1
|
Wei G, Deng S, Shao D, Xu D, Lei R, Li X. Gemini cationic surfactant of 1, 3-bis (dodecyl dimethyl ammonium chloride) propane as a novel excellent inhibitor for the corrosion of cold rolled steel in HCl solution. J Colloid Interface Sci 2025; 677:324-345. [PMID: 39096702 DOI: 10.1016/j.jcis.2024.07.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Gemini surfactants have become the research focus of novel excellent inhibitors because of their special structure (two amphiphilic moieties covalently connected at head group by a spacer) and excellent surface properties. It is proved by theoretical calculations that 1, 3-bis (dodecyl dimethyl ammonium chloride) propane (BDDACP) molecules can perform electron transfer with Fe (110). And it has a small fraction free volume, thus greatly reducing the diffusion and migration degree of corrosive particles. The potentiodynamic polarization curve showed that coefficients of cathodic and anodic reaction less than 1 and polarization resistance increased to 1602.9 Ω cm-2 after added BDDACP, confirming that BDDACP significantly inhibited the corrosion reaction by occupying the active site. The electrochemical impedance spectrum of imperfect semi-circle shows that the system resistance increases and double layer capacitance after added BDDACP. Weight loss tests also confirmed that BDDACP forms protective film by occupying the active sites on steel surface, and the maximum inhibition efficiency is 92 %. Comparison of the microscopic morphology showed that steel surface roughness was significantly reduced after added BDDACP. The results of time-of-flight secondary ion mass spectrometry show that steel surface contains some elements from BDDACP, which confirms the adsorption of BDDACP on steel surface.
Collapse
Affiliation(s)
- Gaofei Wei
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Shuduan Deng
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Dandan Shao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, PR China
| | - Ran Lei
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Xianghong Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
2
|
Gao G, Wang J, Liang P, Ruan Y, Wang D, Feng L, Ma X, Hu Z, Zhu H. Two novel triazine-based quaternary ammonium salt Gemini surfactants as potential corrosion inhibitors for carbon steel in a sulfate-reducing bacteria solution: Experimental and theoretical studies. Heliyon 2024; 10:e40385. [PMID: 39660201 PMCID: PMC11629201 DOI: 10.1016/j.heliyon.2024.e40385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
In this paper, two triazine ring-containing quaternary ammonium salt Gemini surfactants (C12-2-C12 and C14-2-C14) were synthesized. The minimum inhibitory concentrations against sulfate-reducing bacteria (SRB) of C12-2-C12, C14-2-C14 and dodecyl dimethyl benzyl ammonium chloride (1227) were determined using the double-dilution method. The performance of C12-2-C12 and C14-2-C14 in inhibiting carbon steel corrosion in the presence of SRB was examined, with 1227 serving as a control sample. The corrosion inhibition properties were assessed through static weight loss, electrochemical testing, and surface analysis. The interface adsorption behaviour of the corrosion inhibitor was explored via molecular dynamics simulations. Results indicate that the minimum inhibitory concentrations (MIC) of C12-2-C12 (0.021 mM) and C14-2-C14 (0.005 mM) are lower than that of 1227 (0.300 mM). The results of static weightlessness measurement reveal that the corrosion inhibition effects of the three surfactants on carbon steel soaked in SRB solution follow the order of C14-2-C14 > C12-2-C12 > 1227, with inhibition rates of 93.23 %, 88.45 %, and 76.49 % at a concentration of 0.2 mM, respectively. The adsorption behavior of these surfactants (1227, C12-2-C12, and C14-2-C14) on carbon steel surface in the presence of SRB conforms the Langmuir isotherm adsorption model. The outcomes of electrochemical experiments align with the static weight loss data. Furthermore, surface analysis results suggest that the surfactants can adsorb onto the carbon steel surface to form a protective film, thereby inhibiting SRB-induced corrosion.
