1
|
Cabau-Peinado O, Winkelhorst M, Stroek R, de Kat Angelino R, Straathof AJJ, Masania K, Daran JM, Jourdin L. Microbial electrosynthesis from CO 2 reaches productivity of syngas and chain elongation fermentations. Trends Biotechnol 2024:S0167-7799(24)00152-5. [PMID: 39122591 DOI: 10.1016/j.tibtech.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 08/12/2024]
Abstract
Carbon-based products are essential to society, yet producing them from fossil fuels is unsustainable. Microorganisms have the ability to take up electrons from solid electrodes and convert carbon dioxide (CO2) to valuable carbon-based chemicals. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here, we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO2 to even-chain C2-C6 carboxylic acids over 248 days. We demonstrate a threefold higher biofilm concentration, volumetric current density, and productivity compared with the state of the art. Most notably, the volumetric productivity (VP) resembles those achieved in laboratory-scale and industrial syngas (CO-H2-CO2) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO2 reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale up the technology.
Collapse
Affiliation(s)
- Oriol Cabau-Peinado
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Marijn Winkelhorst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Rozanne Stroek
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Roderick de Kat Angelino
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Kunal Masania
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft 2629 HS, The Netherlands
| | - Jean Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Ludovic Jourdin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| |
Collapse
|
2
|
de Smit SM, van Mameren TD, van Zwet K, van Veelen HPJ, Cristina Gagliano M, Strik DPBTB, Bitter JH. Integration of biocompatible hydrogen evolution catalyst developed from metal-mix solutions with microbial electrosynthesis. Bioelectrochemistry 2024; 158:108724. [PMID: 38714063 DOI: 10.1016/j.bioelechem.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Microbial conversion of CO2 to multi-carbon compounds such as acetate and butyrate is a promising valorisation technique. For those reactions, the electrochemical supply of hydrogen to the biocatalyst is a viable approach. Earlier we have shown that trace metals from microbial growth media spontaneously form in situ electro-catalysts for hydrogen evolution. Here, we show biocompatibility with the successful integration of such metal mix-based HER catalyst for immediate start-up of microbial acetogenesis (CO2 to acetate). Also, n-butyrate formation started fast (after twenty days). Hydrogen was always produced in excess, although productivity decreased over the 36 to 50 days, possibly due to metal leaching from the cathode. The HER catalyst boosted microbial productivity in a two-step microbial community bioprocess: acetogenesis by a BRH-c20a strain and acetate elongation to n-butyrate by Clostridium sensu stricto 12 (related) species. These findings provide new routes to integrate electro-catalysts and micro-organisms showing respectively bio and electrochemical compatibility.
Collapse
Affiliation(s)
- Sanne M de Smit
- Environmental Technology, Wageningen University and Research, Wageningen, The Netherlands; Biobased Chemistry and Technology, Wageningen University and Research, Wageningen, The Netherlands
| | - Thomas D van Mameren
- Environmental Technology, Wageningen University and Research, Wageningen, The Netherlands
| | - Koen van Zwet
- Environmental Technology, Wageningen University and Research, Wageningen, The Netherlands
| | - H Pieter J van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | - M Cristina Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | - David P B T B Strik
- Environmental Technology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Singh NK, Mathuriya AS, Mehrotra S, Pandit S, Singh A, Jadhav D. Advances in bioelectrochemical systems for bio-products recovery. ENVIRONMENTAL TECHNOLOGY 2024; 45:3853-3876. [PMID: 37491760 DOI: 10.1080/09593330.2023.2234676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
Bioelectrochemical systems (BES) have emerged as a sustainable and highly promising technology that has garnered significant attention from researchers worldwide. These systems provide an efficient platform for the removal and recovery of valuable products from wastewater, with minimal or no net energy loss. Among the various types of BES, microbial fuel cells (MFCs) are a notable example, utilizing microbial biocatalytic activities to generate electrical energy through the degradation of organic matter. Other BES variants include microbial desalination cells (MDCs), microbial electrolysis cells (MECs), microbial electrosynthesis cells (MXCs), microbial solar cells (MSCs), and more. BESs have demonstrated remarkable potential in the recovery of diverse products such as hydrogen, methane, volatile fatty acids, precious nutrients, and metals. Recent advancements in scaling up BESs have facilitated a more realistic assessment of their net energy recovery and resource yield in real-world applications. This comprehensive review focuses on the practical applications of BESs, from laboratory-scale developments to their potential for industrial commercialization. Specifically, it highlights successful examples of value-added product recovery achieved through various BES configurations. Additionally, this review critically evaluates the limitations of BESs and provides suggestions to enhance their performance at a larger scale, enabling effective implementation in real-world scenarios. By providing a thorough analysis of the current state of BES technology, this review aims to emphasize the tremendous potential of these systems for sustainable wastewater treatment and resource recovery. It underscores the significance of bridging the gap between laboratory-scale achievements and industrial implementation, paving the way for a more sustainable and resource-efficient future.
Collapse
Affiliation(s)
- Neeraj Kumar Singh
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Abhilasha Singh Mathuriya
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- Ministry of Environment, Forest and Climate Change, New Delhi, India
| | - Smriti Mehrotra
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Soumya Pandit
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Anoop Singh
- Department of Scientific and Industrial Research (DSIR), Government of India, New Delhi, India
| | - Deepak Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology Aurangabad, Maharashtra, India
| |
Collapse
|
4
|
Zhou L, Lai CY, Wu M, Guo J. Simultaneous Biogas Upgrading and Valuable Chemical Production Using Homoacetogens in a Membrane Biofilm Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12509-12519. [PMID: 38963393 DOI: 10.1021/acs.est.4c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Biogas produced from anaerobic digestion usually contains impurities, particularly with a high content of CO2 (15-60%), thus decreasing its caloric value and limiting its application as an energy source. H2-driven biogas upgrading using homoacetogens is a promising approach for upgrading biogas to biomethane and converting CO2 to acetate simultaneously. Herein, we developed a novel membrane biofilm reactor (MBfR) with H2 and biogas separately supplied via bubbleless hollow fiber membranes. The gas-permeable hollow fibers of the MBfR enabled high H2 and CO2 utilization efficiencies (∼98% and ∼97%, respectively) and achieved concurrent biomethane (∼94%) and acetate (∼450 mg/L/d) production. High-throughput 16S rRNA gene amplicon sequencing suggested that enriched microbial communities were dominated by Acetobacterium (38-48% relative abundance). In addition, reverse transcription quantitative PCR of the functional marker gene formyltetrahydrofolate synthetase showed that its expression level increased with increasing H2 and CO2 utilization efficiencies. These results indicate that Acetobacterium plays a key role in CO2 to acetate conversion. These findings are expected to facilitate energy-positive wastewater treatment and contribute to the development of a new solution to biogas upgrading.
Collapse
Affiliation(s)
- Linjie Zhou
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
5
|
Yao H, Rinta-Kanto JM, Vassilev I, Kokko M. Methanol as a co-substrate with CO 2 enhances butyrate production in microbial electrosynthesis. Appl Microbiol Biotechnol 2024; 108:372. [PMID: 38874789 PMCID: PMC11178620 DOI: 10.1007/s00253-024-13218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Methanol is a promising feedstock for the bio-based economy as it can be derived from organic waste streams or produced electrochemically from CO2. Acetate production from CO2 in microbial electrosynthesis (MES) has been widely studied, while more valuable compounds such as butyrate are currently attracting attention. In this study, methanol was used as a co-substrate with CO2 to enhance butyrate production in MES. Feeding with CO2 and methanol resulted in the highest butyrate production rates and titres of 0.36 ± 0.01 g L-1 d-1 and 8.6 ± 0.2 g L-1, respectively, outperforming reactors with only CO2 feeding (0.20 ± 0.03 g L-1 d-1 and 5.2 ± 0.1 g L-1, respectively). Methanol acted as electron donor and as carbon source, both of which contributed ca. 50% of the carbon in the products. Eubacterium was the dominant genus with 52.6 ± 2.5% relative abundance. Thus, we demonstrate attractive route for the use of the C1 substrates, CO2 and methanol, to produce mainly butyrate. KEY POINTS: • Butyrate was the main product from methanol and CO2 in MES • Methanol acted as both carbon and electron source in MES • Eubacterium dominating microbial culture was enriched in MES.
