1
|
Lin X, Shi H, Zheng F, Zeng J. Simple and sensitive sandwich-like voltammetric immunosensing of procalcitonin. ANAL SCI 2024; 40:541-547. [PMID: 38227088 DOI: 10.1007/s44211-023-00485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
Procalcitonin (PCT) is a reliable biomarker in the early diagnosis of septicemia, pyemia and stroke-associated pneumonia. In this work, through preparing β-cyclodextrin/graphene (CD/GN) nanohybrid as carrier and amplifier simultaneously to band antibodies and probe molecules, a simple and innovative sandwich-like voltammetric immunosensor was proposed for the sensitive and effective determination of PCT. Owing to the host-guest recognition property, the antibodies of PCT can enter into the CD cavities to generate a stable complex; meanwhile, aminopyrene (AP) were introduced as the signal probe and it was adsorbed on the surface of GN via aminopyrine π-πinteraction. Based on the signal change from AP as a response signal which exhibits linearity to the concentration of PCT, a highly sensitive sandwich-type voltammetric immunosensor was developed successfully after optimizing various key parameters. The results demonstrated that the developed sensor had a considerably low detection limit (0.003 pg mL-1) and wide linearity of 0.01 pg mL-1 to 20.0 ng mL-1. This work offered a very simple and sensitive sensing strategy for PCT and other biomarkers via altering the specific antibodies simply, showing great potential applications.
Collapse
Affiliation(s)
- Xinfeng Lin
- Department of Respiratory and Critical Care Medicine, Fuzhou First Hospital Affiliated With Fujian Medical University, Fuzhou, People's Republic of China.
| | - Honghui Shi
- Department of Respiratory and Critical Care Medicine, Fuzhou First Hospital Affiliated With Fujian Medical University, Fuzhou, People's Republic of China
| | - Fu Zheng
- Department of Respiratory and Critical Care Medicine, Fuzhou First Hospital Affiliated With Fujian Medical University, Fuzhou, People's Republic of China
| | - Jiajun Zeng
- Department of Respiratory and Critical Care Medicine, Fuzhou First Hospital Affiliated With Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
2
|
Guo Z, Yan H, Xu R, Ding J, Cheng J, Lv X, Jaffrezic-Renault N, Lin Y, Xu L. An ultra-sensitive electrochemical biosensor for the detection of procalcitonin in sepsis patients' serum, using a Cu-BHT-based thin film. Talanta 2024; 268:125325. [PMID: 37871465 DOI: 10.1016/j.talanta.2023.125325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Procalcitonin (PCT) is a polypeptide produced by the parafollicular cells of the thyroid gland and serves as a vital marker for the diagnosis and treatment of sepsis and other infectious diseases, as well as multiple organ failure, due to its high expression levels in affected patients. This article reports on a highly sensitive electrochemical biosensor based on MOF composite materials, based on Cu-BHT, for detecting PCT levels. The surface of the glassy carbon electrode may have better charge transfer resistance owing to the nano-composite material made of Cu-BHT, chitosan, and AuNPs. At the same time, the anti-PCT antibody may also be covalently bonded to the composite material and measure PCT concentration using electrochemical impedance spectroscopy (EIS). The results of the investigation demonstrate that the sensor's response has excellent linear conjunction with the logarithm of PCT concentration under optimum circumstances. The detection limit (LOD) is 14.579 × 10-9 μg/mL, and the linear range of detection is 10-7 μg/mL to 10-1 μg/mL. Simultaneously, we successfully applied this method to detect serum PCT before and after treatment in different sepsis patients and compared it with chemiluminescence immunoassay. The findings indicate that the proposed method holds promising potential for timely diagnosis and treatment of sepsis patients.
Collapse
Affiliation(s)
- Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Hanhui Yan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Ruijia Xu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Jingjing Ding
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Jing Cheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Xiao Lv
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne, 69100, France.
| | - Yongbo Lin
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, PR China.
| | - Lang Xu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| |
Collapse
|
3
|
Liu J, Zhang Z, Dong J, Chen A, Qiu J, Li C. Electrochemical immunosensor based on hollow Pt@Cu 2O as a signal label for dual-mode detection of procalcitonin. Talanta 2024; 266:125018. [PMID: 37572476 DOI: 10.1016/j.talanta.2023.125018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
As a reliable biomarker to evaluate the severity of sepsis, sensitive and accurate detection of procalcitonin (PCT) is essential. In this study, a dual-mode electrochemical immunosensor based on Au/ZIF-8 as substrate and Pt@Cu2O as signal label was constructed for the detection of PCT. By loading Au nanoparticles onto rhombic dodecahedral ZIF-8, the substrate (Au/ZIF-8) has large specific surface area and can immobilize antibody (Ab1) by Au-N bonds. Meanwhile, hollow Pt@Cu2O nanocomposite with excellent peroxidase-like activity and electrocatalytic activity were synthesized as signal label. In the process of electrochemical testing, Pt@Cu2O catalyzed the reduction of hydrogen peroxide (H2O2) and further promotes the oxidation of hydroquinone (HQ) to achieve the synergistic amplification of electrochemical signals. The proposed immunosensor detected PCT by amperometric i-t and differential pulse voltammetry (DPV) tests with a good linear response and low limit of detection (i-t: 0.70 fg/mL and DPV: 0.40 fg/mL) in the range of 10 fg/mL∼100 ng/mL. The immunosensor exhibited excellent sensitivity and accuracy, indicating the potential application of this method for PCT detection.
