1
|
Harel O, Jbara M. Chemical Synthesis of Bioactive Proteins. Angew Chem Int Ed Engl 2023; 62:e202217716. [PMID: 36661212 DOI: 10.1002/anie.202217716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Abstract
Nature has developed a plethora of protein machinery to operate and maintain nearly every task of cellular life. These processes are tightly regulated via post-expression modifications-transformations that modulate intracellular protein synthesis, folding, and activation. Methods to prepare homogeneously and precisely modified proteins are essential to probe their function and design new bioactive modalities. Synthetic chemistry has contributed remarkably to protein science by allowing the preparation of novel biomacromolecules that are often challenging or impractical to prepare via common biological means. The ability to chemically build and precisely modify proteins has enabled the production of new molecules with novel physicochemical properties and programmed activity for biomedical research, diagnostic, and therapeutic applications. This minireview summarizes recent developments in chemical protein synthesis to produce bioactive proteins, with emphasis on novel analogs with promising in vitro and in vivo activity.
Collapse
Affiliation(s)
- Omer Harel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
2
|
Proteins through the eyes of an organic chemist. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Harel O, Jbara M. Posttranslational Chemical Mutagenesis Methods to Insert Posttranslational Modifications into Recombinant Proteins. Molecules 2022; 27:4389. [PMID: 35889261 PMCID: PMC9316245 DOI: 10.3390/molecules27144389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Posttranslational modifications (PTMs) dramatically expand the functional diversity of the proteome. The precise addition and removal of PTMs appears to modulate protein structure and function and control key regulatory processes in living systems. Deciphering how particular PTMs affect protein activity is a current frontier in biology and medicine. The large number of PTMs which can appear in several distinct positions, states, and combinations makes preparing such complex analogs using conventional biological and chemical tools challenging. Strategies to access homogeneous and precisely modified proteins with desired PTMs at selected sites and in feasible quantities are critical to interpreting their molecular code. Here, we summarize recent advances in posttranslational chemical mutagenesis and late-stage functionalization chemistry to transfer novel PTM mimicry into recombinant proteins with emphasis on novel transformations.
Collapse
Affiliation(s)
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
4
|
Kulkarni SS, Watson EE, Maxwell JWC, Niederacher G, Johansen‐Leete J, Huhmann S, Mukherjee S, Norman AR, Kriegesmann J, Becker CFW, Payne RJ. Expressed Protein Selenoester Ligation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202200163. [PMID: 38505698 PMCID: PMC10947028 DOI: 10.1002/ange.202200163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 03/21/2024]
Abstract
Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Emma E. Watson
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Joshua W. C. Maxwell
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Gerhard Niederacher
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Jason Johansen‐Leete
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Susanne Huhmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Somnath Mukherjee
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Alexander R. Norman
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Julia Kriegesmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Richard J. Payne
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| |
Collapse
|
5
|
Kulkarni SS, Watson EE, Maxwell JWC, Niederacher G, Johansen‐Leete J, Huhmann S, Mukherjee S, Norman AR, Kriegesmann J, Becker CFW, Payne RJ. Expressed Protein Selenoester Ligation. Angew Chem Int Ed Engl 2022; 61:e202200163. [PMID: 35194928 PMCID: PMC9314092 DOI: 10.1002/anie.202200163] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.
Collapse
Affiliation(s)
- Sameer S. Kulkarni
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Emma E. Watson
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Joshua W. C. Maxwell
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Gerhard Niederacher
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Jason Johansen‐Leete
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Susanne Huhmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Somnath Mukherjee
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Alexander R. Norman
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| | - Julia Kriegesmann
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological ChemistryUniversity of ViennaViennaAustria
| | - Richard J. Payne
- School of Chemistry and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW 2006Australia
| |
Collapse
|
6
|
Pal A, Krishna Banik B. Click Chemistry toward the Synthesis of Anticancer Agents. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
8
|
Dirauf M, Fritz N, Gottschaldt M, Weber C, Schubert US. Poly(2-ethyl-2-oxazoline) Featuring a Central Amino Moiety. Macromol Rapid Commun 2021; 42:e2100132. [PMID: 33960561 DOI: 10.1002/marc.202100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Indexed: 11/08/2022]
Abstract
The incorporation of an amino group into a bifunctional initiator for the cationic ring-opening polymerization (CROP) is achieved in a two-step reaction. Detailed kinetic studies using 2-ethyl-2-oxazoline demonstrate the initiators' eligibility for the CROP yielding well-defined polymers featuring molar masses of about 2000 g mol-1 . Deprotection of the phthalimide moiety subsequent to polymerization enables the introduction of a cyclooctyne group in central position of the polymer which is further exploited in a strain-promoted alkyne-azide click reaction (SpAAC) with a Fmoc-protected azido lysine representing a commonly used binding motif for site specific polymer-protein/peptide conjugation. In-depth characterization via electrospray ionization mass spectrometry (ESI) confirms the success of all post polymerization modification steps.
