel opportunities for the design of infection-resistant biomaterials in current implantology and future regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 62-72, 2017.
Collapse
Affiliation(s)
- Ramón Pérez-Tanoira
- Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Xia Han
- Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Soininen
- ORTON Research Institute, Helsinki, Finland.,ORTON Orthopedic Hospital, Helsinki, Finland
| | - Antti A Aarnisalo
- Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Veli-Matti Tiainen
- ORTON Research Institute, Helsinki, Finland.,ORTON Orthopedic Hospital, Helsinki, Finland
| | - Kari K Eklund
- Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaime Esteban
- Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Teemu J Kinnari
- Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Léonard L, Bouarab Chibane L, Ouled Bouhedda B, Degraeve P, Oulahal N. Recent Advances on Multi-Parameter Flow Cytometry to Characterize Antimicrobial Treatments. Front Microbiol 2016; 7:1225. [PMID: 27551279 PMCID: PMC4976717 DOI: 10.3389/fmicb.2016.01225] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
The investigation on antimicrobial mechanisms is a challenging and crucial issue in the fields of food or clinical microbiology, as it constitutes a prerequisite to the development of new antimicrobial processes or compounds, as well as to anticipate phenomenon of microbial resistance. Nowadays it is accepted that a cells population exposed to a stress can cause the appearance of different cell populations and in particular sub-lethally compromised cells which could be defined as viable but non-culturable (VBNC). Recent advances on flow cytometry (FCM) and especially on multi-parameter flow cytometry (MP-FCM) provide the opportunity to obtain high-speed information at real time on damage at single-cell level. This review gathers MP-FCM methodologies based on individual and simultaneous staining of microbial cells employed to investigate their physiological state following different physical and chemical antimicrobial treatments. Special attention will be paid to recent studies exploiting the possibility to corroborate MP-FCM results with additional techniques (plate counting, microscopy, spectroscopy, molecular biology techniques, membrane modeling) in order to elucidate the antimicrobial mechanism of action of a given antimicrobial treatment or compound. The combination of MP-FCM methodologies with these additional methods is namely a promising and increasingly used approach to give further insight in differences in microbial sub-population evolutions in response to antimicrobial treatments.
Collapse
Affiliation(s)
- Lucie Léonard
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Lynda Bouarab Chibane
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Balkis Ouled Bouhedda
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Pascal Degraeve
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Nadia Oulahal
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| |
Collapse
|
18
|
Boda SK, Basu B. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2016; 105:2174-2190. [PMID: 27404048 DOI: 10.1002/jbm.b.33740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
A plethora of antimicrobial strategies are being developed to address prosthetic infection. The currently available methods for implant infection treatment include the use of antibiotics and revision surgery. Among the bacterial strains, Staphylococcus species pose significant challenges particularly, with regard to hospital acquired infections. In order to combat such life threatening infectious diseases, researchers have developed implantable biomaterials incorporating nanoparticles, antimicrobial reinforcements, surface coatings, slippery/non-adhesive and contact killing surfaces. This review discusses a few of the biomaterial and biophysical antimicrobial strategies, which are in the developmental stage and actively being pursued by several research groups. The clinical efficacy of biophysical stimulation methods such as ultrasound, electric and magnetic field treatments against prosthetic infection depends critically on the stimulation protocol and parameters of the treatment modality. A common thread among the three biophysical stimulation methods is the mechanism of bactericidal action, which is centered on biophysical rupture of bacterial membranes, the generation of reactive oxygen species (ROS) and bacterial membrane depolarization evoked by the interference of essential ion-transport. Although the extent of antimicrobial effect, normally achieved through biophysical stimulation protocol is insufficient to warrant therapeutic application, a combination of antibiotic/ROS inducing agents and biophysical stimulation methods can elicit a clinically relevant reduction in viable bacterial numbers. In this review, we present a detailed account of both the biomaterial and biophysical approaches for achieving maximum bacterial inactivation. Summarizing, the biophysical stimulation methods in a combinatorial manner with material based strategies can be a more potent solution to control bacterial infections. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2174-2190, 2017.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
19
|
Boda SK, Pandit S, Garai A, Pal D, Basu B. Bacterial siderophore mimicking iron complexes as DNA targeting antimicrobials. RSC Adv 2016. [DOI: 10.1039/c6ra02603f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial secretion of siderophores for iron uptake can be employed as an efficient strategy to smuggle in bactericidal agents by conjugation to iron.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Laboratory for Biomaterials – Materials Research Centre
- Indian Institute of Science
- Bangalore – 560012
- India
| | - Subhendu Pandit
- Laboratory for Biomaterials – Materials Research Centre
- Indian Institute of Science
- Bangalore – 560012
- India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore – 560012
- India
| | - Debnath Pal
- Department of Computational and Data Sciences
- Indian Institute of Science
- Bangalore – 560012
- India
| | - Bikramjit Basu
- Laboratory for Biomaterials – Materials Research Centre
- Indian Institute of Science
- Bangalore – 560012
- India
- Centre for Biosystems Science and Engineering
| |
Collapse
|