Collapse
Affiliation(s)
- Hui Yao
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Johanna M Rinta-Kanto
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Igor Vassilev
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland.
| |
Collapse
|
6
|
Su Kim H, Lee S, Moon M, Jong Jung H, Lee J, Chu YH, Rae Kim J, Kim D, Woo Park G, Hyun Ko C, Youn Lee S. Enhancing microbial CO 2 electrocatalysis for multicarbon reduction in a wet amine-based catholyte. CHEMSUSCHEM 2024; 17:e202301342. [PMID: 38287485 DOI: 10.1002/cssc.202301342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Microbial CO2 electroreduction (mCO2ER) offers a promising approach for producing high-value multicarbon reductants from CO2 by combining CO2 fixing microorganisms with conducting materials (i. e., cathodes). However, the solubility and availability of CO2 in an aqueous electrolyte pose significant limitations in this system. This study demonstrates the efficient production of long-chain multicarbon reductants, specifically carotenoids (~C40), within a wet amine-based catholyte medium during mCO2ER. Optimizing the concentration of the biocompatible CO2 absorbent, monoethanolamine (MEA), led to enhanced CO2 fixation in the electroautotroph bacteria. Molecular biological analyses revealed that MEA in the catholyte medium redirected the carbon flux towards carotenoid biosynthesis during mCO2ER. The faradaic efficiency of mCO2ER with MEA for carotenoid production was 4.5-fold higher than that of the control condition. These results suggest the mass transport bottleneck in bioelectrochemical systems could be effectively addressed by MEA-assissted mCO2ER, enabling highly efficient production of valuable products from CO2.
Collapse
Affiliation(s)
- Hui Su Kim
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
- Department of Chemical Engineering, Chonnam National University, 61186, Gwangju, South Korea
| | - Sangmin Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
- Bio-Environmental Chemistry, Chungnam National University, 34134, Daejeon, South Korea
| | - Myounghoon Moon
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
| | - Hwi Jong Jung
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
- Department of Chemical Engineering, Chonnam National University, 61186, Gwangju, South Korea
| | - Jiye Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
| | - Young-Hwan Chu
- Energy AI ⋅ Computational Science Laboratory, Korea Institute of Energy Research, 34129, Daejeon, South Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, 46241, Pusan, South Korea
| | - Danbee Kim
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
| | - Gwon Woo Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
| | - Chang Hyun Ko
- Department of Chemical Engineering, Chonnam National University, 61186, Gwangju, South Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 61003, Gwangju, South Korea
| |
Collapse
|
7
|
Bian Y, Leininger A, May HD, Ren ZJ. H 2 mediated mixed culture microbial electrosynthesis for high titer acetate production from CO 2. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100324. [PMID: 37961049 PMCID: PMC10637882 DOI: 10.1016/j.ese.2023.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/15/2023]
Abstract
Microbial electrosynthesis (MES) converts CO2 into value-added products such as volatile fatty acids (VFAs) with minimal energy use, but low production titer has limited scale-up and commercialization. Mediated electron transfer via H2 on the MES cathode has shown a higher conversion rate than the direct biofilm-based approach, as it is tunable via cathode potential control and accelerates electrosynthesis from CO2. Here we report high acetate titers can be achieved via improved in situ H2 supply by nickel foam decorated carbon felt cathode in mixed community MES systems. Acetate concentration of 12.5 g L-1 was observed in 14 days with nickel-carbon cathode at a poised potential of -0.89 V (vs. standard hydrogen electrode, SHE), which was much higher than cathodes using stainless steel (5.2 g L-1) or carbon felt alone (1.7 g L-1) with the same projected surface area. A higher acetate concentration of 16.0 g L-1 in the cathode was achieved over long-term operation for 32 days, but crossover was observed in batch operation, as additional acetate (5.8 g L-1) was also found in the abiotic anode chamber. We observed the low Faradaic efficiencies in acetate production, attributed to partial H2 utilization for electrosynthesis. The selective acetate production with high titer demonstrated in this study shows the H2-mediated electron transfer with common cathode materials carries good promise in MES development.
Collapse
Affiliation(s)
- Yanhong Bian
- Department of Civil and Environmental Engineering, Princeton University, 86 Olden St, Princeton, NJ, 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, 86 Olden St., Princeton, NJ, 08544, United States
| | - Aaron Leininger
- Department of Civil and Environmental Engineering, Princeton University, 86 Olden St, Princeton, NJ, 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, 86 Olden St., Princeton, NJ, 08544, United States
| | - Harold D. May
- Andlinger Center for Energy and the Environment, Princeton University, 86 Olden St., Princeton, NJ, 08544, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, 86 Olden St, Princeton, NJ, 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, 86 Olden St., Princeton, NJ, 08544, United States
| |
Collapse
|
8
|
Llorente M, Tejedor‐Sanz S, Berná A, Manchón C, Esteve‐Núñez A. Novel electrochemical strategies for the microbial conversion of CO 2 into biomass and volatile fatty acids using a fluid-like bed electrode in a three-phase reactor. Microb Biotechnol 2024; 17:e14383. [PMID: 38231155 PMCID: PMC10832540 DOI: 10.1111/1751-7915.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024] Open
Abstract
Microbial electrosynthesis (MES) constitutes a bioelectrochemical process where bacteria uptake electrons extracellularly from a polarized electrode to incorporate them into their anabolic metabolism. However, the efficiency of current MES reactor designs can be lower than expected due to limitations regarding electron transfer and mass transport. One of the most promising bioreactor configurations to overcome these bottlenecks is the Microbial Electrochemical Fluidized Bed Reactor (ME-FBR). In this study, microbial CO2 fixation is investigated for the first time in a ME-FBR operated as a 3-phase reactor (solid-liquid-gas). An electroconductive carbon bed, acting as a working electrode, was fluidized with gas and polarized at different potentials (-0.6, -0.8 and -1 V vs. Ag/AgCl) so it could act as an electron donor (biocathode). Under these potentials, CO2 fixation and electron transfer were evaluated. Autotrophic electroactive microorganisms from anaerobic wastewater were enriched in a ME-FBR in the presence of 2-bromoethanosulfonic acid (BES) to inhibit the growth of methanogens. Cyclic voltammetry analysis revealed interaction between the microorganisms and the cathode. Furthermore, volatile fatty acids like propionate, formate and acetate were detected in the culture supernatant. Acetate production had a maximum rate of ca. 1 g L-1 day-1 . Planktonic cell biomass was produced under continuous culture at values as high as ca. 0.7 g L-1 dry weight. Overall, this study demonstrates the feasibility of employing a fluidized electrode with gaseous substrates and electricity as the energy source for generating biomass and carboxylic acids.
Collapse
Affiliation(s)
- María Llorente
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - Sara Tejedor‐Sanz
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | | | - Carlos Manchón
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - Abraham Esteve‐Núñez
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
- IMDEA WATERAlcalá de HenaresMadridSpain
| |
Collapse
|
9
|
Romans-Casas M, Feliu-Paradeda L, Tedesco M, Hamelers HV, Bañeras L, Balaguer MD, Puig S, Dessì P. Selective butyric acid production from CO 2 and its upgrade to butanol in microbial electrosynthesis cells. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100303. [PMID: 37635954 PMCID: PMC10457423 DOI: 10.1016/j.ese.2023.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
Microbial electrosynthesis (MES) is a promising carbon utilization technology, but the low-value products (i.e., acetate or methane) and the high electric power demand hinder its industrial adoption. In this study, electrically efficient MES cells with a low ohmic resistance of 15.7 mΩ m2 were operated galvanostatically in fed-batch mode, alternating periods of high CO2 and H2 availability. This promoted acetic acid and ethanol production, ultimately triggering selective (78% on a carbon basis) butyric acid production via chain elongation. An average production rate of 14.5 g m-2 d-1 was obtained at an applied current of 1.0 or 1.5 mA cm-2, being Megasphaera sp. the key chain elongating player. Inoculating a second cell with the catholyte containing the enriched community resulted in butyric acid production at the same rate as the previous cell, but the lag phase was reduced by 82%. Furthermore, interrupting the CO2 feeding and setting a constant pH2 of 1.7-1.8 atm in the cathode compartment triggered solventogenic butanol production at a pH below 4.8. The efficient cell design resulted in average cell voltages of 2.6-2.8 V and a remarkably low electric energy requirement of 34.6 kWhel kg-1 of butyric acid produced, despite coulombic efficiencies being restricted to 45% due to the cross-over of O2 and H2 through the membrane. In conclusion, this study revealed the optimal operating conditions to achieve energy-efficient butyric acid production from CO2 and suggested a strategy to further upgrade it to valuable butanol.