Collapse
Affiliation(s)
- Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Nicole Fritz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| |
Collapse
|
9
|
Affiliation(s)
- Christin Bednarek
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Ly HGT, Mihaylov TT, Proost P, Pierloot K, Harvey JN, Parac‐Vogt TN. Chemical Mimics of Aspartate‐Directed Proteases: Predictive and Strictly Specific Hydrolysis of a Globular Protein at Asp−X Sequence Promoted by Polyoxometalate Complexes Rationalized by a Combined Experimental and Theoretical Approach. Chemistry 2019; 25:14370-14381. [DOI: 10.1002/chem.201902675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Giang T. Ly
- Laboratory of Bioinorganic ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tzvetan T. Mihaylov
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Paul Proost
- Laboratory of Molecular ImmunologyRega InstituteDepartment of Microbiology, Immunology, and TransplantationKU Leuven Herestraat 49 3000 Leuven Belgium
| | - Kristine Pierloot
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Jeremy N. Harvey
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tatjana N. Parac‐Vogt
- Laboratory of Bioinorganic ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
11
|
Wang Y, Jiang F, Ma C, Rui Y, Tsang DCW, Xing B. Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:319-327. [PMID: 31015082 DOI: 10.1016/j.jenvman.2019.04.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/06/2019] [Accepted: 04/13/2019] [Indexed: 05/04/2023]
Abstract
Engineered nanoparticles (NPs) are now used as additives in pesticides and fungicides and as novel fertilizers in agriculture so there is an urgent need to explore their effects on crop yield and quality in a full life cycle study. In the present study, three widely used NPs (TiO2, Fe2O3 and CuO NPs applied at doses of 50 and 500 mg/kg) were selected to investigate their long-term impact on wheat growth. TiO2 NPs did not affect the growth and development of wheat, but Fe2O3 NPs promoted wheat precocity and CuO NPs inhibited the growth and development of the wheat grains. The Cu content in grains treated with CuO NP increased by 18.84%-30.45% compared with the control. However, the contents of Fe and Zn were both significantly lower in the CuO NP treatments. Univariate and multivariate analyses were used to analyze the effect of different NPs on the composition of amino acids in wheat grains. Exposure to TiO2 NPs at dose of 500 mg/kg increased the overall amino acid nutrition in the edible portion of wheat. Fe2O3 NPs at both doses increased the contents of cysteine (Cys) and tyrosine (Tyr). The addition of CuO NPs reduced the level of some essential amino acids in wheat grains, isoleucine (Ile), leucine (Leu), threonine (Thr) and histidine (His). Overall, evaluation of the potential impacts of metal-based NPs on the nutritional quality of wheat grains could provide important information for their safe use when incorporated into agrichemicals in sustainable agriculture.
Collapse
Affiliation(s)
- Yaoyao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fuping Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, United States; Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, United States.
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, United States
| |
Collapse
|
12
|
Cardelli C, Nerattini F, Tubiana L, Bianco V, Dellago C, Sciortino F, Coluzza I. General Methodology to Identify the Minimum Alphabet Size for Heteropolymer Design. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chiara Cardelli
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5 1090 Vienna Austria
| | | | - Luca Tubiana
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5 1090 Vienna Austria
| | - Valentino Bianco
- Faculty of ChemistryChemical Physics DepartmentUniversidad Complutense de Madrid, Plaza de las Ciencias, Ciudad UniversitariaMadrid 28040 Spain
| | - Christoph Dellago
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5 1090 Vienna Austria
| | - Francesco Sciortino
- Dipartimento di FisicaSapienza Università di RomaPiazzale Aldo Moro 2 00185 Rome Italy
| | - Ivan Coluzza
- CIC biomaGUNEPaseo Miramon 182 20014 San Sebastian Spain
- IKERBASQUEBasque Foundation for Science48013 Bilbao Spain
| |
Collapse
|
13
|
Ni J, Sohma Y, Kanai M. Scandium(iii) triflate-promoted serine/threonine-selective peptide bond cleavage. Chem Commun (Camb) 2018; 53:3311-3314. [PMID: 28144647 DOI: 10.1039/c6cc10300f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The site-selective cleavage of peptide bonds is an important chemical modification that is useful not only for the structural determination of peptides, but also as an artificial modulator of peptide/protein function and properties. Here we report site-selective hydrolysis of peptide bonds at the Ser and Thr positions with a high conversion yield. This chemical cleavage relies on Sc(iii)-promoted N,O-acyl rearrangement and subsequent hydrolysis. The method is applicable to a broad scope of polypeptides with various functional groups, including a post-translationally modified peptide that is unsuitable for enzymatic hydrolysis. The system was further extended to site-selective cleavage of a native protein, Aβ1-42, which is closely related to the onset of Alzheimer's disease.