Collapse
Affiliation(s)
- Guofang Gao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan, 030001, Shanxi, China
| | - Junxia Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan, 030001, Shanxi, China
| | - Penghui Liang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan, 030001, Shanxi, China
| | - Yilei Ruan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan, 030001, Shanxi, China
| | - Dehua Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan, 030001, Shanxi, China
| | - Li Feng
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan, 030001, Shanxi, China
| | - Xuemei Ma
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan, 030001, Shanxi, China
| | - Zhiyong Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan, 030001, Shanxi, China
| | - Hailin Zhu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
- Shanxi Key Laboratory of Functional Surfactants, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
3
|
Lavanya M, Machado AA. Surfactants as biodegradable sustainable inhibitors for corrosion control in diverse media and conditions: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168407. [PMID: 37939963 DOI: 10.1016/j.scitotenv.2023.168407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Corrosion is a challenging and potentially harmful process that involves the continuing, impulsive deterioration of metallic structures via reactions involving environmental components and electro- or chemical processes. To inhibit corrosion, various additives are added. Traditional additives, on the other hand, contain environmentally hazardous substances. Surfactants are less expensive, easier to manufacture, and have high inhibitory efficacy and low toxicity compared to standard corrosion inhibitors. They are often employed as corrosion inhibitors to protect metallic materials against corrosion. METHODS Surfactant molecules' amphiphilic nature promotes adsorption at surfaces such as the metal/metal oxide-water interface. Surfactant adsorption on metals and metal oxides forms a barrier that can prevent corrosion. SIGNIFICANT FINDINGS This review of surfactants as corrosion inhibitors aims to offer a systemic evaluation of various surfactant physical and chemical properties, surfactant influence in corrosion inhibition, and surfactant used in corrosion inhibition that can be used to enhance the efficacy of surfactant use as corrosion inhibitors in a variety of environments. The effect of several parameters on the potential to suppress corrosion of surfactant molecule series is also discussed here.
Collapse
Affiliation(s)
- M Lavanya
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Avryl Anna Machado
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Chemical and Bioprocess Engineering, Hamburg University of Technology, 21073 Hamburg, Germany
| |
Collapse
|
4
|
El-Maksoud SAA, El-Dossoki FI, Abd-Elhamed M, Farag AA. Some New Synthesized Gemini Cationic Surfactants as Corrosion Inhibitors for Carbon Steel in Hydrochloric Acid Solution. JOURNAL OF BIO- AND TRIBO-CORROSION 2023; 9:71. [DOI: 10.1007/s40735-023-00787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
|
5
|
Brycki B, Szulc A, Brycka J, Kowalczyk I. Properties and Applications of Quaternary Ammonium Gemini Surfactant 12-6-12: An Overview. Molecules 2023; 28:6336. [PMID: 37687165 PMCID: PMC10489655 DOI: 10.3390/molecules28176336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Surfactants are amphiphilic molecules and one of the most versatile products of the chemical industry. They can be absorbed at the air-water interface and can align themselves so that the hydrophobic part is in the air while the hydrophilic part is in water. This alignment lowers the surface or interfacial tension. Gemini surfactants are a modern variety of surfactants with unique properties and a very wide range of potential applications. Hexamethylene-1,6-bis(N-dodecyl-N,N-dimethylammonium bromide) is one such representative compound that is a better alternative to a single analogue. It shows excellent surface, antimicrobial, and anticorrosion properties. With a highly efficient synthetic method and a good ecological profile, it is a potential candidate for numerous applications, including biomedical applications.
Collapse
Affiliation(s)
- Bogumił Brycki
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | - Adrianna Szulc
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | | | - Iwona Kowalczyk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (A.S.); (I.K.)
