1
|
Qin Z, Yuan B, Qu G, Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem Commun (Camb) 2024; 60:10451-10463. [PMID: 39210728 DOI: 10.1039/d4cc01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.
Collapse
Affiliation(s)
- Zongmin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| |
Collapse
|
2
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
3
|
Iqbal Z, Sadaf S. A patent-based consideration of latest platforms in the art of directed evolution: a decade long untold story. Biotechnol Genet Eng Rev 2022; 38:133-246. [PMID: 35200115 DOI: 10.1080/02648725.2021.2017638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directed (or in vitro) evolution of proteins and metabolic pathways requires tools for creating genetic diversity and identifying protein variants with new or improved functional properties. Besides simplicity, reliability, speed, versatility, universal applicability and economy of the technique, the new science of synthetic biology requires improved means for construction of smart and high-quality mutant libraries to better navigate the sequence diversity. In vitro CRISPR/Cas9-mediated mutagenic (ICM) system and machine-learning (ML)-assisted approaches to directed evolution are now in the field to achieve the goal. This review describes the gene diversification strategies, screening and selection methods, in silico (computer-aided), Cas9-mediated and ML-based approaches to mutagenesis, developed especially in the last decade, and their patent position. The objective behind is to emphasize researchers the need for noting which mutagenesis, screening or selection method is patented and then selecting a suitable restriction-free approach to sequence diversity. Techniques and evolved products subject to patent rights need commercial license if their use is for purposes other than private or experimental research.
Collapse
Affiliation(s)
- Zarina Iqbal
- IP Litigation Department, PakPat World Intellectual Property Protection Services, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Pines G, Pines A, Eckert CA. Highly Efficient Libraries Design for Saturation Mutagenesis. Synth Biol (Oxf) 2022; 7:ysac006. [PMID: 35734540 PMCID: PMC9205323 DOI: 10.1093/synbio/ysac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Saturation mutagenesis is a semi-rational approach for protein engineering where sites are saturated either entirely or partially to include amino acids of interest. We previously reported on a codon compression algorithm, where a set of minimal degenerate codons are selected according to user-defined parameters such as the target organism, type of saturation and usage levels. Here, we communicate an addition to our web tool that considers the distance between the wild-type codon and the library, depending on its purpose. These forms of restricted collections further reduce library size, lowering downstream screening efforts or, in turn, allowing more comprehensive saturation of multiple sites. The library design tool can be accessed via http://www.dynamcc.com/dynamcc_d/.
Graphical Abstract
Collapse
Affiliation(s)
- Gur Pines
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon LeTsiyon, 7528809, Israel
| | | | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6060, Oak Ridge, Tennessee, 37831, USA
| |
Collapse
|
5
|
Dyer RP, Weiss GA. Making the cut with protease engineering. Cell Chem Biol 2022; 29:177-190. [PMID: 34921772 PMCID: PMC9127713 DOI: 10.1016/j.chembiol.2021.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022]
Abstract
Proteases cut with enviable precision and regulate diverse molecular events in biology. Such qualities drive a seemingly inexhaustible appetite for proteases with new activities and capabilities. Comprising 25% of the total industrial enzyme market, proteases appear in consumer goods, such as detergents, textile processing, and numerous foods; additionally, proteases include 25 US Food and Drug Administration-approved medicines and various research tools. Recent advances in protease engineering strategies address target specificity, catalytic efficiency, and stability. This guide to protease engineering surveys best practices and emerging strategies. We further highlight gaps and flexibilities inherent to each system that suggest opportunities for new technology development along with engineered proteases to solve challenges in proteomics, protein sequencing, and synthetic gene circuits.
Collapse
Affiliation(s)
- Rebekah P Dyer
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA; Department of Pharmaceutical Sciences, University of California, Irvine, 1102 NS-2, Irvine, CA 92697-2025, USA.
