1
|
Feng HJ, Chen L, Ding YC, Ma XJ, How SW, Wu D. Mechanism on the microbial salt tolerance enhancement by electrical stimulation. Bioelectrochemistry 2022; 147:108206. [PMID: 35868204 DOI: 10.1016/j.bioelechem.2022.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
The application of biological methods in industrial saline wastewater treatment is limited, since the activities of microorganisms are strongly inhibited by the highly concentrated salts. Acclimatized halotolerant and halophilic microorganisms are of high importance since they can resist the environmental stresses of high salinity. The acclimation to salinity can be passive or active based on whether external simulation is used. However, there is a need for development of economic, efficient and reliable active biological stimulation technologies to accelerate salinity acclimation. Recent studies have shown that electrical stimulation can effectively enhance microbial salt tolerance and pollutant removal ability. However, there have been no comprehensive reviews of the mechanisms involved. Therefore, this mini-review described the mechanisms of electrical stimulation that can significantly improve microbial bioactivity and biodiversity. These mechanisms include regulation of Na+ and K+ transporters by changing membranepotential and promoting ATP production, as well as regulation of extracellular polymer substances through enhanced release of low molecular weight EPS and quorum sensing molecules. The information provided herein will facilitate the application of biological high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Yang-Cheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China.
| | - Xiang-Juan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Seow-Wah How
- Faculty of Bioengineering, Ghent University, Ghent 9000, Belgium
| | - Di Wu
- Faculty of Bioengineering, Ghent University, Ghent 9000, Belgium
| |
Collapse
|