| |
Collapse
|
6
|
Lamch Ł, Szczęsna W, Balicki SJ, Bartman M, Szyk-Warszyńska L, Warszyński P, Wilk KA. Multiheaded Cationic Surfactants with Dedicated Functionalities: Design, Synthetic Strategies, Self-Assembly and Performance. Molecules 2023; 28:5806. [PMID: 37570776 PMCID: PMC10421305 DOI: 10.3390/molecules28155806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Contemporary research concerning surfactant science and technology comprises a variety of requirements relating to the design of surfactant structures with widely varying architectures to achieve physicochemical properties and dedicated functionality. Such approaches are necessary to make them applicable to modern technologies, such as nanostructure engineering, surface structurization or fine chemicals, e.g., magnetic surfactants, biocidal agents, capping and stabilizing reagents or reactive agents at interfaces. Even slight modifications of a surfactant's molecular structure with respect to the conventional single-head-single-tail design allow for various custom-designed products. Among them, multicharge structures are the most intriguing. Their preparation requires specific synthetic routes that enable both main amphiphilic compound synthesis using appropriate step-by-step reaction strategies or coupling approaches as well as further derivatization toward specific features such as magnetic properties. Some of the most challenging aspects of multicharge cationic surfactants relate to their use at different interfaces for stable nanostructures formation, applying capping effects or complexation with polyelectrolytes. Multiheaded cationic surfactants exhibit strong antimicrobial and antiviral activity, allowing them to be implemented in various biomedical fields, especially biofilm prevention and eradication. Therefore, recent advances in synthetic strategies for multiheaded cationic surfactants, their self-aggregation and performance are scrutinized in this up-to-date review, emphasizing their applications in different fields such as building blocks in nanostructure engineering and their use as fine chemicals.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Weronika Szczęsna
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Sebastian J. Balicki
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Marcin Bartman
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Liliana Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| |
Collapse
|
7
|
Shafek SH, Ghiaty EA, El Basiony NM, Badr EA, Shaban SM. Preparation of zwitterionic ionic surfactants-based sulphonyl for steel protections: Experimental and theoretical insights. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Designating an organic inhibitor with a specific chemical structure that actively participates in steel protection by increasing adsorption on the steel surface. Based on that, we synthesized three zwitterionic surfactants based on azomethine with different hydrophobic chain lengths labeled ZWSO, ZWSD, and ZWSH. The presence of azomethine group, electrons, and heteroatoms in the zwitterionic surfactant’s amphipathic structure helped to improve C-steel protection. Their inhibitory activity toward steel corrosion was investigated utilizing electrochemical impedance spectroscopy (EIS), gravimetrical, and potentiodynamic polarization techniques. Importantly, the surfactant tail influenced corrosion inhibition performance; as surfactant tail length increased, so did inhibition efficiency due to increased adsorption affinity. The inhibition efficiencies of ZWSO, ZWSD, and ZWSH are 87.15, 89.82, and 91.36%, respectively. Tafel data clarified that ZWSO, ZWSD, and ZWSH inhibitors behave as mixed-type inhibitors following the modified Langmuir isotherm. The inhibitors can adsorb physiochemically on the steel surface with ∆G
ads ranges from −38.48 to −44.6 kJ mol−1. The SEM confirms that the morphology of C-steel becomes smoother because of inhibitor adsorption. The DFT and MCs output data supported the experimental performance of the tested ZWSO, ZWSD, and ZWSH inhibitors and especially their dependence on surfactant tail length.