| |
Collapse
|
6
|
Zhou F, Xu Y, Mu X, Nie Y. A Sustainable Approach for Synthesizing ( R)-4-Aminopentanoic Acid From Levulinic Acid Catalyzed by Structure-Guided Tailored Glutamate Dehydrogenase. Front Bioeng Biotechnol 2022; 9:770302. [PMID: 35083200 PMCID: PMC8784811 DOI: 10.3389/fbioe.2021.770302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, a novel enzymatic approach to transform levulinic acid (LA), which can be obtained from biomass, into value-added (R)-4-aminopentanoic acid using an engineered glutamate dehydrogenase from Escherichia coli (EcGDH) was developed. Through crystal structure comparison, two residues (K116 and N348), especially residue 116, were identified to affect the substrate specificity of EcGDH. After targeted saturation mutagenesis, the mutant EcGDHK116C, which was active toward LA, was identified. Screening of the two-site combinatorial saturation mutagenesis library with EcGDHK116C as positive control, the k cat/K m of the obtained EcGDHK116Q/N348M for LA and NADPH were 42.0- and 7.9-fold higher, respectively, than that of EcGDHK116C. A molecular docking investigation was conducted to explain the catalytic activity of the mutants and stereoconfiguration of the product. Coupled with formate dehydrogenase, EcGDHK116Q/N348M was found to be able to convert 0.4 M LA by more than 97% in 11 h, generating (R)-4-aminopentanoic acid with >99% enantiomeric excess (ee). This dual-enzyme system used sustainable raw materials to synthesize (R)-4-aminopentanoic acid with high atom utilization as it utilizes cheap ammonia as the amino donor, and the inorganic carbonate is the sole by-product.
Collapse
Affiliation(s)
- Feng Zhou
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoqing Mu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute of Industrial Technology, Suqian Jiangnan University, Suqian, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Green L, Scrutton NS, Currin A. GeneORator: An Efficient Method for the Systematic Mutagenesis of Entire Genes. Methods Mol Biol 2022; 2461:111-122. [PMID: 35727446 DOI: 10.1007/978-1-0716-2152-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Directed evolution is a powerful tool for the rapid improvement of a target protein toward a desired fitness criteria, such as activity, specificity, or stability. In order to achieve these desired improvements, it is often beneficial to subject the entirety of the protein to mutagenesis. However, the creation of such libraries by targeted methods (i.e. site-directed mutagenesis) can be a laborious and costly task. Here we outline the GeneORator method, which uses Boolean "OR" logic to introduce specific codon mutations at multiple loci in a single reaction, thereby greatly reducing the experimental workload. The method describes library synthesis using asymmetric PCR, in which mutagenic primers are designed to create OR-type mutations at multiple sites of variation in a two-step protocol. As an example, we show how this can be utilized for controlled and economical mutagenesis of every amino acid codon in a gene.
Collapse
Affiliation(s)
- Lucy Green
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Andrew Currin
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Acevedo-Rocha CG, Hollmann F, Sanchis J, Sun Z. A Pioneering Career in Catalysis: Manfred T. Reetz. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Deft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville 3052, Victoria, Australia
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin, 300308 China
| |
Collapse
|
9
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. Die zentrale Rolle der Methodenentwicklung in der gerichteten Evolution selektiver Enzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201901491] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Deutschland
- Department of Chemistry, Hans-Meerwein-Straße 4 Philipps-Universität 35032 Marburg Deutschland
| |
Collapse
|
10
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angew Chem Int Ed Engl 2020; 59:13204-13231. [PMID: 31267627 DOI: 10.1002/anie.201901491] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Department of Chemistry, Hans-Meerwein-Strasse 4 Philipps-University 35032 Marburg Germany
| |
Collapse
|
11
|
Qu G, Liu B, Zhang K, Jiang Y, Guo J, Wang R, Miao Y, Zhai C, Sun Z. Computer-assisted engineering of the catalytic activity of a carboxylic acid reductase. J Biotechnol 2019; 306:97-104. [PMID: 31550488 DOI: 10.1016/j.jbiotec.2019.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022]
Abstract
Carboxylic acid reductases (CARs) play crucial roles in the biosynthesis of optically pure aldehydes with no side products. It has inspired synthetic organic chemists and biotechnologists to exploit them as catalysts in practical applications. However, levels of activity and substrate specificity are not routinely sufficient. Recent developments in protein engineering have produced numerous biocatalysts with new catalytic properties, whereas such efforts in CARs are limited. In this study, we show that the exploitation of information derived from catalytic mechanism analysis and molecular dynamics simulations assisted the semi-rational engineering of a CAR from Segniliparus rugosus (SrCAR) with the aim of increasing activity. Guided by protein-ligand interaction fingerprinting analysis, 17 residues at the substrate binding pockets were first identified. We then performed single site saturation mutagenesis and successfully obtained variants that gave high activities using benzoic acid as the model substrate. As a result, the best mutant K524W enabled 99% conversion and 17.28 s-1 mM-1kcat/Km, with 7- and 2-fold improvement compared to the wild-type, respectively. The engineered catalyst K524W as well as a second variant K524Q proved to be effective in the reduction of other benzoic acid derivatives. Insight into the source of enhanced activity was gained by molecular dynamics simulations.
