1
|
Reséndiz-Jaramillo AY, Mendoza-Camargo AP, Ortiz-Contreras OE, Rodríguez-Morales JA, Huerta-Manzanilla EL, Escalona-Villalpando RA, Ledesma-García J. The importance of factorial design on the optimization of biosensor performance: immobilization of glucose oxidase as a case study. Anal Bioanal Chem 2024; 416:6849-6858. [PMID: 39395049 DOI: 10.1007/s00216-024-05582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
Conventionally, the optimization of glucose biosensors is achieved by varying the concentrations of the individual reagents used to immobilize the enzyme. In this work, the effect and interaction between glucose oxidase enzyme (GOx), ferrocene methanol (Fc), and multi-walled carbon nanotubes (MWCNTs) at different concentrations were investigated by a design of experiments (DoE). For this analysis, a factorial design with three factors and two levels each was used with the software RStudio for statistical analysis. The data were obtained by electrochemical experiments on the immobilization of GOx-Fc/MWCNT at different concentrations. The results showed that the factorial DoE method was confirmed by the non-normality of the residuals and the outliers of the experiment. When examining the effects of the variables, analyzing the half-normal distribution and the effects and contrasts for GOx-Fc/MWCNT, the factors that showed the greatest influence on the electrochemical response were GOx, MWCNT, Fc, and MWCNT:Fc, and there is a high correlation between the factors GOx, MWCNT, Fc, and MWCNT:Fc, as shown by the analysis of homoscedasticity and multicollinearity. With these statistical analyses and experimental designs, it was possible to find the optimal conditions for different factors: 10 mM mL-1 GOx, 2 mg mL-1 Fc, and 15 mg mL-1 MWCNT show a greater amperometric response in the glucose oxidation. This work contributes to advancing enzyme immobilization strategies for glucose biosensor applications. Systematic investigation of DoE leads to optimized immobilization for GOx, enables better performance as a glucose biosensor, and allows the prediction of some outcomes.
Collapse
Affiliation(s)
- A Y Reséndiz-Jaramillo
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - A P Mendoza-Camargo
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - O E Ortiz-Contreras
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - J A Rodríguez-Morales
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - Eric L Huerta-Manzanilla
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico
| | - Ricardo A Escalona-Villalpando
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico.
| | - J Ledesma-García
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, 76010, Santiago de Querétaro, Mexico.
| |
Collapse
|
2
|
Liu T, Zhu L, Li C, Yu Y, Zhang Z, Liu H, Wang L, Li Y. Fe-CP-based Catalytic Oxidation and Dissipative Self-Assembly of a Ferrocenyl Surfactant Applied in DNA Capture and Release. ACS OMEGA 2024; 9:23772-23781. [PMID: 38854516 PMCID: PMC11154932 DOI: 10.1021/acsomega.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Dissipative self-assembly plays a vital role in fabricating intelligent and transient materials. The selection and design of the molecular structure is critical, and the introduction of valuable stimuli-responsive motifs into building blocks would bring about a novel perspective on the fuel driven nonequilibrium assemblies. For redox-responsive surfactants, novel methods of catalytic oxidation are very important for their activation/deactivation process through designing fuel input/energy dissipation. As an enzyme with a fast catalytic rate, Fe-based coordination polymers (Fe-CPs) are found to be highly effective oxidase-like enzymes to induce a reversible switch of a ferrocene-based surfactant over a wide range of temperatures and pH. This builds a bridge between the CPs materials and surfactants. Furthermore, glucose oxidase can also induce a switchable transition of a ferrocene-based surfactant. The GOX-catalyzed, glucose-fueled transient surfactant assemblies have been fabricated for many cycles, which has a successful application in a time-controlled and autonomous DNA capture and release process. The intelligent use of enzymes including CPs and GOX in ferrocene-based surfactants will pave the way for the oxidation of redox surfactants, which extends the application of stable or transient ferrocenyl self-assemblies.
