1
|
Yu L, Chen L, Liu Y, Zhu J, Wang F, Ma L, Yi K, Xiao H, Zhou F, Wang F, Bai L, Zhu Y, Xiao X, Yang Y. Magnetically Actuated Hydrogel Stamping-Assisted Cellular Mechanical Analyzer for Stored Blood Quality Detection. ACS Sens 2023; 8:1183-1191. [PMID: 36867892 DOI: 10.1021/acssensors.2c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Cellular mechanical property analysis reflecting the physiological and pathological states of cells plays a crucial role in assessing the quality of stored blood. However, its complex equipment needs, operation difficulty, and clogging issues hinder automated and rapid biomechanical testing. Here, we propose a promising biosensor assisted by magnetically actuated hydrogel stamping to fulfill it. The flexible magnetic actuator triggers the collective deformation of multiple cells in the light-cured hydrogel, and it allows for on-demand bioforce stimulation with the advantages of portability, cost-effectiveness, and simplicity of operation. The magnetically manipulated cell deformation processes are captured by the integrated miniaturized optical imaging system, and the cellular mechanical property parameters are extracted from the captured images for real-time analysis and intelligent sensing. In this work, 30 clinical blood samples with different storage durations (<14 days and >14 days) were tested. A deviation of 3.3% in the differentiation of blood storage durations by this system compared to physician annotation demonstrated its feasibility. This system should broaden the application of cellular mechanical assays in diverse clinical settings.
Collapse
Affiliation(s)
- Le Yu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Longfei Chen
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yantong Liu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Fang Wang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Long Bai
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yimin Zhu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
2
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Pradhan S, Solomon R, Gangotra A, Yakubov GE, Willmott GR, Whitby CP, Hale TK, Williams MAK. Depletion of HP1α alters the mechanical properties of MCF7 nuclei. Biophys J 2021; 120:2631-2643. [PMID: 34087208 DOI: 10.1016/j.bpj.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022] Open
Abstract
Within the nucleus of the eukaryotic cell, DNA is partitioned into domains of highly condensed, transcriptionally silent heterochromatin and less condensed, transcriptionally active euchromatin. Heterochromatin protein 1α (HP1α) is an architectural protein that establishes and maintains heterochromatin, ensuring genome fidelity and nuclear integrity. Although the mechanical effects of changes in the relative amount of euchromatin and heterochromatin brought about by inhibiting chromatin-modifying enzymes have been studied previously, here we measure how the material properties of the nuclei are modified after the knockdown of HP1α. These studies were inspired by the observation that poorly invasive MCF7 breast cancer cells become more invasive after knockdown of HP1α expression and that, indeed, in many solid tumors the loss of HP1α correlates with the onset of tumor cell invasion. Atomic force microscopy (AFM), optical tweezers (OT), and techniques based on micropipette aspiration (MA) were each used to characterize the mechanical properties of nuclei extracted from HP1α knockdown or matched control MCF7 cells. Using AFM or OT to locally indent nuclei, those extracted from MCF7 HP1α knockdown cells were found to have apparent Young's moduli that were significantly lower than nuclei from MCF7 control cells, consistent with previous studies that assert heterochromatin plays a major role in governing the mechanical response in such experiments. In contrast, results from pipette-based techniques in the spirit of MA, in which the whole nuclei were deformed and aspirated into a conical pipette, showed considerably less variation between HP1α knockdown and control, consistent with previous studies reporting that it is predominantly the lamins in the nuclear envelope that determine the mechanical response to large whole-cell deformations. The differences in chromatin organization observed by various microscopy techniques between the MCF7 control and HP1α knockdown nuclei correlate well with the results of our measured mechanical responses and our hypotheses regarding their origin.