Collapse
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Beibei Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Kun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yingying Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Jinggong Guo
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Ran Wang
- Zhengzhou Tabacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang Wuhan, 430062, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
12
|
Li A, Qu G, Sun Z, Reetz MT. Statistical Analysis of the Benefits of Focused Saturation Mutagenesis in Directed Evolution Based on Reduced Amino Acid Alphabets. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02548] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang Wuhan 430062, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
13
|
Liu B, Qu G, Li J, Fan W, Ma J, Xu Y, Nie Y, Sun Z. Conformational Dynamics‐Guided Loop Engineering of an Alcohol Dehydrogenase: Capture, Turnover and Enantioselective Transformation of Difficult‐to‐Reduce Ketones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900249] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Beibei Liu
- School of Biotechnology, Key laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi 214122 People's Republic of China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Ge Qu
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Jun‐Kuan Li
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science and EngineeringTianjin University Tianjin 300072 People's Republic of China
| | - Wenchao Fan
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Jun‐An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science and EngineeringTianjin University Tianjin 300072 People's Republic of China
| | - Yan Xu
- School of Biotechnology, Key laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi 214122 People's Republic of China
| | - Yao Nie
- School of Biotechnology, Key laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi 214122 People's Republic of China
| | - Zhoutong Sun
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| |
Collapse
|
14
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
15
|
Change of the Product Specificity of a Cyclodextrin Glucanotransferase by Semi-Rational Mutagenesis to Synthesize Large-Ring Cyclodextrins. Catalysts 2019. [DOI: 10.3390/catal9030242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclodextrin glucanotransferases (CGTases) convert starch to cyclodextrins (CD) of various sizes. To engineer a CGTase for the synthesis of large-ring CD composed of 9 to 12 glucose units, a loop structure of the protein involved in substrate binding was targeted for semi-rational mutagenesis. Based on multiple protein alignments and protein structure information, a mutagenic megaprimer was designed to encode a partial randomization of eight amino acid residues within the loop region. The library obtained encoding amino acid sequences occurring in wild type CGTases in combination with a screening procedure yielded sequences displaying a changed CD product specificity. As a result, variants of the CGTase from the alkaliphilic Bacillus sp. G825-6 synthesizing mainly CD9 to CD12 could be obtained. When the mutagenesis experiment was performed with the CGTase G825-6 variant Y183R, the same loop alterations that increased the total CD synthesis activity resulted in lower activities of the variant enzymes created. In the presence of the amino acid residue R183, the synthesis of CD8 was suppressed and larger CD were obtained as the main products. The alterations not only affected the product specificity, but also influenced the thermal stability of some of the CGTase variants indicating the importance of the loop structure for the stability of the CGTase.
Collapse
|
16
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
17
|
Chan HCS, Pan L, Li Y, Yuan S. Rationalization of stereoselectivity in enzyme reactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H. C. Stephen Chan
- Faculty of Chemistry, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
- Faculty of Life Sciences University of Bradford Bradford UK
| | - Lu Pan
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai China
| | - Yi Li
- Department of Neurology University of Southern California Los Angeles California
| | - Shuguang Yuan
- Faculty of Chemistry, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| |
Collapse
|
18
|
Li A, Sun Z, Reetz MT. Solid-Phase Gene Synthesis for Mutant Library Construction: The Future of Directed Evolution? Chembiochem 2018; 19:2023-2032. [PMID: 30044530 DOI: 10.1002/cbic.201800339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of, Bio-resources; Hubei Key Laboratory of Industrial Biotechnology; College of Life Sciences; Hubei University; 368 Youyi Road Wuchang Wuhan 430062 China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 China
- Department of Chemistry; Philipps University; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
19
|
Abstract
Directed evolution (DE) is a powerful tool for optimizing an enzyme's properties toward a particular objective, such as broader substrate scope, greater thermostability, or increased kcat. A successful DE project requires the generation of genetic diversity and subsequent screening or selection to identify variants with improved fitness. In contrast to random methods (error-prone PCR or DNA shuffling), site-directed mutagenesis enables the rational design of variant libraries and provides control over the nature and frequency of the encoded mutations. Knowledge of protein structure, dynamics, enzyme mechanisms, and natural evolution demonstrates that multiple (combinatorial) mutations are required to discover the most improved variants. To this end, we describe an experimentally straightforward and low-cost method for the preparation of combinatorial variant libraries. Our approach employs a two-step PCR protocol, first producing mutagenic megaprimers, which can then be combined in a "mix-and-match" fashion to generate diverse sets of combinatorial variant libraries both quickly and accurately.