Collapse
Affiliation(s)
- Ting Liu
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Liwei Zhu
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Chencan Li
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Yang Yu
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Zhuo Zhang
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Huizhong Liu
- School
of Mechatronics and Automobile Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Ling Wang
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Yawen Li
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| |
Collapse
|
3
|
Şener D, Erden PE, Kaçar Selvi C. Disposable biosensor based on nanodiamond particles, ionic liquid and poly-l-lysine for determination of phenolic compounds. Anal Biochem 2024; 688:115464. [PMID: 38244752 DOI: 10.1016/j.ab.2024.115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
This study describes the development of a highly sensitive amperometric biosensor for the analysis of phenolic compounds such as catechol. The biosensor architecture is based on the immobilization of tyrosinase (Tyr) on a screen-printed carbon electrode (SPE) modified with nanodiamond particles (ND), 1-butyl-3-methylimidazolium hexafluorophosphate (IL) and poly-l-lysine (PLL). Surface morphologies of the electrodes during the modification process were evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical characteristics of the modified electrodes. Owing to the synergistic effect of the modification materials, the Tyr/PLL/ND-IL/SPE exhibited high sensitivity (328.2 μA mM-1) towards catechol with a wide linear range (5.0 × 10-8 - 1.2 × 10-5 M) and low detection limit (1.1 × 10-8 M). Furthermore, the method demonstrated good reproducibility and stability. The amperometric response of the biosensor towards other phenolic compounds such as bisphenol A, phenol, p-nitrophenol, m-cresol, p-cresol and o-cresol was also investigated. The analytical applicability of the biosensor was tested by the analysis of catechol in tap water. The results of the tap water analysis showed that the Tyr/PLL/ND-IL/SPE can be used as a practical and effective method for catechol determination.
Collapse
Affiliation(s)
- Damla Şener
- Department of Chemistry, Polatlı Faculty of Science and Letters, Ankara Haci Bayram Veli University, Ankara, Türkiye
| | - Pınar Esra Erden
- Department of Chemistry, Polatlı Faculty of Science and Letters, Ankara Haci Bayram Veli University, Ankara, Türkiye.
| | - Ceren Kaçar Selvi
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Türkiye
| |
Collapse
|
4
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
5
|
Monkrathok J, Janphuang P, Suphachiaraphan S, Kampaengsri S, Kamkaew A, Chansaenpak K, Lisnund S, Blay V, Pinyou P. Enhancing Glucose Biosensing with Graphene Oxide and Ferrocene-Modified Linear Poly(ethylenimine). BIOSENSORS 2024; 14:161. [PMID: 38667154 PMCID: PMC11048651 DOI: 10.3390/bios14040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
We designed and optimized a glucose biosensor system based on a screen-printed electrode modified with the NAD-GDH enzyme. To enhance the electroactive surface area and improve the electron transfer efficiency, we introduced graphene oxide (GO) and ferrocene-modified linear poly(ethylenimine) (LPEI-Fc) onto the biosensor surface. This strategic modification exploits the electrostatic interaction between graphene oxide, which possesses a negative charge, and LPEI-Fc, which is positively charged. This interaction results in increased catalytic current during glucose oxidation and helps improve the overall glucose detection sensitivity by amperometry. We integrated the developed glucose sensor into a flow injection (FI) system. This integration facilitates a swift and reproducible detection of glucose, and it also mitigates the risk of contamination during the analyses. The incorporation of an FI system improves the efficiency of the biosensor, ensuring precise and reliable results in a short time. The proposed sensor was operated at a constant applied potential of 0.35 V. After optimizing the system, a linear calibration curve was obtained for the concentration range of 1.0-40 mM (R2 = 0.986). The FI system was successfully applied to determine the glucose content of a commercial sports drink.
Collapse
Affiliation(s)
- Jirawan Monkrathok
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Ave., Nakhon Ratchasima 30000, Thailand; (J.M.); (S.K.); (A.K.)
| | - Pattanaphong Janphuang
- Synchrotron Light Research Institute (Public Organization), 111 University Ave., Nakhon Ratchasima 30000, Thailand; (P.J.); (S.S.)
| | - Somphong Suphachiaraphan
- Synchrotron Light Research Institute (Public Organization), 111 University Ave., Nakhon Ratchasima 30000, Thailand; (P.J.); (S.S.)
| | - Sastiya Kampaengsri
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Ave., Nakhon Ratchasima 30000, Thailand; (J.M.); (S.K.); (A.K.)
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Ave., Nakhon Ratchasima 30000, Thailand; (J.M.); (S.K.); (A.K.)