Collapse
Affiliation(s)
- Jizhi Ni
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan. and Japan Science Technology Agency (JST), ERATO Kanai Life Science Catalysis Project, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
| | - Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan. and Japan Science Technology Agency (JST), ERATO Kanai Life Science Catalysis Project, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan. and Japan Science Technology Agency (JST), ERATO Kanai Life Science Catalysis Project, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Matveenko M, Hackl S, Becker CFW. Utility of the Phenacyl Protecting Group in Traceless Protein Semisynthesis through Ligation-Desulfurization Chemistry. ChemistryOpen 2018; 7:106-110. [PMID: 29321951 PMCID: PMC5759462 DOI: 10.1002/open.201700180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
Semisynthesis of proteins via expressed protein ligation is a widely applicable method, even more so because of the possibility of ligation at non-cysteine sites using β-mercapto amino acids that can be converted to the corresponding native amino acids by desulfurization. A drawback of this ligation- desulfurization approach is the removal of any unprotected native cysteine residues within the ligated protein segments. Here, we show that the phenacyl (PAc) moiety can be successfully used to protect cysteines within recombinantly generated protein segments. As such, this group was selectively appended onto cysteine side chains within bacterially expressed polypeptides following intein cleavage, which reveals a rather sensitive thioester at the C-terminus. The PAc group proved to be compatible with native chemical ligation, radical desulfurization, and reverse-phase HPLC conditions, and was smoothly removed at the end. The utility of the PAc protecting group was then demonstrated by the 'traceless' semisynthesis of two proteins containing one or two native cysteines: human small heat shock protein Hsp27 and murine prion protein.
Collapse
Affiliation(s)
- Maria Matveenko
- Institute of Biological Chemistry, Faculty of Chemistry University of Vienna Währinger Str. 38 1090 Vienna Austria
| | - Stefanie Hackl
- Institute of Biological Chemistry, Faculty of Chemistry University of Vienna Währinger Str. 38 1090 Vienna Austria
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry University of Vienna Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
15
|
The role of directional interactions in the designability of generalized heteropolymers. Sci Rep 2017; 7:4986. [PMID: 28694466 PMCID: PMC5504045 DOI: 10.1038/s41598-017-04720-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
Heteropolymers are important examples of self-assembling systems. However, in the design of artificial heteropolymers the control over the single chain self-assembling properties does not reach that of the natural bio-polymers, and in particular proteins. Here, we introduce a sufficiency criterion to identify polymers that can be designed to adopt a predetermined structure and show that it is fulfilled by polymers made of monomers interacting through directional (anisotropic) interactions. The criterion is based on the appearance of a particular peak in the radial distribution function, that we show being a universal feature of all designable heteropolymers, as it is present also in natural proteins. Our criterion can be used to engineer new self-assembling modular polymers that will open new avenues for applications in materials science.
Collapse
|
16
|
A "Dock and Lock" Approach to Preparation of Targeted Liposomes. Methods Mol Biol 2016. [PMID: 27837532 DOI: 10.1007/978-1-4939-6591-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We developed a strategy for covalent coupling of targeting proteins to liposomes decorated with a standard adapter protein. This strategy is based on "dock and lock" interactions between two mutated fragments of human RNase I, a 1-15 aa fragment with the R4C amino acid substitution (Cys-tag), and a 21-127-aa fragment with the V118C substitution, (Ad-C). Upon binding to each other, Cys-tag and Ad-C spontaneously form a disulfide bond between the complementary 4C and 118C residues. Therefore, any targeting protein expressed with Cys-tag can be easily coupled to liposomes decorated with Ad-C. Here we describe the preparation of Ad-liposomes followed by coupling them to two Cys-tagged targeted proteins, human vascular endothelial growth factor expressed with N-terminal Cys-tag and a 254-aa long N-terminal fragment of anthrax lethal factor carrying C-terminal Cys-tag. Both proteins retain functional activity after coupling to Ad-C-decorated drug-loaded liposomes. We expect that our "dock and lock" strategy will open new opportunities for development of targeted therapeutic liposomes for research and clinical use.