Collapse
|
20
|
Acevedo-Rocha CG, Gamble CG, Lonsdale R, Li A, Nett N, Hoebenreich S, Lingnau JB, Wirtz C, Fares C, Hinrichs H, Deege A, Mulholland AJ, Nov Y, Leys D, McLean KJ, Munro AW, Reetz MT. P450-Catalyzed Regio- and Diastereoselective Steroid Hydroxylation: Efficient Directed Evolution Enabled by Mutability Landscaping. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00389] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos G. Acevedo-Rocha
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Charles G. Gamble
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Aitao Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University 368 Youyi Road, Wuchang Wuhan 430062, China
| | - Nathalie Nett
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Sabrina Hoebenreich
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Julia B. Lingnau
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Cornelia Wirtz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Christophe Fares
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Heike Hinrichs
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Alfred Deege
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Yuval Nov
- Department of Statistics, University of Haifa, Haifa 31905, Israel
| | - David Leys
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Kirsty J. McLean
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Andrew W. Munro
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
21
|
Abstract
Saturation mutagenesis is conveniently located between the two extremes of protein engineering, namely random mutagenesis, and rational design. It involves mutating a confined number of target residues to other amino acids, and hence requires knowledge regarding the sites for mutagenesis, but not their final identity. There are many different strategies for performing and designing such experiments, ranging from simple single degenerate codons to codon collections that code for distinct sets of amino acids. Here, we provide detailed information on the Dynamic Management for Codon Compression (DYNAMCC) approaches that allow us to precisely define the desired amino acid composition to be introduced to a specific target site. DYNAMCC allows us to set usage thresholds and to eliminate undesirable stop and wild-type codons, thus allowing us to control library size and subsequently downstream screening efforts. The DYNAMCC algorithms are free of charge and are implemented in a website for easy access and usage: www.dynamcc.com .
Collapse
Affiliation(s)
- Gur Pines
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA. .,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA.,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
22
|
Abstract
Directed evolution has emerged as one of the most effective protein engineering methods in basic research as well as in applications in synthetic organic chemistry and biotechnology. The successful engineering of protein activity, allostery, binding affinity, expression, folding, fluorescence, solubility, substrate scope, selectivity (enantio-, stereo-, and regioselectivity), and/or stability (temperature, organic solvents, pH) is just limited by the throughput of the genetic selection, display, or screening system that is available for a given protein. Sometimes it is possible to analyze millions of protein variants from combinatorial libraries per day. In other cases, however, only a few hundred variants can be screened in a single day, and thus the creation of smaller yet smarter libraries is needed. Different strategies have been developed to create these libraries. One approach is to perform mutational scanning or to construct "mutability landscapes" in order to understand sequence-function relationships that can guide the actual directed evolution process. Herein we provide a protocol for economically constructing scanning mutagenesis libraries using a cytochrome P450 enzyme in a high-throughput manner. The goal is to engineer activity, regioselectivity, and stereoselectivity in the oxidative hydroxylation of a steroid, a challenging reaction in synthetic organic chemistry. Libraries based on mutability landscapes can be used to engineer any fitness trait of interest. The protocol is also useful for constructing gene libraries for deep mutational scanning experiments.
Collapse
Affiliation(s)
- Carlos G Acevedo-Rocha
- Department of Biocatalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
- Department of Chemistry, Philipps-Universität Marburg, Marburg, 35032, Germany.
- Biosyntia ApS, 2100, Copenhagen, Denmark.
| | - Matteo Ferla
- Department of Biochemistry, Oxford University, Oxford, OX1 3QU, UK
| | - Manfred T Reetz
- Department of Biocatalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Department of Chemistry, Philipps-Universität Marburg, Marburg, 35032, Germany
| |
Collapse
|
23
|
Li A, Acevedo-Rocha CG, Sun Z, Cox T, Xu JL, Reetz MT. Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction. Chembiochem 2017; 19:221-228. [DOI: 10.1002/cbic.201700540] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Aitao Li
- Department of Synthetic Organic Chemistry; Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Muelheim Germany
- Department of Chemistry; Philipps-Universität Marburg; 35032 Marburg Germany
- Hubei Collaborative Innovation Center for, Green Transformation of Bio-Resources; Hubei Key Laboratory of Industrial Biotechnology; College of Life Sciences; Hubei University; 368 Youyi Road Wuchang Wuhan 430062 P.R. China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 P.R. China
| | - Tony Cox
- Twist Bioscience; 455 Mission Bay Boulevard South San Francisco CA 94158 USA
| | - Jia Lucy Xu
- Twist Bioscience; 455 Mission Bay Boulevard South San Francisco CA 94158 USA
| | - Manfred T. Reetz
- Department of Synthetic Organic Chemistry; Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Muelheim Germany
- Department of Chemistry; Philipps-Universität Marburg; 35032 Marburg Germany
| |
Collapse
|
24
|
Ismail A, Illias RM. Site-saturation mutagenesis of mutant l-asparaginase II signal peptide hydrophobic region for improved excretion of cyclodextrin glucanotransferase. ACTA ACUST UNITED AC 2017; 44:1627-1641. [DOI: 10.1007/s10295-017-1980-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Abstract
The excretion of cyclodextrin glucanotransferase (CGTase) into the culture medium offers significant advantages over cytoplasmic expression. However, the limitation of Escherichia coli is its inability to excrete high amount of CGTase outside the cells. In this study, modification of the hydrophobic region of the N1R3 signal peptide using site-saturation mutagenesis improved the excretion of CGTase. Signal peptide mutants designated M9F, V10L and A15Y enhanced the excretion of CGTase three-fold and demonstrated two-fold higher secretion rate than the wild type. However, high secretion rate of these mutants was non-productive for recombinant protein production because it caused up to a seven-fold increase in cell death compared to the wild type. Our results indicated that the excretion of CGTase is highly dependent on hydrophobicity, secondary conformation and the type and position of amino acids at the region boundary and core segment of the h-region.
