1
|
Song YL, He XL, Guo Y, Ma LY, Jiang M, Xu L, Yu X, Mei Q. Highly Sensitive Flow Cytometry Biosensor with a High Signal-to-Background Ratio for FEN1 Analysis via Solid-Phase Interface-Mediated Primer Exchange Reaction Amplification. Anal Chem 2025. [PMID: 39745874 DOI: 10.1021/acs.analchem.4c04564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Flap endonuclease 1 (FEN1) is a specific enzyme capable of recognizing and cleaving triplex DNA structures and releasing 5'-flap fragments. It plays a crucial role in the DNA metabolism of cells, participating in DNA replication and the repair of damaged DNA. Additionally, FEN1 is overexpressed in various tumor tissues, promoting tumor progression and drug resistance through different regulatory mechanisms. However, few significant advancements have been made in sensitive analytical methods for detecting FEN1. Herein, in this study, we present a highly sensitive flow cytometry biosensor with solid-phase interface-mediated primer exchange reaction amplification (FCsperA) for FEN1 analysis. By comparing homogeneous PER amplification (h-PER), we found that solid-phase interface-mediated PER amplification (s-PER) effectively suppressed background signals, leading to a higher signal-to-background (S/B) ratio exceeding ∼46-fold when FEN1 was at 1 × 10-3 U/μL. Combining the high efficiency of s-PER, the strong suppression of background signals, and the highly precise flow cytometry assay, FCsperA showed high sensitivity, with a limit of detection (LOD) for FEN1 of 2.53 × 10-6 U/μL. Notably, FCsperA exhibited high selectivity and exceptional anti-interference ability, making it applicable for detecting FEN1 in cells and serum samples. The outstanding performance of FCsperA allowed for sensing FEN1 in ∼10 cancer cells. Additionally, FCsperA demonstrated the potential for screening inhibitors of FEN1.
Collapse
Affiliation(s)
- Yong-Li Song
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang-Lan He
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yarong Guo
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi, China
- Department of Digestive System Oncology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi, China
| | - Li-Yun Ma
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, Shanxi, China
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Jin LX, Wang QM, Zhu SJ, Zhu CL, Sun JJ, Wu SH. Gold nanocube-enhanced SERS biosensor based on heated electrode coupled with exonuclease III-assisted cycle amplification for sensitive detection of flap endonuclease 1 activity. Talanta 2024; 286:127500. [PMID: 39746291 DOI: 10.1016/j.talanta.2024.127500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The flap endonuclease 1 (FEN1) plays a key role in DNA replication and repair, its aberrant expression is associated with tumor development, so it has been recognized as a promising biomarker for a variety of cancers. Here, a novel "turn on" mode gold nanocube-enhanced surface-enhanced Raman scattering (SERS) biosensor was constructed by combining a heated Au electrode (HAuE), exonuclease III (Exo III)-assisted cycle amplification, and gold nanocube (AuNC)-based SERS enhancement to achieve highly sensitive detection of FEN1 activity. The SERS tag was prepared using the Raman reporter modified on the AuNC surface, and the high electromagnetic field provided by the sharp geometric feature of AuNC greatly enhanced the SERS signal. At the same time, HAuE was used to increase the electrode surface temperature and enhance the FEN1 activity, leading to more trigger DNA being cleaved, which was used to initiate the Exo III-assisted cycle amplification. Taking all these advantages, the proposed method possessed high sensitivity and good selectivity, with a low limit of detection (LOD) of 3.19 × 10-7 U μL-1. In addition, this method was successfully applied to detect FEN1 activity in real cellular extracts.