Collapse
|
17
|
Hackl S, Schmid A, Becker CFW. Semisynthesis of Membrane-Attached Proteins Using Split Inteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2016; 1495:93-109. [PMID: 27714612 DOI: 10.1007/978-1-4939-6451-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The site-selective installation of lipid modifications on proteins is critically important in our understanding of how membrane association influences the biophysical properties of proteins as well as to study certain proteins in their native environment. Here, we describe the use of split inteins for the C-terminal attachment of lipid-modified peptides to virtually any protein of interest (POI) via protein trans-splicing (PTS). To achieve this, the protein of interest is expressed in fusion with the N-terminal split intein segment and the C-terminal split intein segment is prepared by solid phase peptide synthesis. A synthetic peptide carrying two lipid chains is also made chemically to serve as a membrane anchor and subsequently linked to the C-terminal split intein by native chemical ligation. Proteins of interest for our work are the prion protein as well as small GTPases; however, extensions to other POIs are possible. Detailed information for the C-terminal introduction of a lipidated membrane anchor (MA) peptide using split intein systems from Synechocystis spp. and Nostoc punctiforme for the Prion protein (PrP, as a challenging protein of interest) and the enhanced green-fluorescent protein (eGFP, as an easily trackable target protein) are provided here.
Collapse
Affiliation(s)
- Stefanie Hackl
- Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Alanca Schmid
- Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Christian F W Becker
- Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Matveenko M, Cichero E, Fossa P, Becker CFW. Impaired Chaperone Activity of Human Heat Shock Protein Hsp27 Site-Specifically Modified with Argpyrimidine. Angew Chem Int Ed Engl 2016; 55:11397-402. [DOI: 10.1002/anie.201605366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Matveenko
- University of Vienna, Faculty of Chemistry; Institute of Biological Chemistry; Währinger Str. 38 1090 Vienna Austria
| | - Elena Cichero
- University of Genoa; Department of Pharmacy; Viale Benedetto XV n.3 16132 Genoa Italy
| | - Paola Fossa
- University of Genoa; Department of Pharmacy; Viale Benedetto XV n.3 16132 Genoa Italy
| | - Christian F. W. Becker
- University of Vienna, Faculty of Chemistry; Institute of Biological Chemistry; Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
19
|
Matveenko M, Cichero E, Fossa P, Becker CFW. Impaired Chaperone Activity of Human Heat Shock Protein Hsp27 Site-Specifically Modified with Argpyrimidine. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria Matveenko
- University of Vienna, Faculty of Chemistry; Institute of Biological Chemistry; Währinger Str. 38 1090 Vienna Austria
| | - Elena Cichero
- University of Genoa; Department of Pharmacy; Viale Benedetto XV n.3 16132 Genoa Italy
| | - Paola Fossa
- University of Genoa; Department of Pharmacy; Viale Benedetto XV n.3 16132 Genoa Italy
| | - Christian F. W. Becker
- University of Vienna, Faculty of Chemistry; Institute of Biological Chemistry; Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
20
|
Bondalapati S, Jbara M, Brik A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat Chem 2016; 8:407-18. [DOI: 10.1038/nchem.2476] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 02/04/2016] [Indexed: 12/18/2022]
|
21
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
22
|
Schmitz M, Kuhlmann M, Reimann O, Hackenberger CR, Groll J. Side-chain cysteine-functionalized poly(2-oxazoline)s for multiple peptide conjugation by native chemical ligation. Biomacromolecules 2015; 16:1088-94. [PMID: 25728550 PMCID: PMC4428813 DOI: 10.1021/bm501697t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/27/2015] [Indexed: 12/19/2022]
Abstract
We prepared statistical copolymers composed of 2-methyl-2-oxazoline (MeOx) in combination with 2-butenyl-2-oxazoline (BuOx) or 2-decenyl-2-oxazoline (DecOx) as a basis for polymer analogous introduction of 1,2-aminothiol moieties at the side chain. MeOx provides hydrophilicity as well as cyto- and hemocompatibility, whereas the alkene groups of BuOx and DecOx serve for functionalization with a thiofunctional thiazolidine by UV-mediated thiol-ene reaction. After deprotection the cysteine content in functionalized poly(2-oxazoline) (POx) is quantified by NMR and a modified trinitrobenzenesulfonic acid assay. The luminescent cell viability assay shows no negative influence of cysteine-functionalized POx (cys-POx) concerning cell viability and cell number. cys-POx was used for multiple chemically orthogonal couplings with thioester-terminated peptides through native chemical ligation (NCL), which was performed and confirmed by NMR and MALDI-ToF measurements.