Collapse
Affiliation(s)
- Abbas Ismail
- 0000 0001 2296 1505 grid.410877.d Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Rosli Md Illias
- 0000 0001 2296 1505 grid.410877.d Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| |
Collapse
|
25
|
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Muelheim Germany
- Department of Chemistry; Philipps-University; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
26
|
Agudo R, Calvo PA, Martínez-Jiménez MI, Blanco L. Engineering human PrimPol into an efficient RNA-dependent-DNA primase/polymerase. Nucleic Acids Res 2017; 45:9046-9058. [PMID: 28911121 PMCID: PMC5587808 DOI: 10.1093/nar/gkx633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/12/2017] [Indexed: 02/01/2023] Open
Abstract
We have developed a straightforward fluorometric assay to measure primase-polymerase activity of human PrimPol (HsPrimPol). The sensitivity of this procedure uncovered a novel RNA-dependent DNA priming-polymerization activity (RdDP) of this enzyme. In an attempt to enhance HsPrimPol RdDP activity, we constructed a smart mutant library guided by prior sequence-function analysis, and tested this library in an adapted screening platform of our fluorometric assay. After screening less than 500 variants, we found a specific HsPrimPol mutant, Y89R, which displays 10-fold higher RdDP activity than the wild-type enzyme. The improvement of RdDP activity in the Y89R variant was due mainly to an increased in the stabilization of the preternary complex (protein:template:incoming nucleotide), a specific step preceding dimer formation. Finally, in support of the biotechnological potential of PrimPol as a DNA primer maker during reverse transcription, mutant Y89R HsPrimPol rendered up to 17-fold more DNA than with random hexamer primers.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 196 46 85; Fax: +34 91 196 44 20; . Correspondence may also be addressed to Rubén Agudo. Tel: +34 91 196 46 86; Fax: +34 91 196 44 20;
| | - Patricia A. Calvo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | | | - Luis Blanco
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 196 46 85; Fax: +34 91 196 44 20; . Correspondence may also be addressed to Rubén Agudo. Tel: +34 91 196 46 86; Fax: +34 91 196 44 20;
| |
Collapse
|
27
|
Perperopoulou F, Pouliou F, Labrou NE. Recent advances in protein engineering and biotechnological applications of glutathione transferases. Crit Rev Biotechnol 2017; 38:511-528. [PMID: 28936894 DOI: 10.1080/07388551.2017.1375890] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutathione transferases (GSTs, EC 2.5.1.18) are a widespread family of enzymes that play a central role in the detoxification, metabolism, and transport or sequestration of endogenous or xenobiotic compounds. During the last two decades, delineation of the important structural and catalytic features of GSTs has laid the groundwork for engineering GSTs, involving both rational and random approaches, aiming to create new variants with new or altered properties. These approaches have expanded the usefulness of native GSTs, not only for understanding the fundamentals of molecular detoxification mechanisms, but also for the development medical, analytical, environmental, and agricultural applications. This review article attempts to summarize successful examples and current developments on GST engineering, highlighting in parallel the recent knowledge gained on their phylogenetic relationships, structural/catalytic features, and biotechnological applications.
Collapse
Affiliation(s)
- Fereniki Perperopoulou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| | - Fotini Pouliou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| | - Nikolaos E Labrou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| |
Collapse
|
28
|
Zeymer C, Zschoche R, Hilvert D. Optimization of Enzyme Mechanism along the Evolutionary Trajectory of a Computationally Designed (Retro-)Aldolase. J Am Chem Soc 2017; 139:12541-12549. [DOI: 10.1021/jacs.7b05796] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Cathleen Zeymer
- Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Reinhard Zschoche
- Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
29
|
Wang JB, Li G, Reetz MT. Enzymatic site-selectivity enabled by structure-guided directed evolution. Chem Commun (Camb) 2017; 53:3916-3928. [DOI: 10.1039/c7cc00368d] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers recent advances in the directed evolution of enzymes for controlling site-selectivity of hydroxylation, amination and chlorination.