Collapse
Affiliation(s)
- Jie Liu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Zixuan Zhang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Dong
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Anyi Chen
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jingfu Qiu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Chaorui Li
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Qasim almajidi Y, Althomali RH, Gandla K, Uinarni H, Sharma N, Hussien BM, Alhassan MS, Mireya Romero-Parra R, Singh Bisht Y. Multifunctional immunosensors based on mesoporous silica nanomaterials as efficient sensing platforms in biomedical and food safety analysis: A review of current status and emerging applications. Microchem J 2023; 191:108901. [DOI: 10.1016/j.microc.2023.108901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Well-dispersed strawberry-like PtCo nanocrystals/porous N-doped carbon nanospheres for multiplexed assays. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Muttaqien SE, Khoris IM, Pambudi S, Park EY. Nanosphere Structures Using Various Materials: A Strategy for Signal Amplification for Virus Sensing. SENSORS (BASEL, SWITZERLAND) 2022; 23:160. [PMID: 36616758 PMCID: PMC9824175 DOI: 10.3390/s23010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials have been explored in the sensing research field in the last decades. Mainly, 3D nanomaterials have played a vital role in advancing biomedical applications, and less attention was given to their application in the field of biosensors for pathogenic virus detection. The versatility and tunability of a wide range of nanomaterials contributed to the development of a rapid, portable biosensor platform. In this review, we discuss 3D nanospheres, one of the classes of nanostructured materials with a homogeneous and dense matrix wherein a guest substance is carried within the matrix or on its surface. This review is segmented based on the type of nanosphere and their elaborative application in various sensing techniques. We emphasize the concept of signal amplification strategies using different nanosphere structures constructed from a polymer, carbon, silica, and metal-organic framework (MOF) for rendering high-level sensitivity of virus detection. We also briefly elaborate on some challenges related to the further development of nanosphere-based biosensors, including the toxicity issue of the used nanomaterial and the commercialization hurdle.
Collapse
Affiliation(s)
- Sjaikhurrizal El Muttaqien
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Indra Memdi Khoris
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Sabar Pambudi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Enoch Y. Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
7
|
Chen DN, Jiang LY, Zhang JX, Tang C, Wang AJ, Feng JJ. Electrochemical label-free immunoassay of HE4 using 3D PtNi nanocubes assemblies as biosensing interfaces. Mikrochim Acta 2022; 189:455. [DOI: 10.1007/s00604-022-05553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022]
|
8
|
Jiang M, Zhang M, Qiao X, Hong C. Electrochemical immunosensor based on Cu(II)-tetrahydroxy-1,4-benzoquinone amplifier for carcinoembryonic antigen determination. Mikrochim Acta 2022; 189:441. [DOI: 10.1007/s00604-022-05506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
|
9
|
Chen C, Zhou J, Men D, Zhang XE. Promoter-regulated in vivo asymmetric self-assembly strategy to synthesize heterogeneous nanoparticles for signal amplification. NANOSCALE 2022; 14:16180-16184. [PMID: 36278831 DOI: 10.1039/d2nr04661j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Signal amplification is commonly used to enhance the sensitivity of biological analysis. Here, we present a strategy involving in vivo asymmetric self-assembly combined with promoter strength regulation to synthesize heterogeneous nanoparticles for signal amplification. Two expression vectors were constructed by genetically inserting, respectively, signal and binding molecules into the hepatitis B core antigen protein (HBcAg) structure. Because of differential expression of the two recombinant proteins in the presence of a strong promoter (T7) and a weak promoter (Tac-1) and spontaneous asymmetric self-assembly in vivo, heterogeneous HBcAg nanoparticles (NPs) with a high ratio of signal-bearing to target-binding molecules were obtained. These nanoparticles contained a large number of green fluorescent proteins as signal molecules and a small number of B1 immunoglobulin-binding domains from protein G for antibody binding, thus enabling sensitive immunoassays. As a proof of concept, improved sensitivity for antibody detection was achieved using the heterogeneous nanoparticle conjugated with a secondary antibody molecule.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Faculty of Synthetic Biology and Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