Collapse
Affiliation(s)
- Samir H. Shafek
- Egyptian Petroleum Research Institute , Nasr City 11727 , Cairo , Egypt
| | - Eman A. Ghiaty
- Egyptian Petroleum Research Institute , Nasr City 11727 , Cairo , Egypt
| | - Nasser M. El Basiony
- Egyptian Petroleum Research Institute , Nasr City 11727 , Cairo , Egypt
- School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| | - Emad A. Badr
- Egyptian Petroleum Research Institute , Nasr City 11727 , Cairo , Egypt
| | - Samy M. Shaban
- Egyptian Petroleum Research Institute , Nasr City 11727 , Cairo , Egypt
- School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon 16419 , Republic of Korea
| |
Collapse
|
8
|
Gyani Devi Y, Koya Pulikkal A, Gurung J. Research Progress on the Synthesis of Different Types of Gemini Surfactants with a Functionalized Hydrophobic Moiety and Spacer. ChemistrySelect 2022. [DOI: 10.1002/slct.202203485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Yumnam Gyani Devi
- Department of Chemistry National Institute of Technology Mizoram, Chaltlang Aizawl 796012 India
| | - Ajmal Koya Pulikkal
- Department of Chemistry National Institute of Technology Mizoram, Chaltlang Aizawl 796012 India
| | - Jackson Gurung
- Department of Chemistry National Institute of Technology Mizoram, Chaltlang Aizawl 796012 India
- Department of Chemistry North Bengal St. Xavier's College, Rajganj 735134 West-Bengal India
| |
Collapse
|
9
|
Machado Fernandes C, Guedes L, Alvarez LX, Barrios AM, Lgaz H, Lee HS, Ponzio EA. Anticorrosive properties of green-synthetized benzylidene derivatives for mild steel in hydrochloric acid: An experimental study combined with DFTB and molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Domínguez-Arca V, Sabín J, García-Río L, Bastos M, Taboada P, Barbosa S, Prieto G. On the structure and stability of novel cationic DPPC liposomes doped with gemini surfactants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Fetin P, Lezov A, Fetina V, Kadnikov M, Tsvetkov N, Zorin I. Comb-like polyelectrolytes – New surfactants with controlled solubilization capacity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Enhancing Biocide Efficacy: Targeting Extracellular DNA for Marine Biofilm Disruption. Microorganisms 2022; 10:microorganisms10061227. [PMID: 35744744 PMCID: PMC9228965 DOI: 10.3390/microorganisms10061227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Biofilm formation is a global health, safety and economic concern. The extracellular composition of deleterious multispecies biofilms remains uncanvassed, leading to an absence of targeted biofilm mitigation strategies. Besides economic incentives, drive also exists from industry and research to develop and apply environmentally sustainable chemical treatments (biocides); especially in engineered systems associated with the marine environment. Recently, extracellular DNA (eDNA) was implicated as a critical structural polymer in marine biofilms. Additionally, an environmentally sustainable, multi-functional biocide was also introduced to manage corrosion and biofilm formation. To anticipate biofilm tolerance acquisition to chemical treatments and reduce biocide application quantities, the present research investigated eDNA as a target for biofilm dispersal and potential enhancement of biocide function. Results indicate that mature biofilm viability can be reduced by two-fold using reduced concentrations of the biocide alone (1 mM instead of the recommended 10 mM). Importantly, through the incorporation of an eDNA degradation stage, biocide function could be enhanced by a further ~90% (one further log reduction in viability). Biofilm architecture analysis post-treatment revealed that endonuclease targeting of the matrix allowed greater biocide penetration, leading to the observed viability reduction. Biofilm matrix eDNA is a promising target for biofilm dispersal and antimicrobial enhancement in clinical and engineered systems.
Collapse
|
13
|
Verma C, Quraishi M, Rhee K. Hydrophilicity and hydrophobicity consideration of organic surfactant compounds: Effect of alkyl chain length on corrosion protection. Adv Colloid Interface Sci 2022; 306:102723. [DOI: 10.1016/j.cis.2022.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/01/2022]
|
14
|
Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Adv Colloid Interface Sci 2022; 299:102581. [PMID: 34891074 DOI: 10.1016/j.cis.2021.102581] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Gemini surfactants consist of two cationic monomers of a surfactant linked together with a spacer. The specific structure of a cationic gemini surfactant is the reason for both its high surface activity and its ability to decrease the surface tension of water. The high surface activity and unique structure of gemini surfactants result in outstanding properties, including antibacterial and antifungal activity, anticorrosion properties, unique aggregation behaviour, the ability to form various structures reversibly in response to environmental conditions, and interactions with biomacromolecules such as DNA and proteins. These properties can be tailored by selecting the optimal structure of a gemini surfactant in terms of the nature and length of its alkyl substituents, spacer, and head group. Additionally, regarding their properties, comparison with their monomeric counterparts demonstrates that gemini surfactants have higher performance efficacy at lower concentrations. Hence, less material is needed, and the toxicity is lower. However, there are some limitations regarding their biocompatibility that have led researchers to develop amino acid-based and sugar-based gemini surfactants. Owing to their remarkable properties, cationic gemini surfactants are promising candidates for bioapplications such as drug delivery systems, gene carriers, and biomaterial surface modification.