Collapse
Affiliation(s)
- Jian-bo Wang
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Guangyue Li
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Manfred T. Reetz
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| |
Collapse
|
30
|
Sun Z, Salas PT, Siirola E, Lonsdale R, Reetz MT. Exploring productive sequence space in directed evolution using binary patterning versus conventional mutagenesis strategies. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0122-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Mingo J, Erramuzpe A, Luna S, Aurtenetxe O, Amo L, Diez I, Schepens JTG, Hendriks WJAJ, Cortés JM, Pulido R. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections. PLoS One 2016; 11:e0160972. [PMID: 27548698 PMCID: PMC4993582 DOI: 10.1371/journal.pone.0160972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022] Open
Abstract
Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis.
Collapse
Affiliation(s)
- Janire Mingo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Asier Erramuzpe
- Quantitative Biomedicine Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Sandra Luna
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Olaia Aurtenetxe
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Laura Amo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Ibai Diez
- Quantitative Biomedicine Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jan T. G. Schepens
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Wiljan J. A. J. Hendriks
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jesús M. Cortés
- Quantitative Biomedicine Unit, Biocruces Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail: ;
| |
Collapse
|
32
|
Sun Z, Lonsdale R, Li G, Reetz MT. Comparing Different Strategies in Directed Evolution of Enzyme Stereoselectivity: Single- versus Double-Code Saturation Mutagenesis. Chembiochem 2016; 17:1865-1872. [DOI: 10.1002/cbic.201600296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Zhoutong Sun
- Department of Synthetic Organic Chemistry; Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Fachbereich Chemie, Philipps-; Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| | - Richard Lonsdale
- Department of Synthetic Organic Chemistry; Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Fachbereich Chemie, Philipps-; Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| | - Guangyue Li
- Department of Synthetic Organic Chemistry; Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Fachbereich Chemie, Philipps-; Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| | - Manfred T. Reetz
- Department of Synthetic Organic Chemistry; Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Fachbereich Chemie, Philipps-; Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| |
Collapse
|
33
|
Wang X, Wang G, Li X, Fu J, Chen T, Wang Z, Zhao X. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering. J Biotechnol 2016; 231:115-121. [DOI: 10.1016/j.jbiotec.2016.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
|
34
|
Abstract
A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ashley M Buckle
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
35
|
Li G, Zhang H, Sun Z, Liu X, Reetz MT. Multiparameter Optimization in Directed Evolution: Engineering Thermostability, Enantioselectivity, and Activity of an Epoxide Hydrolase. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guangyue Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich
Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Hui Zhang
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071 Tianjin, People’s Republic of China
| | - Zhoutong Sun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich
Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Xinqi Liu
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071 Tianjin, People’s Republic of China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich
Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
36
|
Sun Z, Wikmark Y, Bäckvall JE, Reetz MT. New Concepts for Increasing the Efficiency in Directed Evolution of Stereoselective Enzymes. Chemistry 2016; 22:5046-54. [DOI: 10.1002/chem.201504406] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Zhoutong Sun
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Ylva Wikmark
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
| | - Jan-E. Bäckvall
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
37
|
Sun Z, Lonsdale R, Ilie A, Li G, Zhou J, Reetz MT. Catalytic Asymmetric Reduction of Difficult-to-Reduce Ketones: Triple-Code Saturation Mutagenesis of an Alcohol Dehydrogenase. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02752] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhoutong Sun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Adriana Ilie
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Guangyue Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
38
|
Sun Z, Lonsdale R, Wu L, Li G, Li A, Wang J, Zhou J, Reetz MT. Structure-Guided Triple-Code Saturation Mutagenesis: Efficient Tuning of the Stereoselectivity of an Epoxide Hydrolase. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02751] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhoutong Sun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Lian Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guangyue Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Aitao Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Jianbo Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
39
|
Gong Y, Xu GC, Chen Q, Yin JG, Li CX, Xu JH. Iterative multitarget evolution dramatically enhances the enantioselectivity and catalytic efficiency of Bacillus subtilis esterase towards bulky benzoate esters of dl-menthol. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01723h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure-based directed evolution has been successfully applied to Bacillus subtilis esterase to produce a mutant with higher enantioselectivity and elevated efficiency.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory of Biocatalysis and Synthetic Biotechnology
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
| | - Guo-Chao Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
| | - Jin-Gang Yin
- Laboratory of Biocatalysis and Synthetic Biotechnology
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
40
|
Abstract
With the advent of directed evolution of stereoselective enzymes almost 20 years ago and the rapid development of this exciting area of research, the traditional limitations of biocatalysts in organic chemistry have been eliminated.