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand;
| | - Sireerat Lisnund
- Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, 744 Suranarai Rd., Nakhon Ratchasima 30000, Thailand;
| | - Vincent Blay
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Piyanut Pinyou
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Ave., Nakhon Ratchasima 30000, Thailand; (J.M.); (S.K.); (A.K.)
| |
Collapse
|
6
|
Zhang C, Li S, Tang L, Li S, Hu C, Zhang D, Chao L, Liu X, Tan Y, Deng Y. Ultrasensitive, Label-Free Voltammetric Detection of Dibutyl Phthalate Based on Poly-l-lysine/poly(3,4-ethylenedioxythiophene)-porous Graphene Nanocomposite and Molecularly Imprinted Polymers. BIOSENSORS 2024; 14:121. [PMID: 38534228 DOI: 10.3390/bios14030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Development of an efficient technique for accurate and sensitive dibutyl phthalate (DBP) determination is crucial for food safety and environment protection. An ultrasensitive molecularly imprinted polymers (MIP) voltammetric sensor was herein engineered for the specific determination of DBP using poly-l-lysine/poly(3,4-ethylenedioxythiophene)/porous graphene nanocomposite (PLL/PEDOT-PG) and poly(o-phenylenediamine)-imprinted film as a label-free and sensing platform. Fabrication of PEDOT-PG nanocomposites was achieved through a simple liquid-liquid interfacial polymerization. Subsequently, poly-l-lysine (PLL) functionalization was employed to enhance the dispersibility and stability of the prepared PEDOT-PG, as well as promote its adhesion on the sensor surface. In the presence of DBP, the imprinted poly(o-phenylenediamine) film was formed on the surface of PLL/PEDOT-PG. Investigation of the physical properties and electrochemical behavior of the MIP/PLL/PEDOT-PG indicates that the incorporation of PG into PEDOT, with PLL uniformly wrapping its surface, significantly enhanced conductivity, carrier mobility, stability, and provided a larger surface area for specific recognition sites. Under optimal experimental conditions, the electrochemical response exhibited a linear relationship with a logarithm of DBP concentration within the range of 1 fM to 5 µM, with the detection limit as low as 0.88 fM. The method demonstrated exceptional stability and repeatability and has been successfully applied to quantify DBP in plastic packaging materials.
Collapse
Affiliation(s)
- Chuanxiang Zhang
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Lingxiao Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Dan Zhang
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Long Chao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yimin Tan
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
7
|
Hamed EM, Rai V, Li SFY. Single-atom nanozymes with peroxidase-like activity: A review. CHEMOSPHERE 2024; 346:140557. [PMID: 38303399 DOI: 10.1016/j.chemosphere.2023.140557] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
Single-atom nanozymes (SANs) are nanomaterials-based nanozymes with atomically dispersed enzyme-like active sites. SANs offer improved as well as tunable catalytic activity. The creation of extremely effective SANs and their potential uses have piqued researchers' curiosity due to their advantages of cheap cost, variable catalytic activity, high stability, and large-scale production. Furthermore, SANs with uniformly distributed active centers and definite coordination structures offer a distinctive opportunity to investigate the structure-activity correlation and control the geometric and electrical features of metal centers. SANs have been extensively explored in photo-, thermal-, and electro-catalysis. However, SANs suffer from the following disadvantages, such as efficiency, non-mimicking of the 3-D complexity of natural enzymes, limited and narrow range of artificial SANs, and biosafety aspects. Among a quite limited range of artificial SANs, the peroxidase action of SANs has attracted significant research attention in the last five years with the aim of producing reactive oxygen species for use in cancer therapy, and water treatment among many other applications. In this review, we explore the recent progress of different SANs as peroxidase mimics, the role of the metal center in enzymatic activity, possible prospects, and underlying limitations in real-time applications.
Collapse
Affiliation(s)
- Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore; Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Varun Rai
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
8
|
Sariga, Varghese A. The Renaissance of Ferrocene-Based Electrocatalysts: Properties, Synthesis Strategies, and Applications. Top Curr Chem (Cham) 2023; 381:32. [PMID: 37910233 DOI: 10.1007/s41061-023-00441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
The fascinating electrochemical properties of the redox-active compound ferrocene have inspired researchers across the globe to develop ferrocene-based electrocatalysts for a wide variety of applications. Advantages including excellent chemical and thermal stability, solubility in organic solvents, a pair of stable redox states, rapid electron transfer, and nontoxic nature improve its utility in various electrochemical applications. The use of ferrocene-based electrocatalysts enables control over the intrinsic properties and electroactive sites at the surface of the electrode to achieve specific electrochemical activities. Ferrocene and its derivatives can function as a potential redox medium that promotes electron transfer rates, thereby enhancing the reaction kinetics and electrochemical responses of the device. The outstanding electrocatalytic activity of ferrocene-based compounds at lower operating potentials enhances the specificity and sensitivity of reactions and also amplifies the response signals. Owing to their versatile redox chemistry and catalytic activities, ferrocene-based electrocatalysts are widely employed in various energy-related systems, molecular machines, and agricultural, biological, medicinal, and sensing applications. This review highlights the importance of ferrocene-based electrocatalysts, with emphasis on their properties, synthesis strategies for obtaining different ferrocene-based compounds, and their electrochemical applications.