Collapse
Affiliation(s)
- Meritxell Romans-Casas
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Laura Feliu-Paradeda
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - Michele Tedesco
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Hubertus V.M. Hamelers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Lluis Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - M. Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Paolo Dessì
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| |
Collapse
|
10
|
Chen G, Wang R, Sun M, Chen J, Iyobosa E, Zhao J. Carbon dioxide reduction to high-value chemicals in microbial electrosynthesis system: Biological conversion and regulation strategies. CHEMOSPHERE 2023; 344:140251. [PMID: 37769909 DOI: 10.1016/j.chemosphere.2023.140251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Large emissions of atmospheric carbon dioxide (CO2) are causing climatic and environmental problems. It is crucial to capture and utilize the excess CO2 through diverse methods, among which the microbial electrosynthesis (MES) system has become an attractive and promising technology to mitigate greenhouse effects while reducing CO2 to high-value chemicals. However, the biological conversion and metabolic pathways through microbial catalysis have not been clearly elucidated. This review first introduces the main acetogenic bacteria for CO2 reduction and extracellular electron transfer mechanisms in MES. It then intensively analyzes the CO2 bioconversion pathways and carbon chain elongation processes in MES, together with energy supply and utilization. The factors affecting MES performance, including physical, chemical, and biological aspects, are summarized, and the strategies to promote and regulate bioconversion in MES are explored. Finally, challenges and perspectives concerning microbial electrochemical carbon sequestration are proposed, and suggestions for future research are also provided. This review provides theoretical foundation and technical support for further development and industrial application of MES for CO2 reduction.
Collapse
Affiliation(s)
- Gaoxiang Chen
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Rongchang Wang
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China.
| | - Maoxin Sun
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Jie Chen
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Eheneden Iyobosa
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Jianfu Zhao
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| |
Collapse
|
11
|
Tong KTX, Tan IS, Foo HCY, Show PL, Lam MK, Wong MK. Sustainable circular biorefinery approach for novel building blocks and bioenergy production from algae using microbial fuel cell. Bioengineered 2023; 14:246-289. [PMID: 37482680 PMCID: PMC10367576 DOI: 10.1080/21655979.2023.2236842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
The imminent need for transition to a circular biorefinery using microbial fuel cells (MFC), based on the valorization of renewable resources, will ameliorate the carbon footprint induced by industrialization. MFC catalyzed by bioelectrochemical process drew significant attention initially for its exceptional potential for integrated production of biochemicals and bioenergy. Nonetheless, the associated costly bioproduct production and slow microbial kinetics have constrained its commercialization. This review encompasses the potential and development of macroalgal biomass as a substrate in the MFC system for L-lactic acid (L-LA) and bioelectricity generation. Besides, an insight into the state-of-the-art technological advancement in the MFC system is also deliberated in detail. Investigations in recent years have shown that MFC developed with different anolyte enhances power density from several µW/m2 up to 8160 mW/m2. Further, this review provides a plausible picture of macroalgal-based L-LA and bioelectricity circular biorefinery in the MFC system for future research directions.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn Bhd, Kajang, Selangor, Malaysia
| |
Collapse
|
12
|
Kurt E, Qin J, Williams A, Zhao Y, Xie D. Perspectives for Using CO 2 as a Feedstock for Biomanufacturing of Fuels and Chemicals. Bioengineering (Basel) 2023; 10:1357. [PMID: 38135948 PMCID: PMC10740661 DOI: 10.3390/bioengineering10121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2 during the biosynthesis of regular metabolic necessities. This loss lowers the production yield and compromises the benefit of reducing greenhouse gas emissions-a fundamental advantage of biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol, and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6 sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a feedstock for future biomanufacturing of fuels and chemicals are also discussed.
Collapse
Affiliation(s)
- Elif Kurt
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Alexandria Williams
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Youbo Zhao
- Physical Sciences Inc., 20 New England Business Ctr., Andover, MA 01810, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| |
Collapse
|
13
|
Boucher DG, Carroll E, Nguyen ZA, Jadhav RG, Simoska O, Beaver K, Minteer SD. Bioelectrocatalytic Synthesis: Concepts and Applications. Angew Chem Int Ed Engl 2023; 62:e202307780. [PMID: 37428529 DOI: 10.1002/anie.202307780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.
Collapse
Affiliation(s)
- Dylan G Boucher
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Emily Carroll
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Zachary A Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Rohit G Jadhav
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kevin Beaver
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Ramanaiah SV, Chandrasekhar K, Cordas CM, Potoroko I. Bioelectrochemical systems (BESs) for agro-food waste and wastewater treatment, and sustainable bioenergy-A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121432. [PMID: 36907238 DOI: 10.1016/j.envpol.2023.121432] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 02/09/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Producing food by farming and subsequent food manufacturing are central to the world's food supply, accounting for more than half of all production. Production is, however, closely related to the creation of large amounts of organic wastes or byproducts (agro-food waste or wastewater) that negatively impact the environment and the climate. Global climate change mitigation is an urgent need that necessitates sustainable development. For that purpose, proper agro-food waste and wastewater management are essential, not only for waste reduction but also for resource optimization. To achieve sustainability in food production, biotechnology is considered as key factor since its continuous development and broad implementation will potentially benefit ecosystems by turning polluting waste into biodegradable materials; this will become more feasible and common as environmentally friendly industrial processes improve. Bioelectrochemical systems are a revitalized, promising biotechnology integrating microorganisms (or enzymes) with multifaceted applications. The technology can efficiently reduce waste and wastewater while recovering energy and chemicals, taking advantage of their biological elements' specific redox processes. In this review, a consolidated description of agro-food waste and wastewater and its remediation possibilities, using different bioelectrochemical-based systems is presented and discussed together with a critical view of the current and future potential applications.
Collapse
Affiliation(s)
- S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation.
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Cristina M Cordas
- Laboratório Associado para a Química Verde | Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Irina Potoroko
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| |
Collapse
|
15
|
Electrochemical synthesis of propionic acid from reduction of ethanol and carbon dioxide at various applied potentials. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
16
|
Thulluru LP, Ghangrekar MM, Chowdhury S. Progress and perspectives on microbial electrosynthesis for valorisation of CO 2 into value-added products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117323. [PMID: 36716542 DOI: 10.1016/j.jenvman.2023.117323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Microbial electrosynthesis (MES) is a neoteric technology that facilitates biocatalysed synthesis of organic compounds with the aid of homoacetogenic bacteria, while feeding CO2 as an inorganic carbon source. Operating MES with surplus renewable electricity further enhances the sustainability of this innovative bioelectrochemical system (BES). However, several lacunae exist in the domain knowledge, stunting the widespread application of MES. Despite significant progress in this area over the past decade, the product yield efficiency is not on par with other contemporary technologies. This bottleneck can be overcome by adopting a holistic approach, i.e., applying innovative and integrated solutions to ensure a robust MES operation. Further, the widespread deployment of MES exclusively relies on its ability to mature a sessile biofilm over a biocompatible electrode, while offering minimal charge transfer resistance. Additionally, operating MES preferably at H2-generating reduction potential and valorising industrial off-gas as carbon substrate is crucial to accomplish economic sustainability. In light of the aforementioned, this review collates the latest progress in the design and development of MES-centred systems for valorisation of CO2 into value-added products. Specifically, it highlights the significance of inoculum pre-treatment for promoting biocatalytic activity and biofilm growth on the cathodic surface. In addition, it summarizes the diverse materials that are commonly used as electrodes in MES, with an emphasis on the importance of inexpensive, robust, and biocompatible electrode materials for the practical application of MES technology. Further, the review presents insights into media conditions, operational factors, and reactor configurations that affect the overall performance of MES process. Finally, the product range of MES, downstream processing requirements, and integration of MES with other environmental remediation technologies are also discussed.
Collapse
Affiliation(s)
- Lakshmi Pathi Thulluru
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
17
|
Fors SA, Malapit CA. Homogeneous Catalysis for the Conversion of CO 2, CO, CH 3OH, and CH 4 to C 2+ Chemicals via C–C Bond Formation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- Stella A. Fors
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christian A. Malapit
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Metatranscriptomic insights into the microbial electrosynthesis of acetate by Fe 2+/Ni 2+ addition. World J Microbiol Biotechnol 2023; 39:109. [PMID: 36879133 DOI: 10.1007/s11274-023-03554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
As important components of enzymes and coenzymes involved in energy transfer and Wood-Ljungdahl (WL) pathways, Fe2+ and Ni2+ supplementation may promote the acetate synthesis through CO2 reduction by the microbial electrosynthesis (MES). However, the effect of Fe2+ and Ni2+ addition on acetate production in MES and corresponding microbial mechanisms have not been fully studied. Therefore, this study investigated the effect of Fe2+ and Ni2+ addition on acetate production in MES, and explored the underlying microbial mechanism from the metatranscriptomic perspective. Both Fe2+ and Ni2+ addition enhanced acetate production of the MES, which was 76.9% and 110.9% higher than that of control, respectively. Little effect on phylum level and small changes in genus-level microbial composition was caused by Fe2+ and Ni2+ addition. Gene expression of 'Energy metabolism', especially in 'Carbon fixation pathways in prokaryotes' was up-regulated by Fe2+ and Ni2+ addition. Hydrogenase was found as an important energy transfer mediator for CO2 reduction and acetate synthesis. Fe2+ addition and Ni2+ addition respectively enhanced the expression of methyl branch and carboxyl branch of the WL pathway, and thus promoted acetate production. The study provided a metatranscriptomic insight into the effect of Fe2+ and Ni2+ on acetate production by CO2 reduction in MES.