Collapse
Affiliation(s)
- Michael Schmitz
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Matthias Kuhlmann
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Oliver Reimann
- Department
Chemical Biology II, Leibniz-Institut für
Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian
P. R. Hackenberger
- Department
Chemical Biology II, Leibniz-Institut für
Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Humboldt
Universität zu Berlin, Department
Chemie, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Jürgen Groll
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
23
|
Bello C, Kikul F, Becker CFW. Efficient generation of peptide hydrazides via direct hydrazinolysis of Peptidyl-Wang-TentaGel resins. J Pept Sci 2015; 21:201-7. [PMID: 25648984 DOI: 10.1002/psc.2747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 01/19/2023]
Abstract
Peptide hydrazides are valuable building blocks in peptide and protein chemistry, e.g. as precursors of peptide thioesters that allow the preparation of these important intermediates under mild conditions. Additional robust and versatile methods for the generation of peptide hydrazides from standard solid supports are therefore highly desired in order to facilitate access to peptide thioester via Fmoc-based SPPS. Here, the efficient generation of peptide hydrazides from conventional 4-hydroxymethyl phenol Wang-TentalGel peptidyl resins is described. Direct hydrazinolysis of a 19mer mucin1 peptide gives the protected peptide hydrazide in excellent yields. Testing a series of octapeptides carrying the 20 common proteinogenic amino acids at their C-terminus led to preparation of all corresponding peptide hydrazides in very good to excellent yields and purities. The available set of octapeptides allowed analyzing the influence of the nature of the C-terminal amino acid and of the solvent on the hydrazinolysis reaction. Furthermore, the compatibility of the method with posttranslational modifications (here glycosylation) and with potentially sensitive functional groups in amino acid side chains makes this approach a viable alternative for obtaining peptide hydrazides. It combines the advantages of a straightforward synthesis with stereochemical stability and flexibility, as it provides easy access to the peptide acid and the peptide thioester (via the hydrazide) from the same solid support.
Collapse
Affiliation(s)
- Claudia Bello
- Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | | | | |
Collapse
|
24
|
da Costa JP, Cova M, Ferreira R, Vitorino R. Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 2015; 99:2023-40. [PMID: 25586583 DOI: 10.1007/s00253-015-6375-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/26/2014] [Accepted: 12/28/2014] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides are small molecules with activity against bacteria, yeasts, fungi, viruses, bacteria, and even tumor cells that make these molecules attractive as therapeutic agents. Due to the alarming increase of antimicrobial resistance, interest in alternative antimicrobial agents has led to the exploitation of antimicrobial peptides, both synthetic and from natural sources. Thus, many peptide-based drugs are currently commercially available for the treatment of numerous ailments, such as hepatitis C, myeloma, skin infections, and diabetes. Initial barriers are being increasingly overcome with the development of cost-effective, more stable peptides. Herein, we review the available strategies for their synthesis, bioinformatics tools for the rational design of antimicrobial peptides with enhanced therapeutic indices, hurdles and shortcomings limiting the large-scale production of AMPs, as well as the challenges that the pharmaceutical industry faces on their use as therapeutic agents.
Collapse
Affiliation(s)
- João Pinto da Costa
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | |
Collapse
|
25
|
Abstract
Site-selective peptide/protein degradation through chemical cleavage methods is an important modification of biologically relevant macromolecules which complements enzymatic hydrolysis. In this review, recent progress in chemical, site-selective peptide bond cleavage is overviewed, with an emphasis on postulated mechanisms and their implications on reactivity, selectivity, and substrate scope.
Collapse
|
26
|
Göbl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:26-63. [PMID: 24924266 DOI: 10.1016/j.pnmrs.2014.05.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 05/22/2023]
Abstract
NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes.
Collapse
Affiliation(s)
- Christoph Göbl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Biology, University of Graz, Graz, Austria.
