1
|
Yao S, Swanson CS, Cheng Z, He Q, Yuan H. Alternating polarity as a novel strategy for building synthetic microbial communities capable of robust Electro-Methanogenesis. BIORESOURCE TECHNOLOGY 2024; 395:130374. [PMID: 38280409 DOI: 10.1016/j.biortech.2024.130374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Electro-methanogenic microbial communities can produce biogas with high efficiency and have attracted extensive research interest. In this study an alternating polarity strategy was developed to build electro-methanogenic communities. In two-chamber bioelectrochemical systems amended with activated carbon, the electrode potential was alternated between +0.8 V and -0.4 V vs. standard hydrogen electrode every three days. Cumulative biogas production under alternating polarity increased from 45 L/L/kg-activated carbon after start-up to 125 L/L/kg after the 4th enrichment, significantly higher than that under intermittent cathode (-0.4 V/open circuit), continuous cathode (-0.4 V), and open circuit. The communities assembled under alternating polarity were electroactive and structurally different from those assembled under other conditions. One Methanobacterium population and two Geobacter populations were consistently abundant and active in the communities. Their 16S rRNA was up-regulated by electrode potentials. Bayesian networks inferred close associations between these populations. Overall, electro-methanogenic communities have been successfully assembled with alternating polarity.
Collapse
Affiliation(s)
- Shiyun Yao
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Clifford S Swanson
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
| | - Zhang Cheng
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States.
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
2
|
Metatranscriptomic insights into the microbial electrosynthesis of acetate by Fe 2+/Ni 2+ addition. World J Microbiol Biotechnol 2023; 39:109. [PMID: 36879133 DOI: 10.1007/s11274-023-03554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
As important components of enzymes and coenzymes involved in energy transfer and Wood-Ljungdahl (WL) pathways, Fe2+ and Ni2+ supplementation may promote the acetate synthesis through CO2 reduction by the microbial electrosynthesis (MES). However, the effect of Fe2+ and Ni2+ addition on acetate production in MES and corresponding microbial mechanisms have not been fully studied. Therefore, this study investigated the effect of Fe2+ and Ni2+ addition on acetate production in MES, and explored the underlying microbial mechanism from the metatranscriptomic perspective. Both Fe2+ and Ni2+ addition enhanced acetate production of the MES, which was 76.9% and 110.9% higher than that of control, respectively. Little effect on phylum level and small changes in genus-level microbial composition was caused by Fe2+ and Ni2+ addition. Gene expression of 'Energy metabolism', especially in 'Carbon fixation pathways in prokaryotes' was up-regulated by Fe2+ and Ni2+ addition. Hydrogenase was found as an important energy transfer mediator for CO2 reduction and acetate synthesis. Fe2+ addition and Ni2+ addition respectively enhanced the expression of methyl branch and carboxyl branch of the WL pathway, and thus promoted acetate production. The study provided a metatranscriptomic insight into the effect of Fe2+ and Ni2+ on acetate production by CO2 reduction in MES.
Collapse
|
3
|
Zhang J, Liu H, Zhang Y, Wu P, Li J, Ding P, Jiang Q, Cui MH. Heterotrophic precultivation is a better strategy than polarity reversal for the startup of acetate microbial electrosynthesis reactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Fontmorin JM, Izadi P, Li D, Lim SS, Farooq S, Bilal SS, Cheng S, Yu EH. Gas diffusion electrodes modified with binary doped polyaniline for enhanced CO2 conversion during microbial electrosynthesis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Izadi P, Fontmorin JM, Godain A, Yu EH, Head IM. Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source. NPJ Biofilms Microbiomes 2020; 6:40. [PMID: 33056998 PMCID: PMC7560852 DOI: 10.1038/s41522-020-00151-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023] Open
Abstract
Cathode-driven applications of bio-electrochemical systems (BESs) have the potential to transform CO2 into value-added chemicals using microorganisms. However, their commercialisation is limited as biocathodes in BESs are characterised by slow start-up and low efficiency. Understanding biosynthesis pathways, electron transfer mechanisms and the effect of operational variables on microbial electrosynthesis (MES) is of fundamental importance to advance these applications of a system that has the capacity to convert CO2 to organics and is potentially sustainable. In this work, we demonstrate that cathodic potential and inorganic carbon source are keys for the development of a dense and conductive biofilm that ensures high efficiency in the overall system. Applying the cathodic potential of -1.0 V vs. Ag/AgCl and providing only gaseous CO2 in our system, a dense biofilm dominated by Acetobacterium (ca. 50% of biofilm) was formed. The superior biofilm density was significantly correlated with a higher production yield of organic chemicals, particularly acetate. Together, a significant decrease in the H2 evolution overpotential (by 200 mV) and abundant nifH genes within the biofilm were observed. This can only be mechanistically explained if intracellular hydrogen production with direct electron uptake from the cathode via nitrogenase within bacterial cells is occurring in addition to the commonly observed extracellular H2 production. Indeed, the enzymatic activity within the biofilm accelerated the electron transfer. This was evidenced by an increase in the coulombic efficiency (ca. 69%) and a 10-fold decrease in the charge transfer resistance. This is the first report of such a significant decrease in the charge resistance via the development of a highly conductive biofilm during MES. The results highlight the fundamental importance of maintaining a highly active autotrophic Acetobacterium population through feeding CO2 in gaseous form, which its dominance in the biocathode leads to a higher efficiency of the system.