Collapse
Affiliation(s)
- Guangyue Li
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470, Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470, Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
| |
Collapse
|
41
|
Acevedo-Rocha CG, Reetz MT, Nov Y. Economical analysis of saturation mutagenesis experiments. Sci Rep 2015; 5:10654. [PMID: 26190439 PMCID: PMC4507136 DOI: 10.1038/srep10654] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/20/2015] [Indexed: 11/15/2022] Open
Abstract
Saturation mutagenesis is a powerful technique for engineering proteins, metabolic pathways and genomes. In spite of its numerous applications, creating high-quality saturation mutagenesis libraries remains a challenge, as various experimental parameters influence in a complex manner the resulting diversity. We explore from the economical perspective various aspects of saturation mutagenesis library preparation: We introduce a cheaper and faster control for assessing library quality based on liquid media; analyze the role of primer purity and supplier in libraries with and without redundancy; compare library quality, yield, randomization efficiency, and annealing bias using traditional and emergent randomization schemes based on mixtures of mutagenic primers; and establish a methodology for choosing the most cost-effective randomization scheme given the screening costs and other experimental parameters. We show that by carefully considering these parameters, laboratory expenses can be significantly reduced.
Collapse
Affiliation(s)
- Carlos G Acevedo-Rocha
- 1] Department of Organic Synthesis, Max-Planck-Institut für Kohlenforschung, Mulheim, 45470, Germany [2] Department of Chemistry, Philipps-Universität Marburg, 35032, Germany [3] Prokaryotic Small RNA Biology Group, Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, 35043, Germany [4] Landes-Offensive zur Entwicklung Wissenschafltich-ökonomischer Exzellenz (LOEWE) Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35032, Germany
| | - Manfred T Reetz
- 1] Department of Organic Synthesis, Max-Planck-Institut für Kohlenforschung, Mulheim, 45470, Germany [2] Department of Chemistry, Philipps-Universität Marburg, 35032, Germany
| | - Yuval Nov
- Department of Statistics, University of Haifa, Haifa, 31905, Israel
| |
Collapse
|
42
|
Sieber T, Hare E, Hofmann H, Trepel M. Biomathematical description of synthetic peptide libraries. PLoS One 2015; 10:e0129200. [PMID: 26042419 PMCID: PMC4456392 DOI: 10.1371/journal.pone.0129200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/07/2015] [Indexed: 12/28/2022] Open
Abstract
Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries.
Collapse
Affiliation(s)
- Timo Sieber
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eric Hare
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Heike Hofmann
- Department of Statistics, Iowa State University, Ames, IA, USA
- * E-mail:
| | - Martin Trepel
- Department of Hematology and Oncology, Augsburg Medical Center, Interdisciplinary Cancer Center, Augsburg, Germany
| |
Collapse
|
43
|
Abstract
Faced with a protein engineering challenge, a contemporary researcher can choose from myriad design strategies. Library-scale computational protein design (LCPD) is a hybrid method suitable for the engineering of improved protein variants with diverse sequences. This chapter discusses the background and merits of several practical LCPD techniques. First, LCPD methods suitable for delocalized protein design are presented in the context of example design calculations for cellobiohydrolase II. Second, localized design methods are discussed in the context of an example design calculation intended to shift the substrate specificity of a ketol-acid reductoisomerase Rossmann domain from NADPH to NADH.
Collapse
|
44
|
Pines G, Pines A, Garst AD, Zeitoun RI, Lynch SA, Gill RT. Codon compression algorithms for saturation mutagenesis. ACS Synth Biol 2015; 4:604-14. [PMID: 25303315 DOI: 10.1021/sb500282v] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Saturation mutagenesis is employed in protein engineering and genome-editing efforts to generate libraries that span amino acid design space. Traditionally, this is accomplished by using degenerate/compressed codons such as NNK (N = A/C/G/T, K = G/T), which covers all amino acids and one stop codon. These solutions suffer from two types of redundancy: (a) different codons for the same amino acid lead to bias, and (b) wild type amino acid is included within the library. These redundancies increase library size and downstream screening efforts. Here, we present a dynamic approach to compress codons for any desired list of amino acids, taking into account codon usage. This results in a unique codon collection for every amino acid to be mutated, with the desired redundancy level. Finally, we demonstrate that this approach can be used to design precise oligo libraries amendable to recombineering and CRISPR-based genome editing to obtain a diverse population with high efficiency.