Collapse
|
15
|
|
16
|
Wang D, Li Y, Chang T, Luo A. Experimental and theoretical studies of chitosan derivatives as green corrosion inhibitor for oil and gas well acid acidizing. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
The inhibition performance of morpholinium derivatives on corrosion behavior of carbon steel in the acidized formation water: Theoretical, experimental and biocidal evaluations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Aslam R, Mobin M, Aslam J, Aslam A, Zehra S, Masroor S. Application of surfactants as anticorrosive materials: A comprehensive review. Adv Colloid Interface Sci 2021; 295:102481. [PMID: 34390883 DOI: 10.1016/j.cis.2021.102481] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/05/2023]
Abstract
Corrosion is the degradation of a metal due to its reaction with the environment. One of the most efficient ways of securing metal surfaces from corrosion is the use of corrosion inhibitors. Their efficacy is connected to their chemical composition, their molecular structures, and their adsorption affinities on the metal surface. This review article focuses on the prospects of different types of monomeric and gemini surfactants, mixed surfactants systems, surfactants- additives mixed systems, inhibitors-surfactants (as additives) mixed systems, and ionic liquid based surfactants as promising corrosion-inhibiting formulations in the aqueous phase and the role of surfactants in developing protective coatings. The analysis starts with an accurate overview of the characteristics, types, and structure-property-performance relationship of anti-corrosion formulations of such inhibitors.
Collapse
Affiliation(s)
- R Aslam
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - M Mobin
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India.
| | - J Aslam
- Department of Chemistry, College of Science, Taibah University, Yanbu 30799, Al-Madina, Saudi Arabia
| | - A Aslam
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
| | - S Zehra
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - S Masroor
- Department of Chemistry, A.N. College, Patliputra University, Patna 800013, Bihar, India
| |
Collapse
|
19
|
Kushnazarova RA, Mirgorodskaya AB, Kuznetsov DM, Tyryshkina AA, Voloshina AD, Gumerova SK, Lenina OA, Nikitin EN, Zakharova LY. Modulation of aggregation behavior, antimicrobial properties and catalytic activity of piperidinium surfactants by modifying their head group with a polar fragment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Glycyrrhiza glabra extract as an eco-friendly inhibitor for microbiologically influenced corrosion of API 5LX carbon steel in oil well produced water environments. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Deyab M, Ashmawy AM, Nessim M, Mohsen Q. New Gemini surfactants based on alkyl benzenaminium: Synthesis and links to application of corrosion protection. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Deyab MA, Mohsen Q. Inhibitory influence of cationic Gemini surfactant on the dissolution rate of N80 carbon steel in 15% HCl solution. Sci Rep 2021; 11:10521. [PMID: 34006942 PMCID: PMC8131745 DOI: 10.1038/s41598-021-90031-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/06/2021] [Indexed: 02/03/2023] Open
Abstract
Strong acids are commonly used in petroleum wells to remove scale layers from the surface of N80 C-steel pipe. The corrosive effects of these acids, on the other hand, pose a significant risk to C-steel pipes. For the first time, we discovered the anti-corrosion properties of cationic Gemini surfactant, 1,2-bis(dodecyldimethylammonio) ethane dibromide (DMAEB), for N80 C-steel pipe in acid washing solution (15.0% HCl). The DMAEB, in particular, can reduce the corrosion rate of N80 C-steel by approximately 97%. DMAEB molecules work as a mixed-type corrosion inhibitor, according to electrochemical results. The DMAEB demonstrated a high inhibition effect at high temperatures, as well as high activation energy against the corrosion process. DMAEB's significant performance is primarily due to physical adsorption on the N80 C-steel surface, as confirmed by adsorption isotherms, SEM, EDX, FT-IR, and theoretical studies. Our findings shed new light on the use of Gemini surfactants as corrosion inhibitors in petroleum wells.