Collapse
Affiliation(s)
- Lei-Xin Jin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qi-Meng Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shu-Jiao Zhu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Cai-Lian Zhu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jian-Jun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shao-Hua Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
3
|
Li N, Wang T, Han Q, Pan TT, Ma F, Zhang CY. Endogenous Telomerase-Activated Fluorescent Probes for Specific Detection and Imaging of Flap Endonuclease 1 in Cancer Cells and Tissues. Anal Chem 2024. [PMID: 39563096 DOI: 10.1021/acs.analchem.4c05165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Flap endonuclease 1 (FEN1) is a structure-specific DNA repair enzyme that has emerged as a potential target for cancer diagnosis and treatment. However, existing FEN1 assays often suffer from complicated reaction schemes and laborious procedures, and only a few methods are available for the detection and imaging of FEN1 in living cells. Especially, FEN1 is not exclusive to cancer cells, but it is also shared by normal cells. Consequently, the specific detection of FEN1 in cancer cells remains a challenge. Herein, we develop a simple and selective fluorescent biosensor for the specific imaging of FEN1 in cancer cells and tissues by engineering a FEN1 detection probe with a telomerase-responsive unit. In the presence of telomerase, it induces an extension reaction and subsequent intramolecular reconfiguration of the detection probe, generating a suitable branched DNA structure for FEN1 recognition and facilitating the cleavage of the flap by FEN1 for the recovery of fluorescence signal. Because telomerase is undetectable in normal cells but highly upregulated in cancer cells, the detection probe can only be activated in cancer cells to generate a high signal. This assay is quite simple, with the requirement of merely a single probe for dual enzyme recognition and signal output. With the integration of the single-molecule counting technology, this biosensor can achieve a detection limit of 1.2 × 10-5 U/μL, and it can accurately detect FEN1 in living cells and clinical tissues, providing a new avenue for FEN1-associated fundamental research and clinical diagnosis.
Collapse
Affiliation(s)
- Na Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210000, China
| | - Qian Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Ting-Ting Pan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Li J, Chen C, Luo F, Lin Z, Wang J, Huang A, Sun Y, Qiu B. Highly sensitive biosensor for specific miRNA detection based on cascade signal amplification and magnetic electrochemiluminescence nanoparticles. Anal Chim Acta 2024; 1288:342123. [PMID: 38220270 DOI: 10.1016/j.aca.2023.342123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Herein, magnetic electrochemiluminescence (ECL) nanoparticle Fe3O4@PtPd/Ru(bpy)32+ had been synthesized then been coupled with CRISPR/Cas13a system and Zn2+ dependent DNAzyme to design a novel ECL biosensor for specific detection of microRNA-145 (miRNA). The synthesized multifunctional magnetic nanoluminescent materials Fe3O4@PtPd/Ru(bpy)32+ not only load Ru(bpy)32+ to provide ECL signals, but also can quickly achieve separation and enrichment from complex matrices. In addition, ferrocene (Fc) was used as a quencher in the Ru(bpy)32+/tripropylamine (TPA) system. Fc was modified on DNA bound to Fe3O4@PtPd. Benefited from the highly specific recognition ability of CRISPR/Cas13a, the target miRNA induces CRISPR/Cas13a trans-cleavage to trigger the Zn2+-dependent DNAzyme cyclic cleavage to realize the dual signal amplification. DNA modified by Fc was split by target miRNA-induced cleaving, and then magnetic separation was performed to keep Fc away from the surface of the nanoparticles. Thus, the enhanced ECL signal was obtained to detect miRNA-145. Under optimized conditions, the prepared sensor showed a wide linear range (1 fM to 1 nM) and a low limit of detection (LOD) down to 0.41 fM. Furthermore, it shows excellent selectivity and good reproducibility. The proposed ECL platform has huge potential applications in the development of various sensitive sensors for detecting the other miRNA.
Collapse
Affiliation(s)
- Jiawen Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Cheng Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Aiwen Huang
- Clinical Pharmacy Department, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350001, PR China.
| | - Ying Sun
- Department of Gastroenterology, Fuzhou First Hospital Affiliated with Fujian Medical University, PR China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China.
| |
Collapse
|
5
|
Li X, Yang X, Zhuo S, Lin Z, Chen J. Colorimetric and photothermal dual readout biosensor for flap endonuclease 1 based on target-prevented gold nanoparticles aggregation. Talanta 2024; 266:125003. [PMID: 37531885 DOI: 10.1016/j.talanta.2023.125003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
A colorimetric and photothermal dual readout biosensor for Flap endonuclease 1 (FEN1) quantification was developed on the basis of target-prevented gold nanoparticles (AuNPs) aggregation. The exposed 5'-flap of double-flap DNA substrate modified on SAMBs was firstly cleaved by FEN1. Large amount of cleaved 5'-flap remained in the supernatant after simple magnetic separation, which can adsorb on the surface of AuNPs and effectively prevent the dispersed AuNPs from aggregation under high ionic concentration, accompanied with the color changing of the system, which can be recognized by nake eyes easily. The absorption intensity at 528 nm shows a good linear relationship with the increasing FEN1 concentration from 5.0 × 10-3 to 3.1 × 10-2 U μL-1 with a LOD of 1.6 × 10-3 U μL-1 (S/N = 3). Given the aggregated AuNPs have higher photothermal effect than that of the dispersed AuNPs, the target-prevented AuNPs aggregation avoids a sharp increase of temperature for the system under the laser radiation. The temperature change is linearly correlated with the FEN1 concentration in the range of 3.1 × 10-3-6.1 × 10-2 U μL-1 with a LOD of 1.1 × 10-3 U μL-1. The whole detection process can be completed within 1 h. The proposed system had been applied to detect FEN1 concentration in serum samples with satisfied results, which can be applied in resource-limited area easily and quickly.