Collapse
Affiliation(s)
- Sariga
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
9
|
Sun G, Wei X, Zhang D, Huang L, Liu H, Fang H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. BIOSENSORS 2023; 13:886. [PMID: 37754120 PMCID: PMC10526424 DOI: 10.3390/bios13090886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical biosensors based on immobilized enzymes are among the most popular and commercially successful biosensors. The literature in this field suggests that modification of electrodes with nanomaterials is an excellent method for enzyme immobilization, which can greatly improve the stability and sensitivity of the sensor. However, the poor stability, weak reproducibility, and limited lifetime of the enzyme itself still limit the requirements for the development of enzyme electrochemical biosensors for food production process monitoring. Therefore, constructing sensing technologies based on enzyme electrochemical biosensors remains a great challenge. This article outlines the construction principles of four generations of enzyme electrochemical biosensors and discusses the applications of single-enzyme systems, multi-enzyme systems, and nano-enzyme systems developed based on these principles. The article further describes methods to improve enzyme immobilization by combining different types of nanomaterials such as metals and their oxides, graphene-related materials, metal-organic frameworks, carbon nanotubes, and conducting polymers. In addition, the article highlights the challenges and future trends of enzyme electrochemical biosensors, providing theoretical support and future perspectives for further research and development of high-performance enzyme chemical biosensors.
Collapse
Affiliation(s)
- Ganchao Sun
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Xiaobo Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Dianping Zhang
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Liben Huang
- Huichuan Technology (Zhuhai) Co., Ltd., Zhuhai 519060, China;
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| |
Collapse
|
10
|
De Zio S, Becconi M, Soldà A, Malferrari M, Lesch A, Rapino S. Glucose micro-biosensor for scanning electrochemical microscopy characterization of cellular metabolism in hypoxic microenvironments. Bioelectrochemistry 2023; 150:108343. [PMID: 36608371 DOI: 10.1016/j.bioelechem.2022.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Mapping of the metabolic activity of tumor tissues represents a fundamental approach to better identify the tumor type, elucidate metastatic mechanisms and support the development of targeted cancer therapies. The spatially resolved quantification of Warburg effect key metabolites, such as glucose and lactate, is essential. Miniaturized electrochemical biosensors scanned over cancer cells and tumor tissue to visualize the metabolic characteristics of a tumor is attractive but very challenging due to the limited oxygen availability in the hypoxic environments of tumors that impedes the reliable applicability of glucose oxidase-based glucose micro-biosensors. Herein, the development and application of a new glucose micro-biosensor is presented that can be reliably operated under hypoxic conditions. The micro-biosensor is fabricated in a one-step synthesis by entrapping during the electrochemically driven growth of a polymeric matrix on a platinum microelectrode glucose oxidase and a catalytically active Prussian blue type aggregate and mediator. The as-obtained functionalization improves significantly the sensitivity of the developed micro-biosensor for glucose detection under hypoxic conditions compared to normoxic conditions. By using the micro-biosensor as non-invasive sensing probe in Scanning Electrochemical Microscopy (SECM), the glucose uptake by a breast metastatic adenocarcinoma cell line, with an epithelial morphology, is measured.