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
27
|
Tripsianes K, Chu NK, Friberg A, Sattler M, Becker CFW. Studying weak and dynamic interactions of posttranslationally modified proteins using expressed protein ligation. ACS Chem Biol 2014; 9:347-52. [PMID: 24299430 DOI: 10.1021/cb400723j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many cellular processes are regulated by posttranslational modifications that are recognized by specific domains in protein binding partners. These interactions are often weak, thus allowing a highly dynamic and combinatorial regulatory network of protein-protein interactions. We report an efficient strategy that overcomes challenges in structural analysis of such a weak transient interaction between the Tudor domain of the Survival of Motor Neuron (SMN) protein and symmetrically dimethylated arginine (sDMA). The posttranslational modification is chemically introduced and covalently linked to the effector module by a one-pot expressed protein ligation (EPL) procedure also enabling segmental incorporation of NMR-active isotopes for structural analysis. Covalent coupling of the two interacting moieties shifts the equilibrium to the bound state, and stoichiometric interactions are formed even for low affinity interactions. Our approach should enable the structural analysis of weak interactions by NMR or X-ray crystallography to better understand the role of posttranslational modifications in dynamic biological processes.
Collapse
Affiliation(s)
- Konstantinos Tripsianes
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich and Chair of Biomolecular NMR, TU München, Lichtenbergstr. 4, 85747 Garching, Germany
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Nam K. Chu
- Institute of Biological
Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria
| | - Anders Friberg
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich and Chair of Biomolecular NMR, TU München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Center for Integrated Protein Science Munich and Chair of Biomolecular NMR, TU München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Christian F. W. Becker
- Institute of Biological
Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria
| |
Collapse
|
28
|
Tanabe K, Taniguchi A, Matsumoto T, Oisaki K, Sohma Y, Kanai M. Asparagine-selective cleavage of peptide bonds through hypervalent iodine-mediated Hofmann rearrangement in neutral aqueous solution. Chem Sci 2014. [DOI: 10.1039/c3sc53037j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Tang W, Becker ML. “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem Soc Rev 2014; 43:7013-39. [DOI: 10.1039/c4cs00139g] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptides that comprise the functional subunits of proteins have been conjugated to versatile materials (biomolecules, polymers, surfaces and nanoparticles) in an effort to modulate cell responses, specific binding affinity and/or self-assembly behavior.
Collapse
Affiliation(s)
- Wen Tang
- Department of Polymer Science
- The University of Akron
- Akron, USA
| | - Matthew L. Becker
- Department of Polymer Science
- The University of Akron
- Akron, USA
- Department of Biomedical Engineering
- The University of Akron
| |
Collapse
|
30
|
Prabhulkar S, Tian H, Wang X, Zhu JJ, Li CZ. Engineered proteins: redox properties and their applications. Antioxid Redox Signal 2012; 17:1796-822. [PMID: 22435347 PMCID: PMC3474195 DOI: 10.1089/ars.2011.4001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices.
Collapse
Affiliation(s)
- Shradha Prabhulkar
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, Florida
| | - Hui Tian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida
| | - Jun-Jie Zhu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, Florida
| |
Collapse
|
31
|
Butterfield S, Hejjaoui M, Fauvet B, Awad L, Lashuel HA. Chemical strategies for controlling protein folding and elucidating the molecular mechanisms of amyloid formation and toxicity. J Mol Biol 2012; 421:204-36. [PMID: 22342932 DOI: 10.1016/j.jmb.2012.01.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 12/12/2022]
Abstract
It has been more than a century since the first evidence linking the process of amyloid formation to the pathogenesis of Alzheimer's disease. During the last three decades in particular, increasing evidence from various sources (pathology, genetics, cell culture studies, biochemistry, and biophysics) continues to point to a central role for the pathogenesis of several incurable neurodegenerative and systemic diseases. This is in part driven by our improved understanding of the molecular mechanisms of protein misfolding and aggregation and the structural properties of the different aggregates in the amyloid pathway and the emergence of new tools and experimental approaches that permit better characterization of amyloid formation in vivo. Despite these advances, detailed mechanistic understanding of protein aggregation and amyloid formation in vitro and in vivo presents several challenges that remain to be addressed and several fundamental questions about the molecular and structural determinants of amyloid formation and toxicity and the mechanisms of amyloid-induced toxicity remain unanswered. To address this knowledge gap and technical challenges, there is a critical need for developing novel tools and experimental approaches that will not only permit the detection and monitoring of molecular events that underlie this process but also allow for the manipulation of these events in a spatial and temporal fashion both in and out of the cell. This review is primarily dedicated in highlighting recent results that illustrate how advances in chemistry and chemical biology have been and can be used to address some of the questions and technical challenges mentioned above. We believe that combining recent advances in the development of new fluorescent probes, imaging tools that enabled the visualization and tracking of molecular events with advances in organic synthesis, and novel approaches for protein synthesis and engineering provide unique opportunities to gain a molecular-level understanding of the process of amyloid formation. We hope that this review will stimulate further research in this area and catalyze increased collaboration at the interface of chemistry and biology to decipher the mechanisms and roles of protein folding, misfolding, and aggregation in health and disease.