Collapse
Affiliation(s)
- Gur Pines
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | | | - Andrew D. Garst
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ramsey I. Zeitoun
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sean A. Lynch
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Biosciences Center,
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Ryan T. Gill
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
45
|
Parra LP, Acevedo JP, Reetz MT. Directed evolution of phenylacetone monooxygenase as an active catalyst for the Baeyer-Villiger conversion of cyclohexanone to caprolactone. Biotechnol Bioeng 2015; 112:1354-64. [PMID: 25675885 DOI: 10.1002/bit.25564] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/05/2015] [Indexed: 01/10/2023]
Abstract
Phenylacetone monooxygenase (PAMO) is an exceptionally robust Baeyer-Villiger monooxygenase, which makes it ideal for potential industrial applications. However, its substrate scope is limited, unreactive cyclohexanone being a prominent example. Such a limitation is unfortunate, because this particular transformation in an ecologically viable manner would be highly desirable, the lactone and the respective lactam being of considerable interest as monomers in polymer science. We have applied directed evolution in search of an active mutant for this valuable C-C activating reaction. Using iterative saturation mutagenesis (ISM), several active mutants were evolved, with only a minimal trade-off in terms of stability. The best mutants allow for quantitative conversion of 2 mM cyclohexanone within 1 h reaction time. In order to circumvent the NADP(+) regeneration problem, whole E. coli resting cells were successfully applied. Molecular dynamics simulations and induced fit docking throw light on the origin of enhanced PAMO activity. The PAMO mutants constitute ideal starting points for future directed evolution optimization necessary for an industrial process.
Collapse
Affiliation(s)
- Loreto P Parra
- Department of Synthetic Organic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.,Fachbereich Chemie Philipps-Universität Marburg, Marburg, Germany.,Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Acevedo
- Department of Synthetic Organic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.,Fachbereich Chemie Philipps-Universität Marburg, Marburg, Germany.,Facultad de Medicina y Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago, Chile
| | - Manfred T Reetz
- Department of Synthetic Organic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany. .,Fachbereich Chemie Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
46
|
Sun Z, Lonsdale R, Kong XD, Xu JH, Zhou J, Reetz MT. Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501809] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Sun Z, Lonsdale R, Kong XD, Xu JH, Zhou J, Reetz MT. Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution. Angew Chem Int Ed Engl 2015; 54:12410-5. [DOI: 10.1002/anie.201501809] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/06/2023]
|
48
|
Acevedo-Rocha CG, Reetz MT. Assembly of Designed Oligonucleotides: a useful tool in synthetic biology for creating high-quality combinatorial DNA libraries. Methods Mol Biol 2015; 1179:189-206. [PMID: 25055779 DOI: 10.1007/978-1-4939-1053-3_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The method dubbed Assembly of Designed Oligonucleotides (ADO) is a powerful tool in synthetic biology to create combinatorial DNA libraries for gene, protein, metabolic, and genome engineering. In directed evolution of proteins, ADO benefits from using reduced amino acid alphabets for saturation mutagenesis and/or DNA shuffling, but all 20 canonical amino acids can be also used as building blocks. ADO is performed in a two-step reaction. The first involves a primer-free, polymerase cycling assembly or overlap extension PCR step using carefully designed overlapping oligonucleotides. The second step is a PCR amplification using the outer primers, resulting in a high-quality and bias-free double-stranded DNA library that can be assembled with other gene fragments and/or cloned into a suitable plasmid subsequently. The protocol can be performed in a few hours. In theory, neither the length of the DNA library nor the number of DNA changes has any limits. Furthermore, with the costs of synthetic DNA dropping every year, after an initial investment is made in the oligonucleotides, these can be exchanged for alternative ones with different sequences at any point in the process, fully exploiting the potential of creating highly diverse combinatorial libraries. In the example chosen here, we show the construction of a high-quality combinatorial ADO library targeting sixteen different codons simultaneously with nonredundant degenerate codons encoding various reduced alphabets of four amino acids along the heme region of the monooxygenase P450-BM3.
Collapse
Affiliation(s)
- Carlos G Acevedo-Rocha
- Organische Synthese, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| | | |
Collapse
|
49
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
50
|
Roiban GD, Reetz MT. Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. Chem Commun (Camb) 2015; 51:2208-24. [DOI: 10.1039/c4cc09218j] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochrome P450 enzymes (CYPs) have been used for more than six decades as catalysts for the CH-activating oxidative hydroxylation of organic compounds with formation of added-value products.
Collapse
Affiliation(s)
| | - Manfred T. Reetz
- Department of Chemistry
- Philipps-Universität Marburg
- 35032 Marburg
- Germany
- Max-Planck-Institut für Kohlenforschung
| |
Collapse
|