Collapse
Affiliation(s)
- Paniz Izadi
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | | | - Alexiane Godain
- School of Natural and Environmental Sciences, Newcastle upon Tyne, UK
| | - Eileen H Yu
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK.
- Department of Chemical Engineering, Loughborough University, Loughborough, UK.
| | - Ian M Head
- School of Natural and Environmental Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Mohanakrishna G, Abu Reesh IM, Vanbroekhoven K, Pant D. Microbial electrosynthesis feasibility evaluation at high bicarbonate concentrations with enriched homoacetogenic biocathode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:137003. [PMID: 32023516 DOI: 10.1016/j.scitotenv.2020.137003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
An enrichment methodology was developed for a homoacetogenic biocathode that is able to function at high concentrations of bicarbonates for the microbial electrosynthesis (MES) of acetate from carbon dioxide. The study was performed in two stages; enrichment of consortia in serum bottles and the development of a biocathode in MES. A homoacetogenic consortium was sequentially grown under increasing concentrations of bicarbonate, in serum bottles, at room temperature. The acetate production rate was found to increase with the increase in the bicarbonate concentration and evidenced a maximum production rate of 260 mg/L d-1 (15 g HCO3-/L). On the contrary, carbon conversion efficiency decreased with the increase in the bicarbonate concentration, which evidenced a maximum at 2.5 g HCO3-/L (90.16%). Following a further increase in the bicarbonate concentration up to 20 g HCO3-/L, a visible inhibition was registered with respect to the acetate production rate and the carbon conversion efficiency. Well adapted biomass from 15 g HCO3-/L was used to develop biocathodic catalyst for MES. An effective biocathode was developed after 4 cycles of operation, during which acetate production was improved gradually, evidencing a maximum production rate of 24.53 mg acetate L-1 d-1 (carbon conversion efficiency, 47.72%). Compared to the enrichment stage, the carbon conversion efficiency and the rate of acetate production in MES were found to be low. The production of acetate induced a change in the catholyte pH, from neutral conditions towards acidic conditions.
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- Department of Chemical Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar; Separation & Conversion Technologies, VITO - Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Ibrahim M Abu Reesh
- Department of Chemical Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar
| | - Karolien Vanbroekhoven
- Separation & Conversion Technologies, VITO - Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9000 Ghent, Belgium
| | - Deepak Pant
- Separation & Conversion Technologies, VITO - Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Enhanced CO2 Conversion to Acetate through Microbial Electrosynthesis (MES) by Continuous Headspace Gas Recirculation. ENERGIES 2019. [DOI: 10.3390/en12173297] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bioelectrochemical systems (BESs) is a term that encompasses a group of novel technologies able to interconvert electrical energy and chemical energy by means of a bioelectroactive biofilm. Microbial electrosynthesis (MES) systems, which branch off from BESs, are able to convert CO2 into valuable organic chemicals and fuels. This study demonstrates that CO2 reduction in MES systems can be enhanced by enriching the inoculum and improving CO2 availability to the biofilm. The proposed system is proven to be a repetitive, efficient, and selective way of consuming CO2 for the production of acetic acid, showing cathodic efficiencies of over 55% and CO2 conversions of over 80%. Continuous recirculation of the gas headspace through the catholyte allowed for a 44% improvement in performance, achieving CO2 fixation rates of 171 mL CO2 L−1·d−1, a maximum daily acetate production rate of 261 mg HAc·L−1·d−1, and a maximum acetate titer of 1957 mg·L−1. High-throughput sequencing revealed that CO2 reduction was mainly driven by a mixed-culture biocathode, in which Sporomusa and Clostridium, both bioelectrochemical acetogenic bacteria, were identified together with other species such as Desulfovibrio, Pseudomonas, Arcobacter, Acinetobacter or Sulfurospirillum, which are usually found in cathodic biofilms. Moreover, results suggest that these communities are responsible of maintaining a stable reactor performance.