Collapse
Affiliation(s)
- Sara Butterfield
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Siderius M, Wal M, Scholten DJ, Smit MJ, Sakmar TP, Leurs R, de Graaf C. Unnatural amino acids for the study of chemokine receptor structure and dynamics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e227-e314. [PMID: 24063744 DOI: 10.1016/j.ddtec.2012.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
33
|
Agalave SG, Maujan SR, Pore VS. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem Asian J 2011; 6:2696-718. [DOI: 10.1002/asia.201100432] [Citation(s) in RCA: 907] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Indexed: 12/16/2022]
|
34
|
Yamamura Y, Hirakawa H, Yamaguchi S, Nagamune T. Enhancement of sortase A-mediated protein ligation by inducing a β-hairpin structure around the ligation site. Chem Commun (Camb) 2011; 47:4742-4. [PMID: 21409251 DOI: 10.1039/c0cc05334a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A Staphylococcus aureus transpeptidase, sortase A (SrtA), catalyzes selective peptide/protein ligations that have been applied to cell imaging and protein engineering, while the ligations do not proceed to completion due to their reversibility. We successfully enhanced SrtA-mediated protein ligation through the formation of a β-hairpin around the ligation site.
Collapse
Affiliation(s)
- Yuichi Yamamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
35
|
|
36
|
Chu NK, Olschewski D, Seidel R, Winklhofer KF, Tatzelt J, Engelhard M, Becker CFW. Protein immobilization on liposomes and lipid-coated nanoparticles by protein trans-splicing. J Pept Sci 2010; 16:582-8. [DOI: 10.1002/psc.1227] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
38
|
Lahiri S, Seidel R, Engelhard M, Becker CFW. Photocontrol of STAT6 dimerization and translocation. MOLECULAR BIOSYSTEMS 2010; 6:2423-9. [DOI: 10.1039/c0mb00019a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Abstract
We developed a strategy for covalent coupling of targeting proteins to liposomes decorated with a standard adapter protein. This strategy is based on "dock and lock" the interactions between two mutated fragments of human RNase I, a 1-15-aa fragment with the R4C amino acid substitution, (Cys-tag), and a 21-127-aa fragment with the V118C substitution, (Ad-C). Upon binding to each other, Cys-tag and Ad-C spontaneously form a disulfide bond between the complimentary 4C and 118C residues. Therefore, any targeting protein expressed with Cys-tag can be easily coupled to liposomes decorated with Ad-C. Here, we describe the preparation of Ad-liposomes followed by coupling them to two Cys-tagged targeted proteins, human vascular endothelial growth factor expressed with N-terminal Cys-tag, and a 254-aa long N-terminal fragment of anthrax lethal factor carrying C-terminal Cys-tag. Both proteins retain functional activity after coupling to Ad-C-decorated drug-loaded liposomes. We expect that our "dock and lock" strategy will open new opportunities for development of targeted therapeutic liposomes for research and clinical use.
Collapse
|
40
|
Tsukiji S, Nagamune T. Sortase-mediated ligation: a gift from Gram-positive bacteria to protein engineering. Chembiochem 2009; 10:787-98. [PMID: 19199328 DOI: 10.1002/cbic.200800724] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shinya Tsukiji
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
41
|
Abstract
Redox-active enzymes perform many key biological reactions. The electron transfer process is complex, not only because of its versatility, but also because of the intricate and delicate modulation exerted by the protein scaffold on the redox properties of the catalytic sites. Nowadays, there is a wealth of information available about the catalytic mechanisms of redox-active enzymes and the time is propitious for the development of projects based on the protein engineering of redox-active enzymes. In this review, we aim to provide an updated account of the available methods used for protein engineering, including both genetic and chemical tools, which are usually reviewed separately. Specific applications to redox-active enzymes are mentioned within each technology, with emphasis on those cases where the generation of novel functionality was pursued. Finally, we focus on two emerging fields in the protein engineering of redox-active enzymes: the construction of novel nucleic acid-based catalysts and the remodeling of intra-molecular electron transfer networks. We consider that the future development of these areas will represent fine examples of the concurrence of chemical and genetic tools.