Collapse
Affiliation(s)
- Xianghui Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350007, PR China; Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350004, PR China
| | - Xiulin Yang
- Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350004, PR China
| | - Shuangmu Zhuo
- School of Science, Jimei University, Xiamen, Fujian, 361021, PR China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analysis Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, PR China.
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350007, PR China.
| |
Collapse
|
6
|
Zhu Y, Zhu J, Gao Y, Shi J, Miao P. Electrochemical Determination of Flap Endonuclease 1 Activity Amplified by CRISPR/Cas12a Trans‐Cleavage**. ChemElectroChem 2023. [DOI: 10.1002/celc.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Yulin Zhu
- University of Science and Technology of China 230026 Hefei P. R. China
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences 215163 Suzhou P. R. China
| | - Jinwen Zhu
- University of Science and Technology of China 230026 Hefei P. R. China
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences 215163 Suzhou P. R. China
| | - Yan Gao
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences 215163 Suzhou P. R. China
- Jinan Guoke Medical Technology Development Co., Ltd. 250103 Jinan P. R. China
| | - Jiayue Shi
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences 215163 Suzhou P. R. China
| | - Peng Miao
- University of Science and Technology of China 230026 Hefei P. R. China
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences 215163 Suzhou P. R. China
- Jinan Guoke Medical Technology Development Co., Ltd. 250103 Jinan P. R. China
| |
Collapse
|
7
|
Zheng J, Xu X, Zhu H, Pan Z, Li X, Luo F, Lin Z. Label-Free and Homogeneous Electrochemical Biosensor for Flap Endonuclease 1 Based on the Target-Triggered Difference in Electrostatic Interaction between Molecular Indicators and Electrode Surface. BIOSENSORS 2022; 12:bios12070528. [PMID: 35884331 PMCID: PMC9313405 DOI: 10.3390/bios12070528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Target-induced differences in the electrostatic interactions between methylene blue (MB) and indium tin oxide (ITO) electrode surface was firstly employed to develop a homogeneous electrochemical biosensor for flap endonuclease 1 (FEN1) detection. In the absence of FEN1, the positively charged methylene blue (MB) is free in the solution and can diffuse onto the negatively charged ITO electrode surface easily, resulting in an obvious electrochemical signal. Conversely, with the presence of FEN1, a 5′-flap is cleaved from the well-designed flapped dumbbell DNA probe (FDP). The remained DNA fragment forms a closed dumbbell DNA probe to trigger hyperbranched rolling circle amplification (HRCA) reaction, generating plentiful dsDNA sequences. A large amount of MB could be inserted into the produced dsDNA sequences to form MB-dsDNA complexes, which contain a large number of negative charges. Due to the strong electrostatic repulsion between MB-dsDNA complexes and the ITO electrode surface, a significant signal drop occurs. The signal change (ΔCurrent) shows a linear relationship with the logarithm of FEN1 concentration from 0.04 to 80.0 U/L with a low detection limit of 0.003 U/L (S/N = 3). This study provides a label-free and homogeneous electrochemical platform for evaluating FEN1 activity.
Collapse
Affiliation(s)
- Jianping Zheng
- Department of Oncology, Shengli Clinical Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China;
| | - Xiaolin Xu
- Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China; (X.X.); (H.Z.); (Z.P.)
| | - Hanning Zhu
- Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China; (X.X.); (H.Z.); (Z.P.)
| | - Zhipeng Pan
- Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China; (X.X.); (H.Z.); (Z.P.)
| | - Xianghui Li
- Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, China; (X.X.); (H.Z.); (Z.P.)
- Correspondence: (X.L.); (Z.L.); Tel./Fax: +86-591-22866135 (X.L. & Z.L.)
| | - Fang Luo
- Ministry of Education Key Laboratory for Analysis Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analysis Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China;
- Correspondence: (X.L.); (Z.L.); Tel./Fax: +86-591-22866135 (X.L. & Z.L.)
| |
Collapse
|