Collapse
|
19
|
Luan L, Ji X, Guo B, Cai J, Dong W, Huang Y, Zhang S. Bioelectrocatalysis for CO 2 reduction: recent advances and challenges to develop a sustainable system for CO 2 utilization. Biotechnol Adv 2023; 63:108098. [PMID: 36649797 DOI: 10.1016/j.biotechadv.2023.108098] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Activation and turning CO2 into value added products is a promising orientation to address environmental issues caused by CO2 emission. Currently, electrocatalysis has a potent well-established role for CO2 reduction with fast electron transfer rate; but it is challenged by the poor selectivity and low faradic efficiency. On the other side, biocatalysis, including enzymes and microbes, has been also employed for CO2 conversion to target Cn products with remarkably high selectivity; however, low solubility of CO2 in the liquid reaction phase seriously affects the catalytic efficiency. Therefore, a new synergistic role in bioelectrocatalysis for CO2 reduction is emerging thanks to its outstanding selectivity, high faradic efficiency, and desirable valuable Cn products under mild condition that are surveyed in this review. Herein, we comprehensively discuss the results already obtained for the integration craft of enzymatic-electrocatalysis and microbial-electrocatalysis technologies. In addition, the intrinsic nature of the combination is highly dependent on the electron transfer. Thus, both direct electron transfer and mediated electron transfer routes are modeled and concluded. We also explore the biocompatibility and synergistic effects of electrode materials, which emerge in combination with tuned enzymes and microbes to improve catalytic performance. The system by integrating solar energy driven photo-electrochemical technics with bio-catalysis is further discussed. We finally highlight the significant findings and perspectives that have provided strong foundations for the remarkable development of green and sustainable bioelectrocatalysis for CO2 reduction, and that offer a blueprint for Cn valuable products originate from CO2 under efficient and mild conditions.
Collapse
Affiliation(s)
- Likun Luan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Boxia Guo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinde Cai
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wanrong Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
20
|
Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds. Molecules 2023; 28:molecules28031418. [PMID: 36771084 PMCID: PMC9919917 DOI: 10.3390/molecules28031418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Pyruvate is a hub of various endogenous metabolic pathways, including glycolysis, TCA cycle, amino acid, and fatty acid biosynthesis. It has also been used as a precursor for pyruvate-derived compounds such as acetoin, 2,3-butanediol (2,3-BD), butanol, butyrate, and L-alanine biosynthesis. Pyruvate and derivatives are widely utilized in food, pharmaceuticals, pesticides, feed additives, and bioenergy industries. However, compounds such as pyruvate, acetoin, and butanol are often chemically synthesized from fossil feedstocks, resulting in declining fossil fuels and increasing environmental pollution. Metabolic engineering is a powerful tool for producing eco-friendly chemicals from renewable biomass resources through microbial fermentation. Here, we review and systematically summarize recent advances in the biosynthesis pathways, regulatory mechanisms, and metabolic engineering strategies for pyruvate and derivatives. Furthermore, the establishment of sustainable industrial synthesis platforms based on alternative substrates and new tools to produce these compounds is elaborated. Finally, we discuss the potential difficulties in the current metabolic engineering of pyruvate and derivatives and promising strategies for constructing efficient producers.
Collapse
|
21
|
Romans-Casas M, Perona-Vico E, Dessì P, Bañeras L, Balaguer MD, Puig S. Boosting ethanol production rates from carbon dioxide in MES cells under optimal solventogenic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159124. [PMID: 36179842 DOI: 10.1016/j.scitotenv.2022.159124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Microbial Electrosynthesis (MES) has been widely applied for acetic acid (HA) production from CO2 and electricity. Ethanol (EtOH) has a higher market value than HA, and wide application in industry and as a biofuel. However, it has only been obtained sporadically and at low concentrations, probably due to sub-optimal operating conditions. This study aimed at enhancing EtOH productivity in MES cells by jointly optimising key operation parameters, including pH, H2 and CO2 partial pressure (pH2 and pCO2), and HA concentration, to promote solventogenesis. Two H-type cells were operated in fed-batch mode at -0.8 V vs. SHE with CO2 as the sole carbon source. A mixed culture, enriched with Clostridium ljungdahlii was used as the biocatalyst. The combination of low pH (<4.5) and pCO2 (<0.3 atm), along with high HA concentration (about 6 g L-1) and pH2 (>3 atm), were mandatory conditions for maintaining an efficient solventogenic culture, dominated by Clostridium sp., capable of high-rate EtOH production. The maximum EtOH production rate was 10.95 g m-2 d-1, and a concentration of 5.28 g L-1 was achieved. Up to 30 % of the electrons and 15.2 % of the carbon provided were directed towards EtOH production, and 28.1 kWh were required for the synthesis of 1 kg of EtOH from CO2. These results highlight that strict conditions are required for a continuous, reliable, EtOH production in MES cells. Future investigation should focus on improving cell configuration to achieve EtOH production at higher current densities while minimizing the electric energy input.
Collapse
Affiliation(s)
- M Romans-Casas
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - E Perona-Vico
- gEMM. Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 40, E-17003 Girona, Spain
| | - P Dessì
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - L Bañeras
- gEMM. Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 40, E-17003 Girona, Spain
| | - M D Balaguer
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - S Puig
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| |
Collapse
|
22
|
López LR, Dessì P, Cabrera-Codony A, Rocha-Melogno L, Kraakman B, Naddeo V, Balaguer MD, Puig S. CO 2 in indoor environments: From environmental and health risk to potential renewable carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159088. [PMID: 36181799 DOI: 10.1016/j.scitotenv.2022.159088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
In the developed world, individuals spend most of their time indoors. Poor Indoor Air Quality (IAQ) has a wide range of effects on human health. The burden of disease associated with indoor air accounts for millions of premature deaths related to exposure to Indoor Air Pollutants (IAPs). Among them, CO2 is the most common one, and is commonly used as a metric of IAQ. Indoor CO2 concentrations can be significantly higher than outdoors due to human metabolism and activities. Even in presence of ventilation, controlling the CO2 concentration below the Indoor Air Guideline Values (IAGVs) is a challenge, and many indoor environments including schools, offices and transportation exceed the recommended value of 1000 ppmv. This is often accompanied by high concentration of other pollutants, including bio-effluents such as viruses, and the importance of mitigating the transmission of airborne diseases has been highlighted by the COVID-19 pandemic. On the other hand, the relatively high CO2 concentration of indoor environments presents a thermodynamic advantage for direct air capture (DAC) in comparison to atmospheric CO2 concentration. This review aims to describe the issues associated with poor IAQ, and to demonstrate the potential of indoor CO2 DAC to purify indoor air while generating a renewable carbon stream that can replace conventional carbon sources as a building block for chemical production, contributing to the circular economy.
Collapse
Affiliation(s)
- L R López
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain.
| | - P Dessì
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - A Cabrera-Codony
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - L Rocha-Melogno
- ICF, 2635 Meridian Parkway Suite 200, Durham, NC 27713, United States
| | - B Kraakman
- Jacobs Engineering, Templey Quay 1, Bristol BAS1 6DG, UK; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - V Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - M D Balaguer
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - S Puig
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| |
Collapse
|
23
|
Bakonyi P, Koók L, Rózsenberszki T, Kalauz-Simon V, Bélafi-Bakó K, Nemestóthy N. CO2-refinery through microbial electrosynthesis (MES): A concise review on design, operation, biocatalysts and perspectives. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
24
|
Wu Y, Li W, Wang L, Wu Y, Wang Y, Wang Y, Meng H. Enhancing the selective synthesis of butyrate in microbial electrosynthesis system by gas diffusion membrane composite biocathode. CHEMOSPHERE 2022; 308:136088. [PMID: 36029854 DOI: 10.1016/j.chemosphere.2022.136088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The reduction of carbon dioxide (CO2) to high value-added multi-carbon compounds at the cathode is an emerging application of microbial electrosynthesis system (MES). In this study, a composite cathode consisting of hollow fiber membrane (HFM) and the carbon felt is designed to enhance the CO2 mass transfer of the cathode. The result shows that the main products are acetate and butyrate without other substances. The electrochemical performance of the electrode is significantly improved after biofilm becomes matures. The composite cathode significantly reduces the "threshold" for the synthesis of butyrate. Moreover, CO2 is dissolved and protons are consumed by synthesizing volatile fatty acids (VFAs) to maintain a stable pH inside the composite electrode. The synthesis mechanism of butyrate is that CO2 is converted sequentially into acetate and butyrate. The microenvironment of the composite electrode enriches Firmicute. This composite electrode provides a novel strategy for regulating the microenvironment.