Collapse
Affiliation(s)
- M. A. Deyab
- grid.454081.c0000 0001 2159 1055Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo Egypt
| | - Q. Mohsen
- grid.412895.30000 0004 0419 5255Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
23
|
Synthesis and evaluation of nonionic surfactants based on dimethylaminoethylamine: Electrochemical investigation and theoretical modeling as inhibitors during electropolishing in-ortho-phosphoric acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115421] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
A gossypol derivative as an efficient corrosion inhibitor for St2 steel in 1 M HCl + 1 M KCl: An experimental and theoretical investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115475] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Zhu H, Li X, Lu X, Wang J, Hu Z, Ma X. Efficiency of Gemini surfactant containing semi-rigid spacer as microbial corrosion inhibitor for carbon steel in simulated seawater. Bioelectrochemistry 2021; 140:107809. [PMID: 33862547 DOI: 10.1016/j.bioelechem.2021.107809] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
SRB is one of the main bacteria causing marine microbial corrosion. In order to reduce the loss of microbial corrosion, a Gemini surfactant (12-B-12) containing semi-rigid spacer was used to investigate the anti-bacterial and anti-corrosion performances of carbon steel in simulated seawater by weight-loss test, electrochemical method and surface morphology analysis. The results showed that the inhibition efficiency of 0.01 mM 12-B-12 was as high as 98.3% after 30 days of incubation in simulated seawater with SRB, and the planktonic and sessile SRB on the carbon steel surface can be reduced to undetectable level. Quantum chemical calculation and molecular dynamics simulation were used to study the structure-activity relationship.
Collapse
Affiliation(s)
- Hailin Zhu
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Xiaofen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Xiaomeng Lu
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Junxia Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Zhiyong Hu
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Xuemei Ma
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
26
|
Zhao R, Xu W, Yu Q, Niu L. Synergistic effect of SAMs of S-containing amino acids and surfactant on corrosion inhibition of 316L stainless steel in 0.5 M NaCl solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Shaban SM, Elsamad SA, Tawfik SM, Abdel-Rahman AAH, Aiad I. Studying surface and thermodynamic behavior of a new multi-hydroxyl Gemini cationic surfactant and investigating their performance as corrosion inhibitor and biocide. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113881] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Self-assembly and rheological behavior of novel anionic and cationic gemini surfactants. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04743-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Badr EA, Hefni HH, Shafek S, Shaban SM. Synthesis of anionic chitosan surfactant and application in silver nanoparticles preparation and corrosion inhibition of steel. Int J Biol Macromol 2020; 157:187-201. [DOI: 10.1016/j.ijbiomac.2020.04.184] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
|
30
|
Domínguez-Arca V, Sabín J, Taboada P, García-Río L, Prieto G. Micellization thermodynamic behavior of gemini cationic surfactants. Modeling its adsorption at air/water interface. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Ituen E, Ekemini E, Yuanhua L, Singh A. Green synthesis of Citrus reticulata peels extract silver nanoparticles and characterization of structural, biocide and anticorrosion properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127819] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Nuer M, Duan J, Wei Z, Wu W, Ma J, Zhang A. Fluorocarbon-hydrocarbon hybrid cationic surfactants: Synthesis, surface-activity properties and anti-corrosion performance. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112897] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Labena A, Hegazy MA, Sami RM, Hozzein WN. Multiple Applications of a Novel Cationic Gemini Surfactant: Anti-Microbial, Anti-Biofilm, Biocide, Salinity Corrosion Inhibitor, and Biofilm Dispersion (Part II). Molecules 2020; 25:E1348. [PMID: 32188097 PMCID: PMC7144103 DOI: 10.3390/molecules25061348] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 01/14/2023] Open
Abstract
The Egyptian petroleum industries are incurring severe problems with corrosion, particularly corrosion that is induced by sulfidogenic microbial activities in harsh salinity environments despite extensively using biocides and metal corrosion inhibitors. Therefore, in this study, a synthesized cationic gemini surfactant (SCGS) was tested as a broad-spectrum antimicrobial, anti-bacterial, anti-candida, anti-fungal, anti-biofilm (anti-adhesive), and bio-dispersion agent. The SCGS was evaluated as a biocide against environmental sulfidogenic-bacteria and as a corrosion inhibitor for a high salinity cultivated medium. The SCGS displayed wide spectrum antimicrobial activity with minimum bactericidal/fungicidal inhibitory concentrations. The SCGS demonstrated anti-bacterial, anti-biofilm, and bio-dispersion activity. The SCGS exhibited bactericidal activity against environmental sulfidogenic bacteria and the highest corrosion inhibition efficiency of 93.8% at 5 mM. Additionally, the SCGS demonstrated bio-dispersion activity against the environmental sulfidogenic bacteria at 5.49% salinity. In conclusion, this study provides a novel synthesized cationic surfactant with many applications in the oil and gas industry: as broad-spectrum antimicrobial and anti-biofilm agents, corrosion inhibition for high salinity, biocides for environmentally sulfidogenic bacteria, and as bio-dispersion agents.