Feng YG, He JW, Chen DN, Jiang LY, Wang AJ, Bao N, Feng JJ. A sandwich-type electrochemical immunosensor for CYFRA 21-1 based on probe-confined in PtPd/polydopamine/hollow carbon spheres coupled with dendritic Au@Rh nanocrystals. Mikrochim Acta 2022; 189:271. [PMID: 35789294 DOI: 10.1007/s00604-022-05372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/05/2022] [Indexed: 10/17/2022]
Abstract
A signal-on sandwich-like electrochemical immunosensor was built for determination of cytokeratin 19 fragments 21-1 (CYFRA 21-1) in non-small cell lung cancer (NSCLC) by confining electroactive dye (e.g., methylene blue, MB) as a probe for amplifying signals. Specifically, core-shell gold@rhodium dendritic nanocrystals (Au@Rh DNCs) behaved as a substrate for primary antibody and accelerate interfacial electron transfer. Besides, hollow carbon spheres (HCSs) were subsequently modified with polydopamine (PDA) and PtPd nanoparticles for sequential integration of the secondary antibody and confinement of MB as a label, termed as MB/PtPd/PDA/HCSs for clarity. The built sensors showed a broad linear range (100 fg mL-1 ~ 100 ng mL-1) for detection of CYFRA 21-1 with an ultra-low detection limit (31.72 fg mL-1, S/N = 3), coupled with satisfactory performance in human serum samples. This work can be explored for assays of other proteins and provides some constructive insights for early and accurate diagnosis of NSCLC.
Collapse
Affiliation(s)
- Yi-Ge Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jia-Wen He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Di-Nan Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu-Yao Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
11
|
Zhu L, Lu Z, Zhang L, He N. Seedless synthesis of gold nanorods with tunable plasmonic peaks beyond 1300 nm. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Tan M, Zhang C, Li Y, Xu Z, Wang S, Liu Q, Li Y. An Efficient Electrochemical Immunosensor for Alpha-Fetoprotein Detection based on the CoFe Prussian Blue Analog Combined PdAg Hybrid Nanodendrites. Bioelectrochemistry 2022; 145:108080. [DOI: 10.1016/j.bioelechem.2022.108080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022]
|
13
|
Zhao L, Niu G, Gao F, Lu K, Sun Z, Li H, Stenzel M, Liu C, Jiang Y. Gold Nanorods (AuNRs) and Zeolitic Imidazolate Framework-8 (ZIF-8) Core-Shell Nanostructure-Based Electrochemical Sensor for Detecting Neurotransmitters. ACS OMEGA 2021; 6:33149-33158. [PMID: 34901666 PMCID: PMC8655944 DOI: 10.1021/acsomega.1c05529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 05/04/2023]
Abstract
The development of novel electrode materials for rapid and sensitive detection of neurotransmitters in the human body is of great significance for early disease diagnosis and personalized therapy. Herein, gold nanorod@zeolitic imidazolate framework-8 (AuNR@ZIF-8) core-shell nanostructures were prepared by controlled encapsulation of gold nanorods within a ZIF-8 assembly. The designed AuNR@ZIF-8 nanostructures have uniform morphology, good dispersion, a large specific surface area, and an average size of roughly 175 nm. Compared with individual ZIF-8 and AuNR-modified electrodes, the obtained core-shell-structured AuNR@ZIF-8 nanocomposite structure-modified electrode shows excellent electrocatalytic performance in the determination of dopamine (DA) and serotonin (ST). The designed AuNR@ZIF-8 exhibited a wide linear range of 0.1-50 μM and low detection limit (LOD, 0.03 μM, S/N = 3) for the determination of DA, as well as a linear range of 0.1-25 μM and low LOD (0.007 μM, S/N = 3) for monitoring ST. The improved performance is attributed to the synergistic effect of the high conductivity of AuNRs and multiple catalytic sites of ZIF-8. The good electroanalytical ability of AuNR@ZIF-8 for detection of DA and ST can provide a guide to efficiently and rapidly monitor other neurotransmitters and construct novel electrochemical sensors.