Collapse
Affiliation(s)
- Yun Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China.
| | - Weichao Li
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Lutian Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Material Science and Engineering, TianGong University, Tianjin, 300387, China
| | - Yuchong Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Yue Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Yufeng Wang
- Tianjin Urban Construction Design Institute, Tianjin, 300122, China
| | - Hongyu Meng
- State Key Laboratory of Separation Membranes and Membrane Processes, TianGong University, Tianjin, 300387, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| |
Collapse
|
25
|
Rovira-Alsina L, Dolors Balaguer M, Puig S. Transition roadmap for thermophilic carbon dioxide microbial electrosynthesis: Testing with real exhaust gases and operational control for a scalable design. BIORESOURCE TECHNOLOGY 2022; 365:128161. [PMID: 36272679 DOI: 10.1016/j.biortech.2022.128161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Human activities release more carbon dioxide (CO2) into the atmosphere than the natural process can remove. This study attempts to address the main challenges for the thermophilic (50 °C) bioelectrochemical conversion of CO2 into acetate. First, real gaseous emissions were tested with mixed microbial consortia, which had no substantial influence on production rates (difference of 2.5%). Subsequently, a bench-scale system (TRL 4-5) was designed and launched to control key operational variables. Fixing the current at 1.3 A m-2, CO2 was reduced at a rate of 2.21 kg CO2 kg-1 acetate, while the electricity consumption was 2.07 kWh kg-1, the most efficient value so far. The results suggest that the operation with real effluents is feasible and the proposed design is energy efficient, but the right balance between maximising current densities without compromising the biocompatibility with catalysts will determine the transition from laboratory scale towards its implementation in the market.
Collapse
Affiliation(s)
- Laura Rovira-Alsina
- LEQUiA. Institute of the Environment, University of Girona, Campus Montilivi. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - M Dolors Balaguer
- LEQUiA. Institute of the Environment, University of Girona, Campus Montilivi. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Sebastià Puig
- LEQUiA. Institute of the Environment, University of Girona, Campus Montilivi. C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain.
| |
Collapse
|
26
|
Liu Z, Xue X, Cai W, Cui K, Patil SA, Guo K. Recent progress on microbial electrosynthesis reactors and strategies to enhance the reactor performance. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
27
|
Lv J, Yin R, Zhou L, Li J, Kikas R, Xu T, Wang Z, Jin H, Wang X, Wang S. Microenvironment Engineering for the Electrocatalytic CO
2
Reduction Reaction. Angew Chem Int Ed Engl 2022; 61:e202207252. [DOI: 10.1002/anie.202207252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Jing Lv
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Ruonan Yin
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Limin Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Jun Li
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Reddu Kikas
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Ting Xu
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Zheng‐Jun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Xin Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| |
Collapse
|
28
|
Spiess S, Sasiain Conde A, Kucera J, Novak D, Thallner S, Kieberger N, Guebitz GM, Haberbauer M. Bioelectrochemical methanation by utilization of steel mill off-gas in a two-chamber microbial electrolysis cell. Front Bioeng Biotechnol 2022; 10:972653. [PMID: 36159676 PMCID: PMC9500408 DOI: 10.3389/fbioe.2022.972653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Carbon capture and utilization has been proposed as one strategy to combat global warming. Microbial electrolysis cells (MECs) combine the biological conversion of carbon dioxide (CO2) with the formation of valuable products such as methane. This study was motivated by the surprising gap in current knowledge about the utilization of real exhaust gas as a CO2 source for methane production in a fully biocatalyzed MEC. Therefore, two steel mill off-gases differing in composition were tested in a two-chamber MEC, consisting of an organic substrate-oxidizing bioanode and a methane-producing biocathode, by applying a constant anode potential. The methane production rate in the MEC decreased immediately when steel mill off-gas was tested, which likely inhibited anaerobic methanogens in the presence of oxygen. However, methanogenesis was still ongoing even though at lower methane production rates than with pure CO2. Subsequently, pure CO2 was studied for methanation, and the cathodic biofilm successfully recovered from inhibition reaching a methane production rate of 10.8 L m−2d−1. Metagenomic analysis revealed Geobacter as the dominant genus forming the anodic organic substrate-oxidizing biofilms, whereas Methanobacterium was most abundant at the cathodic methane-producing biofilms.
Collapse
Affiliation(s)
- Sabine Spiess
- K1-MET GmbH, Linz, Austria
- *Correspondence: Sabine Spiess,
| | | | - Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - David Novak
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | | | | | - Georg M. Guebitz
- ACIB GmbH (Austrian Centre of Industrial Biotechnology), Graz, Austria
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria
| | | |
Collapse
|
29
|
Abdollahi M, Al Sbei S, Rosenbaum MA, Harnisch F. The oxygen dilemma: The challenge of the anode reaction for microbial electrosynthesis from CO2. Front Microbiol 2022; 13:947550. [PMID: 35992647 PMCID: PMC9381829 DOI: 10.3389/fmicb.2022.947550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial electrosynthesis (MES) from CO2 provides chemicals and fuels by driving the metabolism of microorganisms with electrons from cathodes in bioelectrochemical systems. These microorganisms are usually strictly anaerobic. At the same time, the anode reaction of bioelectrochemical systems is almost exclusively water splitting through the oxygen evolution reaction (OER). This creates a dilemma for MES development and engineering. Oxygen penetration to the cathode has to be excluded to avoid toxicity and efficiency losses while assuring low resistance. We show that this dilemma derives a strong need to identify novel reactor designs when using the OER as an anode reaction or to fully replace OER with alternative oxidation reactions.
Collapse
Affiliation(s)
- Maliheh Abdollahi
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sara Al Sbei
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute, Jena, Germany
| | - Miriam A. Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- *Correspondence: Falk Harnisch,
| |
Collapse
|
30
|
Lv JJ, Yin R, Zhou L, Li J, Kikas R, Xu T, Wang ZJ, Jin H, Wang X, Wang S. Microenvironment Engineering for the Electrocatalytic CO2 Reduction Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing-Jing Lv
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Ruonan Yin
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Limin Zhou
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Jun Li
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Reddu Kikas
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Ting Xu
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Zheng-Jun Wang
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Huile Jin
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Xin Wang
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Shun Wang
- Wenzhou University Nano-materials & Chemistry Key Laboratory Xueyuan Middle Road 325027 Wenzhou CHINA
| |
Collapse
|
31
|
Hengsbach JN, Sabel-Becker B, Ulber R, Holtmann D. Microbial electrosynthesis of methane and acetate—comparison of pure and mixed cultures. Appl Microbiol Biotechnol 2022; 106:4427-4443. [PMID: 35763070 PMCID: PMC9259517 DOI: 10.1007/s00253-022-12031-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Abstract The electrochemical process of microbial electrosynthesis (MES) is used to drive the metabolism of electroactive microorganisms for the production of valuable chemicals and fuels. MES combines the advantages of electrochemistry, engineering, and microbiology and offers alternative production processes based on renewable raw materials and regenerative energies. In addition to the reactor concept and electrode design, the biocatalysts used have a significant influence on the performance of MES. Thus, pure and mixed cultures can be used as biocatalysts. By using mixed cultures, interactions between organisms, such as the direct interspecies electron transfer (DIET) or syntrophic interactions, influence the performance in terms of productivity and the product range of MES. This review focuses on the comparison of pure and mixed cultures in microbial electrosynthesis. The performance indicators, such as productivities and coulombic efficiencies (CEs), for both procedural methods are discussed. Typical products in MES are methane and acetate, therefore these processes are the focus of this review. In general, most studies used mixed cultures as biocatalyst, as more advanced performance of mixed cultures has been seen for both products. When comparing pure and mixed cultures in equivalent experimental setups a 3-fold higher methane and a nearly 2-fold higher acetate production rate can be achieved in mixed cultures. However, studies of pure culture MES for methane production have shown some improvement through reactor optimization and operational mode reaching similar performance indicators as mixed culture MES. Overall, the review gives an overview of the advantages and disadvantages of using pure or mixed cultures in MES. Key points • Undefined mixed cultures dominate as inoculums for the MES of methane and acetate, which comprise a high potential of improvement • Under similar conditions, mixed cultures outperform pure cultures in MES • Understanding the role of single species in mixed culture MES is essential for future industrial applications
Collapse
Affiliation(s)
- Jan-Niklas Hengsbach
- Department of Mechanical and Process Engineering, Institute of Bioprocess Engineering, Technical University Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Björn Sabel-Becker
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, 35390, Giessen, Germany
| | - Roland Ulber
- Department of Mechanical and Process Engineering, Institute of Bioprocess Engineering, Technical University Kaiserslautern, 67663, Kaiserslautern, Germany.