Collapse
Affiliation(s)
- Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | |
Collapse
|
42
|
Ludwig C, Schwarzer D, Zettler J, Garbe D, Janning P, Czeslik C, Mootz HD. Semisynthesis of proteins using split inteins. Methods Enzymol 2009; 462:77-96. [PMID: 19632470 DOI: 10.1016/s0076-6879(09)62004-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein splicing is an autocatalytic reaction in which an internal protein domain, the intein, excises itself out of a precursor protein and concomitantly links the two flanking sequences, the exteins, with a native peptide bond. In split inteins, the intein domain is divided into two parts that undergo fragment association followed by protein splicing in trans. Thus, the extein sequences joined in the process originate from two separate molecules. The specificity and sequence promiscuity of split inteins make this approach a generally useful tool for the preparation of semisynthetic proteins. To this end, the recombinant part of the protein of interest is expressed as a fusion protein with one split intein fragment. The synthetic part is extended by the other, complementary fragment of the split intein. A recently introduced split intein, in which the N-terminal fragment consists of only 11 native amino acids, has greatly facilitated preparation of the synthetic part by solid-phase peptide synthesis. This intein enables the chemoenzymatic synthesis of N-terminally modified semisynthetic proteins. The reaction can be performed under native conditions and at protein and peptide concentrations in the low micromolar range. In contrast to chemical ligation procedures like native chemical ligation and expressed protein ligation, the incorporation of a thioester group and an aminoterminal cysteine into the two polypeptides to be linked is not necessary. We discuss properties of useful inteins, design rules for split inteins and intein insertion sites and we describe selected examples in detail.
Collapse
Affiliation(s)
- Christina Ludwig
- Fakultät Chemie - Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Hackenberger C, Schwarzer D. Chemoselektive Ligations- und Modifikationsstrategien für Peptide und Proteine. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801313] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Hackenberger C, Schwarzer D. Chemoselective Ligation and Modification Strategies for Peptides and Proteins. Angew Chem Int Ed Engl 2008; 47:10030-74. [DOI: 10.1002/anie.200801313] [Citation(s) in RCA: 651] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Affiliation(s)
- Morten Meldal
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark, and H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Christian Wenzel Tornøe
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark, and H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| |
Collapse
|
46
|
|
47
|
Lorello GR, Legault MC, Rakić B, Bisgaard K, Pezacki JP. Synthesis and bioorthogonal coupling chemistry of a novel cyclopentenone-containing unnatural tyrosine analogue. Bioorg Chem 2008; 36:105-11. [DOI: 10.1016/j.bioorg.2007.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/13/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
|
48
|
Olschewski D, Becker CFW. Chemical synthesis and semisynthesis of membrane proteins. MOLECULAR BIOSYSTEMS 2008; 4:733-40. [DOI: 10.1039/b803248c] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
|
50
|
Levengood MR, van der Donk WA. Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies. Nat Protoc 2007; 1:3001-10. [PMID: 17406561 DOI: 10.1038/nprot.2006.470] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol describes the methodology for the synthesis of dehydroalanine (Dha)-containing peptides and illustrates their use in convergent ligation strategies for the preparation of peptide conjugates. A nonproteinogenic amino acid, Fmoc-Se-phenylselenocysteine (SecPh), can be prepared in high yield over four synthetic steps and be conveniently incorporated into peptides by standard solid-phase peptide synthesis techniques. Globally deprotected peptides containing phenylselenocysteine can be converted to dehydrated peptides following a chemoselective, mild oxidation with hydrogen peroxide or sodium periodate (i.e., the phenylselenocysteine side chain is converted to that of Dha). Dha residues are electrophilic handles for the preparation of glycopeptides, lipopeptides or other peptide conjugates; one such transformation will be outlined here. The preparation of Dha-containing peptides, including the synthesis of SecPh, peptide elongation and oxidative treatment of phenylselenocysteine-containing peptides can be completed by one person in approximately 3-5 weeks. However, once SecPh is in hand, the time required for the preparation of peptides is significantly shorter and comparable to that for any peptide synthesis.
Collapse
Affiliation(s)
- Matthew R Levengood
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Matthews Ave., Urbana, Illinois 61801, USA
| | | |
Collapse
|