Collapse
Affiliation(s)
- Simona De Zio
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Maila Becconi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Alice Soldà
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Marco Malferrari
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefania Rapino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
11
|
Ma J, Wang C, Yin T, Jiang Y, Yu W, Zhang X, Qin Q, Yang H, Zhang D. Preparation and in Vitro Property Research of Cholic Acid Nanoparticles with Dual-functions of Hemostasis and Antibacterial. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e135437. [PMID: 38444709 PMCID: PMC10912859 DOI: 10.5812/ijpr-135437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/19/2023] [Accepted: 09/17/2023] [Indexed: 03/07/2024]
Abstract
Background Hemorrhage control and anti-infection play a crucial role in promoting wound healing in trauma-related injuries. Objectives This study aimed to prepare nanoparticles with dual functions of hemostasis and antibacterial properties. Methods The dual-functional nanoparticles (CDCA-PLL NPs) were developed using a self-assembly method based on the electrostatic forces between poly-L-lysine (PLL) and Chenodeoxycholic acid (CDCA). The physicochemical properties, hemostatic properties, and antibacterial activities were investigated. Results The prepared nanoparticles displayed a spherical structure, exhibiting a high drug loading capacity, encapsulation efficiency, and good stability. The CDCA-PLL NPs could reduce the hemolysis caused by PLL and promote the proliferation of human fibroblasts, indicating excellent biosafety. Moreover, CDCA-PLL NPs demonstrated a shorter in vivo hemostasis time and reduced blood loss in mouse tail vein hemorrhage, femoral vein hemorrhage, femoral artery hemorrhage, and liver hemorrhage models. Also, CDCA-PLL NPs showed excellent antibacterial efficacy against E. coli and S. aureus. Conclusions CDCA-PLL NPs have great potential to be extensively applied as a hemostatic and antibacterial agent in various clinical conditions.
Collapse
Affiliation(s)
- Jin Ma
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Cong Wang
- Department of Ultrasonics, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yang Jiang
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Wanjun Yu
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaoyu Zhang
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qin Qin
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hua Yang
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Dechuan Zhang
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
12
|
Immobilization of Glucose Oxidase on Glutathione Capped CdTe Quantum Dots for Bioenergy Generation. Catalysts 2022. [DOI: 10.3390/catal12121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An efficient immobilization of Glucose oxidase (GOx) on an appropriate substrate is one of the main challenges of developing fuel cells that allow energy to be obtained from renewable substrates such as carbohydrates in physiological environments. The research importance of biofuel cells relies on their experimental robustness and high compatibility with biological organisms such as tissues or the bloodstream with the aim of obtaining electrical energy even from living systems. In this work, we report the use of 5,10,15,20 tetrakis (1-methyl-4-pyridinium) porphyrin and glutathione capped CdTe Quantum dots (GSH-CdTeQD) as a support matrix for the immobilization of GOx on carbon surfaces. Fluorescent GSH-CdTeQD particles were synthesized and their characterization by UV-Vis spectrophotometry showed a particle size between 5–7 nm, which was confirmed by DLS and TEM measurements. Graphite and Toray paper electrodes were modified by a drop coating of porphyrin, GSH-CdTeQD and GOx, and their electrochemical activity toward glucose oxidation was evaluated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Additionally, GOx modified electrode activity was explored by scanning electrochemical microscopy, finding that near to 70% of the surface was covered with active enzyme. The modified electrodes showed a glucose sensitivity of 0.58 ± 0.01 μA/mM and an apparent Michaelis constant of 7.8 mM. The addition of BSA blocking protein maintained the current response of common interferent molecules such as ascorbic acid (AA) with less than a 5% of interference percentage. Finally, the complex electrodes were employed as anodes in a microfluidic biofuel cell (μBFC) in order to evaluate the performance in energy production. The enzymatic anodes used in the μBFC allowed us to obtain a current density of 7.53 mAcm−2 at the maximum power density of 2.30 mWcm−2; an open circuit potential of 0.57 V was observed in the biofuel cell. The results obtained suggest that the support matrix porphyrin and GSH-CdTeQD is appropriate to immobilize GOx while preserving the enzyme’s catalytic activity. The reported electrode arrangement is a viable option for bioenergy production and/or glucose quantification.
Collapse
|
13
|
Chavez-Urbiola I, Reséndiz-Jaramillo A, Willars-Rodriguez F, Martinez-Saucedo G, Arriaga L, Alcantar-Peña J, Escalona-Villalpando RA, Ledesma-García J. Glucose biosensor based on a flexible Au/ZnO film to enhance the glucose oxidase catalytic response. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Bollella P. Enzyme-based amperometric biosensors: 60 years later … Quo Vadis? Anal Chim Acta 2022; 1234:340517. [DOI: 10.1016/j.aca.2022.340517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/01/2022]
|