| | - Dirk Holtmann
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, 35390, Giessen, Germany
| |
Collapse
|
32
|
Boas JV, Oliveira VB, Simões M, Pinto AMFR. Review on microbial fuel cells applications, developments and costs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114525. [PMID: 35091241 DOI: 10.1016/j.jenvman.2022.114525] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The microbial fuel cell (MFC) technology has attracted significant attention in the last years due to its potential to recover energy in a wastewater treatment. The idea of using an MFC in industry is very attractive as the organic wastes can be converted into energy, reducing the waste disposal costs and the energy needs while increasing the company profit. However, taking aside these promising prospects, the attempts to apply MFCs in large-scale have not been succeeded so far since their lower performance and high costs remains challenging. This review intends to present the main applications of the MFC systems and its developments, particularly the advances on configuration and operating conditions. The diagnostic techniques used to evaluate the MFC performance as well as the different modeling approaches are described. Towards the introduction of the MFC in the market, a cost analysis is also included. The development of low-cost materials and more efficient systems, with high higher power outputs and durability, are crucial towards the application of MFCs in industrial/large scale. This work is a helpful tool for discovering new operation and design regimes.
Collapse
Affiliation(s)
- Joana Vilas Boas
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vânia B Oliveira
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Alexandra M F R Pinto
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
33
|
Li W, Jiafang Z, Menggen L, Aixin Z, Ning H. Simulation of cathode for synthesizing organic acids by MES reduction of CO 2. Bioelectrochemistry 2022; 143:107984. [PMID: 34735913 DOI: 10.1016/j.bioelechem.2021.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Microbial electrochemical system (MES) is a favorable tool for CO2 emission reduction. Microbial cathode is one of the core components of the system, and its surface energy transfer characteristics can greatly affect the yield of organic matter from MES. In order to solve the problem that the energy transfer characteristics of microbial cathode are not clear, the mathematical model of MES was constructed on the basis of the preliminary experiment with an electrode made of copper foam modified with the reduced graphene oxide, analyzing the current and substrate concentration in the biofilm with conductivity, cathode potential and porosity of the biofilm. The results show that when the cathode potential is higher than -0.8 V (VS SHE), the substrate concentration and current density in the biofilm are related to the cathode potential. However, when the cathode potential decreased to -0.8 V (vs SHE), the ability of biofilm to reduce CO2 basically reached saturation. Low conductivity (<10-3S/m) will lead to the formation of significant potential difference in the biofilm, which will reduce the substrate utilization rate and seriously affect the performance of microbial cathode. The current density is highest, when the porosity of the biofilm is about 0.35.
Collapse
Affiliation(s)
- Wang Li
- College of Natural Resources and Environmental Protection, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Zhang Jiafang
- College of Natural Resources and Environmental Protection, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Liao Menggen
- College of Natural Resources and Environmental Protection, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhang Aixin
- College of Natural Resources and Environmental Protection, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hu Ning
- College of Natural Resources and Environmental Protection, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
34
|
Comparison of two different kinds of seed sludge and characterization of microorganisms producing hydrogen and soluble metabolites from raw glycerol. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-021-00212-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Alvarez Chavez B, Raghavan V, Tartakovsky B. A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies. RSC Adv 2022; 12:16105-16118. [PMID: 35733669 PMCID: PMC9159792 DOI: 10.1039/d1ra08796g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Production of biopolymers from renewable carbon sources provides a path towards a circular economy. This review compares several existing and emerging approaches for polyhydroxyalkanoate (PHA) production from soluble organic and gaseous carbon sources and considers technologies based on pure and mixed microbial cultures. While bioplastics are most often produced from soluble sources of organic carbon, the use of carbon dioxide (CO2) as the carbon source for PHA production is emerging as a sustainable approach that combines CO2 sequestration with the production of a value-added product. Techno-economic analysis suggests that the emerging approach of CO2 conversion to carboxylic acids by microbial electrosynthesis followed by microbial PHA production could lead to a novel cost-efficient technology for production of green biopolymers. Biopolymers production from renewable carbon sources.![]()
Collapse
Affiliation(s)
- Brenda Alvarez Chavez
- McGill University, Bioresource Engineering Department, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| | - Vijaya Raghavan
- McGill University, Bioresource Engineering Department, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Boris Tartakovsky
- McGill University, Bioresource Engineering Department, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| |
Collapse
|
36
|
Wu R, Yu YY, Wang Y, Wang YZ, Song H, Ma C, Qu G, You C, Sun Z, Zhang W, Li A, Li CM, Yong YC, Zhu Z. Wastewater-powered high-value chemical synthesis in a hybrid bioelectrochemical system. iScience 2021; 24:103401. [PMID: 34841233 PMCID: PMC8605441 DOI: 10.1016/j.isci.2021.103401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
A microbial electrochemical system could potentially be applied as a biosynthesis platform by extracting wastewater energy while converting it to value-added chemicals. However, the unfavorable thermodynamics and sluggish kinetics of in vivo whole-cell cathodic catalysis largely limit product diversity and value. Herein, we convert the in vivo cathodic reaction to in vitro enzymatic catalysis and develop a microbe-enzyme hybrid bioelectrochemical system (BES), where microbes release the electricity from wastewater (anode) to power enzymatic catalysis (cathode). Three representative examples for the synthesis of pharmaceutically relevant compounds, including halofunctionalized oleic acid based on a cascade reaction, (4-chlorophenyl)-(pyridin-2-yl)-methanol based on electrochemical cofactor regeneration, and l-3,4-dihydroxyphenylalanine based on electrochemical reduction, were demonstrated. According to the techno-economic analysis, this system could deliver high system profit, opening an avenue to a potentially viable wastewater-to-profit process while shedding scientific light on hybrid BES mechanisms toward a sustainable reuse of wastewater.
Collapse
Affiliation(s)
- Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Yang-Yang Yu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Yuanming Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Yan-Zhai Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Haiyan Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Chang Ming Li
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, P.R. China
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 266071, P.R. China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| |
Collapse
|
37
|
Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial electrocatalysis reckons on microbes as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well-known in this context; both prefer the oxidation of organic and inorganic matter for producing electricity. Notably, the synthesis of high energy-density chemicals (fuels) or their precursors by microorganisms using bio-cathode to yield electrical energy is called Microbial Electrosynthesis (MES), giving an exceptionally appealing novel way for producing beneficial products from electricity and wastewater. This review accentuates the concept, importance and opportunities of MES, as an emerging discipline at the nexus of microbiology and electrochemistry. Production of organic compounds from MES is considered as an effective technique for the generation of various beneficial reduced end-products (like acetate and butyrate) as well as in reducing the load of CO2 from the atmosphere to mitigate the harmful effect of greenhouse gases in global warming. Although MES is still an emerging technology, this method is not thoroughly known. The authors have focused on MES, as it is the next transformative, viable alternative technology to decrease the repercussions of surplus carbon dioxide in the environment along with conserving energy.
Collapse
|
38
|
Ayol A, Peixoto L, Keskin T, Abubackar HN. Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111683. [PMID: 34770196 PMCID: PMC8583215 DOI: 10.3390/ijerph182111683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Microbial C1 gas conversion technologies have developed into a potentially promising technology for converting waste gases (CO2, CO) into chemicals, fuels, and other materials. However, the mass transfer constraint of these poorly soluble substrates to microorganisms is an important challenge to maximize the efficiencies of the processes. These technologies have attracted significant scientific interest in recent years, and many reactor designs have been explored. Syngas fermentation and hydrogenotrophic methanation use molecular hydrogen as an electron donor. Furthermore, the sequestration of CO2 and the generation of valuable chemicals through the application of a biocathode in bioelectrochemical cells have been evaluated for their great potential to contribute to sustainability. Through a process termed microbial chain elongation, the product portfolio from C1 gas conversion may be expanded further by carefully driving microorganisms to perform acetogenesis, solventogenesis, and reverse β-oxidation. The purpose of this review is to provide an overview of the various kinds of bioreactors that are employed in these microbial C1 conversion processes.
