1
|
Wang S, Shcherbii MV, Hirvonen SP, Silvennoinen G, Sarparanta M, Santos HA. Quantitative analysis of electroporation-mediated intracellular delivery via bioorthogonal luminescent reaction. Commun Chem 2024; 7:181. [PMID: 39147836 PMCID: PMC11327378 DOI: 10.1038/s42004-024-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Efficient intracellular delivery is crucial for biotherapeutics, such as proteins, oligonucleotides, and CRISPR/Cas9 gene-editing systems, to achieve their efficacy. Despite the great efforts of developing new intracellular delivery carriers, the lack of straightforward methods for intracellular delivery quantification limits further development in this area. Herein, we designed a simple and versatile bioorthogonal luminescent reaction (BioLure assay) to analyze intracellular delivery. Our results suggest that BioLure can be used to estimate the amount of intracellularly delivered molecules after electroporation, and the estimation by BioLure is in good correlation with the results from complementary methods. Furthermore, we used BioLure assay to correlate the intracellularly-delivered RNase A amount with its tumoricidal activity. Overall, BioLure is a versatile tool for understanding the intracellular delivery process on live cells, and establishing the link between the cytosolic concentration of intracellularly-delivered biotherapeutics and their therapeutic efficacy.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Mariia V Shcherbii
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Sami-Pekka Hirvonen
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Gudrun Silvennoinen
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, The Netherlands
| |
Collapse
|
2
|
Kulbacka J, Rembiałkowska N, Radzevičiūtė-Valčiukė E, Szewczyk A, Novickij V. Cardiomyocytes Permeabilization and Electrotransfection by Unipolar and Bipolar Asymmetric Electric Field Pulses. Bioelectricity 2024; 6:91-96. [PMID: 39119571 PMCID: PMC11304875 DOI: 10.1089/bioe.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Short electric field pulses represent a novel potential approach for achieving uniform electroporation within tissue containing elongated cells oriented in various directions, such as electroporation-based cardiac ablation procedures. In this study, we investigated how electroporation with nanosecond pulses with respect to different pulse shapes (unipolar, bipolar, and asymmetric) influences cardiomyocyte permeabilization and gene transfer. For this purpose, rat cardiomyocytes (H9c2) were used. The efficacy of the pulsed electric field protocols was assessed by flow cytometry and electrogene transfer by fluorescent and holotomographic microscopy. The response of the cells was assessed by the metabolic activity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [MTT] assay), F-actin distribution in cells by confocal microscopy, and muscle atrophy F-box (MAFbx) marker. We show nano- and microsecond pulse protocols, which are not cytotoxic for cardiac muscle cells and can be efficiently used for gene electrotransfection. Asymmetric nanosecond pulsed electric fields were similarly efficient in plasmid delivery as microsecond and millisecond protocols. However, the millisecond protocol induced a higher MAFbx expression in H9c2 cells.
Collapse
Affiliation(s)
- Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eivina Radzevičiūtė-Valčiukė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
3
|
Huang X, Mu N, Ding Y, Huang R, Wu W, Li L, Chen T. Tumor microenvironment targeting for glioblastoma multiforme treatment via hybrid cell membrane coating supramolecular micelles. J Control Release 2024; 366:194-203. [PMID: 38142965 DOI: 10.1016/j.jconrel.2023.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary intracranial tumors in the central nervous system with poor prognosis, high invasiveness, risk of recurrence and low survival rate. Thus, it is urgent and vital to develop drug effective delivery systems that efficiently to traverse the blood-brain barrier and targeted transport therapeutic agents into the GBM tumor site for the treatment of brain tumors. Recently, amphiphilic cucurbit[7]uril-polyethylene glycol-hydrophobic Chlorin e6 (CB[7]-PEG-Ce6) polymer was designed, prepared, and self-assembled into micells (CPC) in an aqueous solution, and chemo drug methyl-triazeno-imidazole-carboxamide (MTIC), loaded into the cavity of CB[7] was subsequently coated with hybrid membrane mUMH (HMC3 membrane: macrophage membrane: U87MG membrane = 1:1:2) to afford mUMH@CPC@MTIC. The surface hybrid membrane mUMH potentially enhance the targeted delivery of CPC@MTIC to GBM tissue. Bioactive MTIC was released from the cavity of CB[7] in response to the high spermine level in GBM tumor microenvironments for effective tumor chemotherapy. The biomimetic mUMH@CPC@MTIC exhibited superior antitumor efficacy against GBM in mice. These findings provide new strategies for the design of biomimetic nanoparticle-based drug delivery systems and promising therapy of GBM.
Collapse
Affiliation(s)
- Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No.266 Fangzheng Avenue, Beibei District, Chongqing 400714, China.
| | - Ning Mu
- Department of Neurosurgy, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Rong Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No.266 Fangzheng Avenue, Beibei District, Chongqing 400714, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Li Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No.266 Fangzheng Avenue, Beibei District, Chongqing 400714, China
| | - Tunan Chen
- Department of Neurosurgy, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China; Glioma Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| |
Collapse
|
4
|
Rembiałkowska N, Szlasa W, Radzevičiūtė-Valčiukė E, Kulbacka J, Novickij V. Negative effects of cancellation during nanosecond range High-Frequency calcium based electrochemotherapy in vitro. Int J Pharm 2023; 648:123611. [PMID: 37977287 DOI: 10.1016/j.ijpharm.2023.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Drug delivery using nanosecond pulsed electric fields is a new branch of electroporation-based treatments, which potentially can substitute European standard operating procedures for electrochemotherapy. In this work, for the first time, we characterize the effects of ultra-fast repetition frequency (1-2.5 MHz) nanosecond pulses (5-9 kV/cm, 200 and 400 ns) in the context of nano-electrochemotherapy with calcium. Additionally, we investigate the feasibility of bipolar symmetric (↑200 ns + ↓200 ns) and asymmetric (↑200 ns + ↓400 ns) nanosecond protocols for calcium delivery. The effects of bipolar cancellation and the influence of interphase delay (200 ns) are overviewed. Human lung cancer cell lines A549 and H69AR were used as a model. It was shown that unipolar pulses delivered at high frequency are effective for electrochemotherapy with a significant improvement in efficiency when the delay between separate pulses is reduced. Bipolar symmetric pulses trigger the cancellation phenomenon limiting applications for drug delivery and can be compensated by the asymmetry of the pulse (↑200 ns + ↓400 ns or ↑400 ns + ↓200 ns). The results of this study can be successfully used to derive a new generation of nsPEF protocols for successful electrochemotherapy treatments.
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| |
Collapse
|