Collapse
Affiliation(s)
- Li Zhao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Guiming Niu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| | - Fucheng Gao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Kaida Lu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Zhiwei Sun
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Hui Li
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Martina Stenzel
- School
of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chao Liu
- Department
of Oromaxillofacial Head and Neck Oncology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth
People’s Hospital, Shanghai 200011, P. R. China
| | - Yanyan Jiang
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| |
Collapse
|
14
|
Zhang N, Feng J, Zhao G, Duan X, Wang Y, Zhang D, Wei Q. Ultrasensitive Photochemical Immunosensor Based on Flowerlike SnO 2/BiOI/Ag 2S Composites for Detection of Procalcitonin. BIOSENSORS 2021; 11:421. [PMID: 34821637 PMCID: PMC8615900 DOI: 10.3390/bios11110421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
Based on the necessity and urgency of detecting infectious disease marker procalcitonin (PCT), a novel unlabeled photoelectrochemical (PEC) immunosensor was prepared for the rapid and sensitive detection of PCT. Firstly, SnO2 porous nanoflowers with good photocatalytic performance were prepared by combining hydrothermal synthesis and calcining. BiOI nanoflowers were synthesized by facile ultrasonic mixed reaction. Ag2S quantum dots were deposited on SnO2/BiOI composites by in situ growth method. The SnO2/BiOI/Ag2S composites with excellent photoelectric properties were employed as substrate material, which could provide significantly enhanced and stable signal because of the energy level matching of SnO2, BiOI and Ag2S and the good light absorption performance. Accordingly, a PEC immunosensor based on SnO2/BiOI/Ag2S was constructed by using the layered modification method to achieve high sensitivity analysis of PCT. The linear dynamic range of the detection method was 0.50 pg·mL-1~100 ng·mL-1, and the detection limit was 0.14 pg·mL-1. In addition, the designed PEC immunosensor exhibited satisfactory sensitivity, selectivity, stability and repeatability, which opened up a new avenue for the analyzation of PCT and further provided guidance for antibiotic therapy.
Collapse
Affiliation(s)
- Nuo Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (N.Z.); (X.D.)
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (J.F.); (G.Z.); (Q.W.)
| | - Jinhui Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (J.F.); (G.Z.); (Q.W.)
| | - Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (J.F.); (G.Z.); (Q.W.)
| | - Xiaoyi Duan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (N.Z.); (X.D.)
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China; (N.Z.); (X.D.)
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; (J.F.); (G.Z.); (Q.W.)
| |
Collapse
|
15
|
Electrochemical Immunosensors for Quantification of Procalcitonin: Progress and Prospects. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human procalcitonin (PCT) is a peptide precursor of the calcium-regulating hormone calcitonin. Traditionally, PCT has been used as a biomarker for severe bacterial infections and sepsis. It has also been recently identified as a potential marker for COVID-19. Normally, serum PCT is intracellularly cleaved to calcitonin, which lowers the levels of PCT (<0.01 ng/mL). In severe infectious diseases and sepsis, serum PCT levels increase above 100 ng/mL in response to pro-inflammatory stimulation. Development of sensors for specific quantification of PCT has resulted in considerable improvement in the sensitivity, linear range and rapid response. Among the various sensing strategies, electrochemical platforms have been extensively investigated owing to their cost-effectiveness, ease of fabrication and portability. Sandwich-type electrochemical immunoassays based on the specific antigen–antibody interactions with an electrochemical transducer and use of nanointerfaces has augmented the electrochemical response of the sensors towards PCT. Identification of a superior combination of electrode material and nanointerface, and translation of the sensing platform into flexible and disposable substrates are under active investigation towards development of a point-of-care device for PCT detection. This review provides an overview of the existing detection strategies and limitations of PCT electrochemical immunosensors, and the emerging directions to address these lacunae.
Collapse
|
16
|
Wang XY, Feng YG, Wang AJ, Mei LP, Luo X, Xue Y, Feng JJ. Facile construction of ratiometric electrochemical immunosensor using hierarchical PtCoIr nanowires and porous SiO 2@Ag nanoparticles for accurate detection of septicemia biomarker. Bioelectrochemistry 2021; 140:107802. [PMID: 33794412 DOI: 10.1016/j.bioelechem.2021.107802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Procalcitonin (PCT) is a sensitive and specific biomarker for sepsis diagnosis. In this study, a novel ratio-typed electrochemical immunosensor was constructed for reliable and sensitive assay of PCT based on hierarchical PtCoIr nanowires/polyethylene polyamine-grafted-ferrocene (PtCoIr HNWs/PEPA-Fc) and porous SiO2@Ag nanoparticles-toluidine blue (porous SiO2@Ag NPs-TB). Importantly, the PtCoIr HNWs/PEPA-Fc was first modified on the sensing interface, which harvested stable and strong electrochemical signals for readout of Fc due to the enriched anchoring sites created by the PtCoIr HNWs. Meanwhile, porous SiO2@Ag NPs-TB behaved as the label to conjugate with secondary antibody (Ab2), which also provided another strong detection signals originated from TB confined in such porous structures. The resulting immunosensor displayed a measurable output of procalcitonin (PCT) in the dynamic scope of 0.001 ~ 100 ng mL-1 with a low limit of detection (LOD) of 0.46 pg mL-1 (S/N = 3). Moreover, we exploited this strategy for PCT assay in a diluted human serum sample with acceptable results, exhibiting promising applications in the clinical analysis.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Jinhua Central Hospital, Jinhua 321001, China; Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yi-Ge Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Ping Mei
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yadong Xue
- Jinhua Central Hospital, Jinhua 321001, China.
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|