Collapse
Affiliation(s)
- Azize Ayol
- Department of Environmental Engineering, Dokuz Eylul University, Izmir 35390, Turkey;
| | - Luciana Peixoto
- Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal;
| | - Tugba Keskin
- Department of Environmental Protection Technologies, Izmir Democracy University, Izmir 35140, Turkey;
| | - Haris Nalakath Abubackar
- Chemical Engineering Laboratory, BIOENGIN Group, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, 15008 A Coruña, Spain
- Correspondence:
| |
Collapse
|
39
|
Yang HY, Hou NN, Wang YX, Liu J, He CS, Wang YR, Li WH, Mu Y. Mixed-culture biocathodes for acetate production from CO 2 reduction in the microbial electrosynthesis: Impact of temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148128. [PMID: 34098277 DOI: 10.1016/j.scitotenv.2021.148128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The temperature effect on bioelectrochemical reduction of CO2 to acetate with a mixed-culture biocathode in the microbial electrosynthesis was explored. The results showed that maximum acetate amount of 525.84 ± 1.55 mg L-1 and fastest acetate formation of 49.21 ± 0.49 mg L-1 d-1 were obtained under mesophilic conditions. Electron recovery efficiency for CO2 reduction to acetate ranged from 14.50 ± 2.20% to 64.86 ± 2.20%, due to propionate, butyrate and H2 generation. Mesophilic conditions were demonstrated to be more favorable for biofilm formation on the cathode, resulting in a stable and dense biofilm. At phylum level, the relative abundance of Bacteroidetes phylum in the biofilm remarkably increased under mesophilic conditions, compared with that at psychrophilic and thermophilic conditions. At genus level, the Clostridium, Treponema, Acidithiobacillus, Acetobacterium and Acetoanaerobium were found to be dominated genera in the biofilm under mesophilic conditions, while genera diversity decreased under psychrophilic and thermophilic conditions.
Collapse
Affiliation(s)
- Hou-Yun Yang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China; Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Nan-Nan Hou
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China; School of Physics and Materials Engineering, Hefei Normal University, Hefei, China
| | - Yi-Xuan Wang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
| | - Jing Liu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Chuan-Shu He
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Yi-Ran Wang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Wei-Hua Li
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Yang Mu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| |
Collapse
|
40
|
|
41
|
Cabau-Peinado O, Straathof AJJ, Jourdin L. A General Model for Biofilm-Driven Microbial Electrosynthesis of Carboxylates From CO 2. Front Microbiol 2021; 12:669218. [PMID: 34149654 PMCID: PMC8211901 DOI: 10.3389/fmicb.2021.669218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Up to now, computational modeling of microbial electrosynthesis (MES) has been underexplored, but is necessary to achieve breakthrough understanding of the process-limiting steps. Here, a general framework for modeling microbial kinetics in a MES reactor is presented. A thermodynamic approach is used to link microbial metabolism to the electrochemical reduction of an intracellular mediator, allowing to predict cellular growth and current consumption. The model accounts for CO2 reduction to acetate, and further elongation to n-butyrate and n-caproate. Simulation results were compared with experimental data obtained from different sources and proved the model is able to successfully describe microbial kinetics (growth, chain elongation, and product inhibition) and reactor performance (current density, organics titer). The capacity of the model to simulate different system configurations is also shown. Model results suggest CO2 dissolved concentration might be limiting existing MES systems, and highlight the importance of the delivery method utilized to supply it. Simulation results also indicate that for biofilm-driven reactors, continuous mode significantly enhances microbial growth and might allow denser biofilms to be formed and higher current densities to be achieved.
Collapse
Affiliation(s)
- Oriol Cabau-Peinado
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Ludovic Jourdin
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
42
|
Lai CY, Zhou L, Yuan Z, Guo J. Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. WATER RESEARCH 2021; 197:117120. [PMID: 33862393 DOI: 10.1016/j.watres.2021.117120] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/12/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
As a clean and renewable energy, biogas is an important alternative to fossil fuels. However, the high carbon dioxide (CO2) content in biogas limits its value as a fuel. 'Biogas upgrading' is an advanced process which removes CO2 from biogas, thereby converting biogas to biomethane, which has a higher commercial value. Microbial technologies offer a sustainable and cost-effective way to upgrade biogas, removing CO2 using hydrogen (H2) as electron donor, generated by surplus electricity from renewable wind or solar energy. Hydrogenotrophic methanogens can be applied to convert CO2 with H2 to methane (CH4), or alternatively, homoacetogens can convert both CO2 and H2 into value-added chemicals. Here, we comprehensively review the current state of biogas generation and utilization, and describe the advances in biological, H2-dependent biogas upgrading technologies, with particular attention to key challenges associated with the processes, e.g., metabolic limitations, low H2 transfer rate, and finite CO2 conversion rate. We also highlight several new strategies for overcoming technical barriers to achieve efficient CO2 conversion, including process optimization to eliminate metabolic limitation, novel reactor designs to improve H2 transfer rate and utilization efficiency, and employing advanced genetic engineering tools to generate more efficient microorganisms. The insights offered in this review will promote further exploration into microbial, H2-driven biogas upgrading, towards addressing the global energy crisis and climate change associated with use of fossil fuels.
Collapse
Affiliation(s)
- Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Linjie Zhou
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
43
|
Thatikayala D, Min B. Copper ferrite supported reduced graphene oxide as cathode materials to enhance microbial electrosynthesis of volatile fatty acids from CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144477. [PMID: 33736314 DOI: 10.1016/j.scitotenv.2020.144477] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Copper ferrite/reduced graphene oxide (CF/rGO) nanocomposites (NCs) was synthesized using the bio-combustion method and applied as a cathode catalyst in the microbial reduction of CO2 to volatile fatty acids (VFAs) in a single chamber microbial electrosynthesis system (MES). The synthesized NCs exhibited a porous network-like structure with a high surface area of CF/rGO (158.22 m2/g), which was 2.24 folds higher than that of CF. The Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) analysis for CF/rGO/Carbon cloth (Cc) revealed a high reduction current density of -7.3 A/m2 and a low charge transfer resistance of 2.8 Ω. The isobutyrate and acetate in MES-2 (Cu/rGO/Cc) were produced at 35.37 g/m2/d, which was 1.53 folds higher than that of MES-1 (bare Cc: 23.10 g/m2/d). The columbic efficiency (77.78%) and total VFA concentration (1941.13 ± 83 mg COD/L) were noted to be 1.97 and 1.6 folds higher for MES-2 than MES-1, respectively. The Tafel plot drawn from the CV curves exhibited an exchange current density value of MES-2 that was 3.46 A/m2, and this value was 1.19 and 33.92 folds higher than that of MES-1 and abiotic CF/rGO/Cc, respectively. Field emission scanning electron microscopy (FESEM) observations revealed enhanced rod-shaped bacteria had grown on the cathode suggesting excellent biocompatible and multi-length scale porosity of CF/rGO catalysts for enhanced colonization of microbes. The phyla Proteobacteria (Betaproteobacteria), Bacteroidetes, and Firmicutes were highly abundant as the dominant microbial communities on the cathode, which might played a major role in bioelectrochemical CO2 reduction to VFAs. The results from this study clearly demonstrate that the CF/rGO/Cc electrode could serve as a conductive element between microbes and bactericidal electrodes with excellent electrochemical properties to enable performance of the MES.
Collapse
Affiliation(s)
- Dayakar Thatikayala
- Department of Environment Science and Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Booki Min
- Department of Environment Science and Engineering, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
44
|
Tahir K, Miran W, Jang J, Woo SH, Lee DS. Enhanced product selectivity in the microbial electrosynthesis of butyrate using a nickel ferrite-coated biocathode. ENVIRONMENTAL RESEARCH 2021; 196:110907. [PMID: 33639146 DOI: 10.1016/j.envres.2021.110907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/24/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Microbial electrosynthesis (MES) is a potential sustainable biotechnology for the efficient conversion of carbon dioxide/bicarbonate into useful chemical commodities. To date, acetate has been the main MES product; selective electrosynthesis to produce other multi-carbon molecules, which have a higher commercial value, remains a major challenge. In this study, the conventional carbon felt (CF) was modified with inexpensive nickel ferrite (NiFe2O4@CF) to realize enhanced butyrate production owing to the advantages of improved electrical conductivity, charge transfer efficiency, and microbial-electrode interactions with the selective microbial enrichment. Experimental results show that the modified electrode yielded 1.2 times the butyrate production and 2.7 times the cathodic current production of the CF cathode; product selectivity was greatly improved (from 37% to 95%) in comparison with CF. Microbial community analyses suggest that selective microbial enrichment was promoted as Proteobacteria and Thermotogae (butyrate-producing phyla) were dominant in the NiFe2O4@CF biofilm (~78%). These results demonstrate that electrode modification with NiFe2O4 can help realize greater selective carboxylate production with improved MES performance. Hence, this technology is expected to be greatly useful in future reactor designs for scaled-up technologies.