Collapse
Affiliation(s)
- Susav Pradhan
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Raoul Solomon
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Ankita Gangotra
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Department of Physics, The University of Auckland, Auckland, New Zealand
| | - Gleb E Yakubov
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia; School of Biosciences, Faculty of Science, University of Nottingham, Nottingham, United Kingdom
| | - Geoff R Willmott
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Department of Physics, The University of Auckland, Auckland, New Zealand; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Catherine P Whitby
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Tracy K Hale
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Martin A K Williams
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| |
Collapse
|
4
|
Analysis and improvement of positioning reliability and accuracy of theta pipette configuration for scanning ion conductance microscopy. Ultramicroscopy 2021; 224:113240. [PMID: 33689886 DOI: 10.1016/j.ultramic.2021.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/02/2021] [Accepted: 02/27/2021] [Indexed: 11/21/2022]
Abstract
Scanning ion conductance microscopy (SICM) as an emerging non-contact scanning probe microscopy technique and featuring its strong in-situ detectability for soft and viscous samples, is increasingly used in biomedical and materials related studies. In SICM measurements, employing theta pipette as SICM probe to scan sample is an effective method to extend the applications of SICM for multi-parameter measurement. There are two crucial but still unclear issues that influence the reliability and accuracy of the usage of theta pipette in the SICM measurements, which are the safe feedback threshold and the horizontal measurement offset. In this work, aiming at the theta pipette configuration of SICM, we systematically investigated the two issues of the theta pipette by both finite element method (FEM) simulation and SICM experiments. The FEM analysis results show that the safe feedback threshold of the one side barrel of the theta pipette is above 99.5%, and the horizontal measurement offset is ~0.53 times of the inner radius of the probe tip. Based on this, we proposed an improved scanning method used by the theta pipette to solve the reliability and accuracy problems caused by the feedback threshold too close to the reference current (100%) and the measurement offset error at the tip radius level. Then through testing the polydimethylsiloxane (PDMS) samples with different embossed patterns with the improved method of SICM, we can conclude that the improved method can enhance the scanning reliability by adding the double barrels approaching process and increase the positioning accuracy by compensating an offset distance. The theoretical analysis and the improved scanning method in this work demonstrate more property and usage details of the theta pipette, and further improve the reliability and accuracy of the diversified multifunctional applications of the theta pipette for SICM to meet the increasingly complex and precise research needs.
Collapse
|
5
|
Huang H, Dai C, Shen H, Gu M, Wang Y, Liu J, Chen L, Sun L. Recent Advances on the Model, Measurement Technique, and Application of Single Cell Mechanics. Int J Mol Sci 2020; 21:E6248. [PMID: 32872378 PMCID: PMC7504142 DOI: 10.3390/ijms21176248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since the cell was discovered by humans, it has been an important research subject for researchers. The mechanical response of cells to external stimuli and the biomechanical response inside cells are of great significance for maintaining the life activities of cells. These biomechanical behaviors have wide applications in the fields of disease research and micromanipulation. In order to study the mechanical behavior of single cells, various cell mechanics models have been proposed. In addition, the measurement technologies of single cells have been greatly developed. These models, combined with experimental techniques, can effectively explain the biomechanical behavior and reaction mechanism of cells. In this review, we first introduce the basic concept and biomechanical background of cells, then summarize the research progress of internal force models and experimental techniques in the field of cell mechanics and discuss the latest mechanical models and experimental methods. We summarize the application directions of cell mechanics and put forward the future perspectives of a cell mechanics model.
Collapse
Affiliation(s)
| | | | | | | | | | - Jizhu Liu
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | - Liguo Chen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | | |
Collapse
|
6
|
Gangotra A, Biviano M, Dagastine RR, Berry JD, Willmott GR. Use of microaspiration to study the mechanical properties of polymer gel microparticles. SOFT MATTER 2019; 15:7286-7294. [PMID: 31498362 DOI: 10.1039/c9sm00862d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanical properties of polyacrylamide (PA) and polydimethylsiloxane (PDMS) microparticle populations have been measured using microaspiration, a recently developed experimental technique. Microaspiration is an augmented version of micropipette aspiration, in which optical microscopy data are obtained as individual soft particles pass through the tip of a micropipette. During microaspiration, the ion current passing through the pipette tip is also measured, and the synchronised optical and current data streams are used to study and quantify mechanical properties. Ion current signatures for the poroelastic PA particles were qualitatively different from those of the viscoelastic PDMS particles. For PA particles the current gradually reduced during each aspiration event, whereas for PDMS particles the current trace resembled a negative top hat function. For PA particles it was found that the maximum change in current during aspiration (ΔIh) increased with particle size. By considering the initial elastic response, a mean effective shear modulus (G') of 6.6 ± 0.2 kPa was found for aspiration of 115 PA particles of ∼10-20 μm diameter. Using a viscoelastic model to describe flow into the pipette, a mean initial effective elastic modulus (E0') of 3.5 ± 1.7 MPa was found for aspiration of 17 PDMS particles of ∼ 9-11 μm diameter. These moduli are consistent with previously reported literature values, providing initial validation of the microaspiration method.
Collapse
Affiliation(s)
- Ankita Gangotra
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | | | | | | | | |
Collapse
|