Collapse
Affiliation(s)
- A. Labena
- Egyptian Petroleum Research Institute (EPRI), Nasr, Cairo 11727, Egypt; (M.A.H.); (R.M.S.)
| | - M. A. Hegazy
- Egyptian Petroleum Research Institute (EPRI), Nasr, Cairo 11727, Egypt; (M.A.H.); (R.M.S.)
| | - Radwa M. Sami
- Egyptian Petroleum Research Institute (EPRI), Nasr, Cairo 11727, Egypt; (M.A.H.); (R.M.S.)
| | - Wael N. Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
34
|
Cationic gemini surfactants containing both amide and ester groups: Synthesis, surface properties and antibacterial activity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Pisárčik M, Pupák M, Lukáč M, Devínsky F, Hubčík L, Bukovský M, Horváth B. The Synthesis, Self-Assembled Structures, and Microbicidal Activity of Cationic Gemini Surfactants with Branched Tridecyl Chains. Molecules 2019; 24:molecules24234380. [PMID: 31801214 PMCID: PMC6930597 DOI: 10.3390/molecules24234380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023] Open
Abstract
Cationic gemini surfactants with polymethylene spacer and linear alkyl chains containing an even number of carbon atoms have been extensively studied in the recent past, with the emphasis put on the determination of their aggregation behaviour in aqueous solution and their biological properties. However, the information on the aggregation of branched gemini surfactants with an odd number of carbon atoms in their alkyl chains is only sparsely reported in the literature. To help cover this gap in the research of cationic gemini surfactants, a series of branched bisammonium cationic gemini surfactants with an odd number of carbon atoms in alkyl chains (tridecane-2-yl chains) and a polymethylene spacer with a variable length ranging from 3 to 12 carbon atoms have been synthesized and investigated. Critical micelle concentration, which was determined by three methods, was found to be in the order 10-4 mol/L. A comparison of the obtained data of the novel series of tridecyl chain geminis with those of gemini surfactants with dodecyl chains and an identical spacer structure revealed that structural differences between both series of gemini surfactants result in different aggregation and surface properties for surfactants with 6 and 8 methylene groups in the spacer (N,N'-bis(tridecane-2-yl)-N,N,N',N'-tetramethylhexane-1,6-diaminium dibromide and N,N'-bis(tridecane-2-yl)-N,N,N',N'-tetramethyloctane-1,8-diaminium dibromide) with the cmc values 8.2 × 10-4 mol/L and 6.5 × 10-4 mol/L, respectively, as determined by surface tension measurements. Particle size analysis showed the formation of small stable spherical micelles in the interval between 2.8 and 5 nm and with zeta potential around +50 mV, which are independent of surfactant concentration and increase with the increasing spacer length. Microbicidal activity of 13-s-13 gemini surfactants was found to be efficient against Gram-positive, Gram-negative bacteria and yeast.
Collapse
Affiliation(s)
- Martin Pisárčik
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia;
- Correspondence:
| | - Matúš Pupák
- State Institute for Drug Control, SK-82508 Bratislava, Slovakia;
| | - Miloš Lukáč
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia;
| | | | - Lukáš Hubčík
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia;
| | - Marián Bukovský
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia;
| | | |
Collapse
|