Collapse
Affiliation(s)
- Khurram Tahir
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jiseon Jang
- R&D Institute of Radioactive Wastes, Korea Radioactive Waste Agency, 174 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Seung Han Woo
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, 34158, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
45
|
Zhang Y, Li J, Meng J, Wang X. A cathodic electro-fermentation system for enhancing butyric acid production from rice straw with a mixed culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145011. [PMID: 33636772 DOI: 10.1016/j.scitotenv.2021.145011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Bio-electrochemical system (BES) emerges as a versatile approach to handling environmental problems with the harvest of sustainable energy and value-added chemicals. To enhance the butyric acid production from rice straw, microbial fuel cell (MFC) and cathodic electro-fermentation (CEF) systems were constructed in this study. Inoculated with the same mixed culture, fermentative butyric acid production efficiency of the two BESs were evaluated with/without neutral red (NR) as electron mediator, respectively. It was found that the butyric acid fermentation efficiency in the MFC system was inefficient. While, the CEF system presented an evident positive effect on butyric acid production. The production and specific yield of butyric acid in the CEF system reached 5.54 g/L and 0.41 g/g, higher than that in the open circuit (OC) system by 17.37% and 28.13%, respectively. Mass percentage of butyric acid in the produced total volatile fatty acids (VFAs) was also increased from 44.74% to 52.76%. The addition of NR had no positive effect on the butyric acid production, due to the low contribution of electric current to the end-products. With the cathode potential of -0.80 V (vs Ag/AgCl), relative abundance of the butyric acid fermenting bacteria (Clostridium cluster IV and cluster XIVa) in the microbial mixture was increased from 20.25% in the OC system to 33.61% in the CEF system. This research work not only presents a novel method for enhancing butyric acid production by rice straw fermentation, but also aids an understanding of the fermentation mechanism in CEF systems.
Collapse
Affiliation(s)
- Yafei Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
46
|
Electrodeposited Hybrid Biocathode-Based CO 2 Reduction via Microbial Electro-Catalysis to Biofuels. MEMBRANES 2021; 11:membranes11030223. [PMID: 33810075 PMCID: PMC8004817 DOI: 10.3390/membranes11030223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Microbial electrosynthesis is a new approach to converting C1 carbon (CO2) to more complex carbon-based products. In the present study, CO2, a potential greenhouse gas, was used as a sole carbon source and reduced to value-added chemicals (acetate, ethanol) with the help of bioelectrochemical reduction in microbial electrosynthesis systems (MES). The performance of MES was studied with varying electrode materials (carbon felt, stainless steel, and cobalt electrodeposited carbon felt). The MES performance was assessed in terms of acetic acid and ethanol production with the help of gas chromatography (GC). The electrochemical characterization of the system was analyzed with chronoamperometry and cyclic voltammetry. The study revealed that the MES operated with hybrid cobalt electrodeposited carbon felt electrode yielded the highest acetic acid (4.4 g/L) concentration followed by carbon felt/stainless steel (3.7 g/L), plain carbon felt (2.2 g/L), and stainless steel (1.87 g/L). The alcohol concentration was also observed to be highest for the hybrid electrode (carbon felt/stainless steel/cobalt oxide is 0.352 g/L) as compared to the bare electrodes (carbon felt is 0.22 g/L) tested, which was found to be in correspondence with the pH changes in the system. Electrochemical analysis revealed improved electrotrophy in the hybrid electrode, as confirmed by the increased redox current for the hybrid electrode as compared to plain electrodes. Cyclic voltammetry analysis also confirmed the role of the biocatalyst developed on the electrode in CO2 sequestration.
Collapse
|
47
|
Gadkari S, Mirza Beigi BH, Aryal N, Sadhukhan J. Microbial electrosynthesis: is it sustainable for bioproduction of acetic acid? RSC Adv 2021; 11:9921-9932. [PMID: 35423508 PMCID: PMC8695651 DOI: 10.1039/d1ra00920f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
Microbial electrosynthesis (MES) is an innovative technology for electricity driven microbial reduction of carbon dioxide (CO2) to useful multi-carbon compounds. This study assesses the cradle-to-gate environmental burdens associated with acetic acid (AA) production via MES using graphene functionalized carbon felt cathode. The analysis shows that, though the environmental impact for the production of the functionalized cathode is substantially higher when compared to carbon felt with no modification, the improved productivity of the process helps in reducing the overall impact. It is also shown that, while energy used for extraction of AA is the key environmental hotspot, ion-exchange membrane and reactor medium (catholyte & anolyte) are other important contributors. A sensitivity analysis, describing four different scenarios, considering either continuous or fed-batch operation, is also described. Results show that even if MES productivity can be theoretically increased to match the highest space time yield reported for acetogenic bacteria in a continuous gas fermenter (148 g L-1 d-1), the environmental impact of AA produced using MES systems would still be significantly higher than that produced using a fossil-based process. Use of fed-batch operation and renewable (solar) energy sources do help in reducing the impact, however, the low production rates and overall high energy requirement makes large-scale implementation of such systems impractical. The analysis suggests a minimum threshold production rate of 4100 g m-2 d-1, that needs to be achieved, before MES could be seen as a sustainable alternative to fossil-based AA production.
Collapse
Affiliation(s)
- Siddharth Gadkari
- Department of Chemical and Process Engineering, University of Surrey Guildford GU2 7XH UK
- Centre for Environment and Sustainability, University of Surrey Guildford Surrey GU2 7XH UK
| | | | - Nabin Aryal
- Department of Microsystems, University of South-Eastern Norway Horten Norway
| | - Jhuma Sadhukhan
- Department of Chemical and Process Engineering, University of Surrey Guildford GU2 7XH UK
- Centre for Environment and Sustainability, University of Surrey Guildford Surrey GU2 7XH UK
| |
Collapse
|
48
|
Fontmorin JM, Izadi P, Li D, Lim SS, Farooq S, Bilal SS, Cheng S, Yu EH. Gas diffusion electrodes modified with binary doped polyaniline for enhanced CO2 conversion during microbial electrosynthesis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Das S, Chakraborty I, Das S, Ghangrekar M. Application of novel modular reactor for microbial electrosynthesis employing imposed potential with concomitant separation of acetic acid. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS 2021. [DOI: 10.1016/j.seta.2020.100902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
50
|
Rengasamy K, Ranaivoarisoa T, Bai W, Bose A. Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1. NANOTECHNOLOGY 2021; 32:035103. [PMID: 33017807 DOI: 10.1088/1361-6528/abbe58] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial electrosynthesis (MES) is an emerging technology that can convert carbon dioxide (CO2) into value-added organic carbon compounds using electrons supplied from a cathode. However, MES is affected by low product formation due to limited extracellular electron uptake by microbes. Herein, a novel cathode was developed from chemically synthesized magnetite nanoparticles and reduced graphene oxide nanocomposite (rGO-MNPs). This nanocomposite was electrochemically deposited on carbon felt (CF/rGO-MNPs), and the modified material was used as a cathode for MES production. The bioplastic, polyhydroxybutyrate (PHB) produced by Rhodopseudomonas palustris TIE-1 (TIE-1), was measured from reactors with modified and unmodified cathodes. Results demonstrate that the magnetite nanoparticle anchored graphene cathode (CF/rGO-MNPs) exhibited higher PHB production (91.31 ± 0.9 mg l-1). This is ∼4.2 times higher than unmodified carbon felt (CF), and 20 times higher than previously reported using graphite. This modified cathode enhanced electron uptake to -11.7 ± 0.1 μA cm-2, ∼5 times higher than CF cathode (-2.3 ± 0.08 μA cm-2). The faradaic efficiency of the modified cathode was ∼2 times higher than the unmodified cathode. Electrochemical analysis and scanning electron microscopy suggest that rGO-MNPs facilitated electron uptake and improved PHB production by TIE-1. Overall, the nanocomposite (rGO-MNPs) cathode modification enhances MES efficiency.
Collapse
Affiliation(s)
- Karthikeyan Rengasamy
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| | - Tahina Ranaivoarisoa
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| | - Wei Bai
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Arpita Bose
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| |
Collapse
|