Collapse
|
8
|
Chen D, Shen J, Jiang X, Su G, Han W, Sun X, Li J, Mu Y, Wang L. Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system. WATER RESEARCH 2019; 157:8-18. [PMID: 30947080 DOI: 10.1016/j.watres.2019.03.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/27/2019] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
Due to highly recalcitrant and toxicological nature of halogenated organic compounds, conventional anaerobic dehalogenation is often limited by low removal rate and poor process stability. Besides, the reduction intermediates or products formed during dehalogenation process, which are still toxic, required further energy-intensive aerobic post-treatment. In this study, an up-flow electricity-stimulated anaerobic system (ESAS) was developed by installing cathode underneath and anode above to realize simultaneous anaerobic debromination and mineralization of 4-bromophenol (4-BP). When cathode potential was -600 mV, high TOC removal efficiency (98.78 ± 0.96%), complete removal of 4-BP and phenol could be achieved at 4-BP loading rate of 0.58 mol m-3 d-1, suggesting debrominated product of 4-BP from cathode (i.e., phenol) would be utilized as the fuel by the bioanode of ESAS. Under high 4-BP loading rate (2.32 mol m-3 d-1) and low electron donor dosage (4.88 mM), 4-BP could be completely removed at acetate usage ratio as low as 4.21 ± 1.42 mol acetate mol-1 4-BP removal in ESAS, whereas only 13.45 ± 1.38% of 4-BP could be removed at acetate usage ratio as high as 31.28 ± 3.38 mol acetate mol-1 4-BP removal in control reactor. Besides, electrical stimulation distinctly facilitated the growth of various autotrophic dehalogenation species, phenol degradation related species, fermentative species, homoacetogens and electrochemically active species in ESAS. Moreover, based on the identified intermediates and the bacterial taxonomic analysis, possible metabolism mechanism involved in enhanced anaerobic debromination and mineralization of 4-BP in ESAS was proposed.
Collapse
Affiliation(s)
- Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
9
|
Molenaar SD, Elzinga M, Willemse SG, Sleutels T, ter Heijne A, Buisman CJN. Comparison of Two Sustainable Counter Electrodes for Energy Storage in the Microbial Rechargeable Battery. ChemElectroChem 2019. [DOI: 10.1002/celc.201900470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sam D. Molenaar
- WetsusEuropean Centre of Excellence for Sustainable Water Technology Oostergoweg 9 8911 MA Leeuwarden The Netherlands
- Department of Environmental TechnologyWageningen University Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Margo Elzinga
- WetsusEuropean Centre of Excellence for Sustainable Water Technology Oostergoweg 9 8911 MA Leeuwarden The Netherlands
| | - Sonja G. Willemse
- WetsusEuropean Centre of Excellence for Sustainable Water Technology Oostergoweg 9 8911 MA Leeuwarden The Netherlands
| | - Tom Sleutels
- WetsusEuropean Centre of Excellence for Sustainable Water Technology Oostergoweg 9 8911 MA Leeuwarden The Netherlands
| | - Annemiek ter Heijne
- Department of Environmental TechnologyWageningen University Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Cees J. N. Buisman
- WetsusEuropean Centre of Excellence for Sustainable Water Technology Oostergoweg 9 8911 MA Leeuwarden The Netherlands
- Department of Environmental TechnologyWageningen University Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| |
Collapse
|
10
|
A variety of hydrogenotrophic enrichment cultures catalyse cathodic reactions. Sci Rep 2019; 9:2356. [PMID: 30787309 PMCID: PMC6382808 DOI: 10.1038/s41598-018-38006-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/18/2018] [Indexed: 12/03/2022] Open
Abstract
Biocathodes where living microorganisms catalyse reduction of CO2 can potentially be used to produce valuable chemicals. Microorganisms harbouring hydrogenases may play a key role for biocathode performance since H2 generated on the electrode surface can act as an electron donor for CO2 reduction. In this study, the possibility of catalysing cathodic reactions by hydrogenotrophic methanogens, acetogens, sulfate-reducers, denitrifiers, and acetotrophic methanogens was investigated. The cultures were enriched from an activated sludge inoculum and performed the expected metabolic functions. All enrichments formed distinct microbial communities depending on their electron donor and electron acceptor. When the cultures were added to an electrochemical cell, linear sweep voltammograms showed a shift in current generation close to the hydrogen evolution potential (−1 V versus SHE) with higher cathodic current produced at a more positive potential. All enrichment cultures except the denitrifiers were also used to inoculate biocathodes of microbial electrolysis cells operated with H+ and bicarbonate as electron acceptors and this resulted in current densities between 0.1–1 A/m2. The microbial community composition of biocathodes inoculated with different enrichment cultures were as different from each other as they were different from their suspended culture inoculum. It was noteworthy that Methanobacterium sp. appeared on all the biocathodes suggesting that it is a key microorganism catalysing biocathode reactions.
Collapse
|