1
|
Chan H, Beresford N, Rudd TR, Rigsby P, Vipond C, Gao F, Matejtschuk P, Malik K, Duru C, Atkinson E, Burkin K, De Benedetto G, Lockyer K, Bolgiano B. Evaluation of candidate International Standards for meningococcal capsular polysaccharide groups W and Y. Biologicals 2024; 87:101780. [PMID: 38970883 DOI: 10.1016/j.biologicals.2024.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
Two candidate International Standards for meningococcal capsular group W and Y (MenW and MenY, respectively) polysaccharides were assessed for their suitability as quantitative standards in various physicochemical assays. The study was designed to evaluate the intended purpose of these standards, namely, to standardize the quantification of the respective polysaccharide content in meningococcal polysaccharide and conjugate vaccines and their intermediate components. Twelve laboratories from eleven different countries participated in the collaborative study of candidate preparations for International Standards for MenW and MenY polysaccharide (coded 16/152 and 16/206, respectively). Unitage was assigned using the Resorcinol assay. Our proposals, on the basis of data from the Resorcinol assay were: 1) candidate standard for MenW polysaccharide (16/152) to be assigned a content of 1.015 ± 0.071 mg MenW polysaccharide per ampoule (expanded uncertainty with coverage factor k = 2.13, corresponding to a 95 % level of confidence) and 2) candidate standard for MenY polysaccharide (16/206) be assigned a content of 0.958 ± 0.076 mg MenY polysaccharide per ampoule (expanded uncertainty with coverage factor k = 2.26, corresponding to a 95 % level of confidence). The amount of polysaccharide per ampoule remained consistent under all stability conditions over a 36-month period.
Collapse
Affiliation(s)
- Hannah Chan
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK.
| | - Nicola Beresford
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Timothy R Rudd
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Peter Rigsby
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Fang Gao
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Paul Matejtschuk
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Kiran Malik
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Chinwe Duru
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Eleanor Atkinson
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Karena Burkin
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Gianluigi De Benedetto
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Kay Lockyer
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
2
|
Hussein AR, Rezk MR, Fathalla FAA, El-Saharty YS, Nadim AH. High performance anion exchange chromatographic and colorimetric methods for quality assessment of total and free polysaccharide content in Haemophilus influenzae type b conjugate vaccine containing lactose. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3757-3765. [PMID: 36106712 DOI: 10.1039/d2ay00937d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The presence of lactose as a stabilizer in Haemophilus influenzae type b (Hib) conjugate vaccine is a challenge for chromatographic resolution of its total and free poly ribosyl ribitol phosphate (PRP) content. Sample pretreatment using ultrafiltration was performed and had removed ≥95% of lactose in shorter time compared to the conventional dialysis process. Separation of free unconjugated PRP was performed using solid-phase extraction C4 cartridges. Hib conjugate vaccine was then analyzed for determination of total and free PRP, using two validated techniques: high performance anion exchange chromatography with pulsed amperometry (HPAEC-PAD) for ribitol determination and a colorimetric assay for phosphorus determination. Lactose removal had enabled a rapid chromatographic assay via fast depolymerization of PRP using high temperature treatment. Modifying the burning process in the colorimetric assay reduced the analysis time significantly compared to the pharmacopoeial method. Linearity was obtained over the range of 0.10-10.0 μg mL-1 for the HPAEC method and in the range of 1.0-8.0 μg mL-1 for the colorimetric one. Stability of Hib conjugate vaccine was investigated. The HPAEC results revealed about a 35% increase in free PRP content after storage under stressed conditions (moisture and temperature). The proposed methods offered a reliable and economic platform for assessing the immunogenicity, efficacy and stability of Hib conjugate vaccine containing lactose for the biopharmaceutical industry.
Collapse
Affiliation(s)
- Asmaa R Hussein
- National Organization for Research and Control of Biologicals, Egypt
| | - Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| | | | - Yasser S El-Saharty
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Ahmed H Nadim
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| |
Collapse
|
3
|
Determination of ribose and phosphorus contents in Haemophilus influenzae type b capsular polysaccharide by a quantitative NMR method using a single internal standard. Chin J Nat Med 2022; 20:633-640. [DOI: 10.1016/s1875-5364(22)60184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 11/19/2022]
|
4
|
Berti F. NMR characterization of a multi-valent conjugate vaccine against Neisseria meningitidis A, C, W, Y and Haemophilus influenzae b infections. J Pharm Biomed Anal 2021; 205:114302. [PMID: 34388671 DOI: 10.1016/j.jpba.2021.114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022]
Abstract
Physicochemical technologies are a powerful tool for the structural characterization of vaccine antigens both at bulk level as well as on the final formulation. High-field Nuclear Magnetic Resonance (NMR) spectroscopy has been found to be an extremely and robust tool for tracking the industrial process manufacturing of carbohydrate-based vaccines. I have applied NMR spectroscopy to the characterization of a penta-valent conjugate vaccine against Neisseria meninigitidis group A, C, W, Y (MenACWY) and Haemophilus influenzae type b (Hib) infections, constituted of capsule derived polysaccharide fragments independently conjugated to CRM197 protein carrier (CRM-MenA, CRM-MenC, CRM-MenW, CRM-MenY, CRM-Hib). 1H NMR has been used for the identity testing of the carbohydrate antigens and of the vaccine formulation. The application of NMR-based assays on multivalent conjugate vaccines looks to be a promising approach for identity and stability analyses useful for future vaccines development.
Collapse
|
5
|
Rohrer JS. Vaccine Quality Ensured by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection. SLAS Technol 2019; 25:320-328. [PMID: 31771418 DOI: 10.1177/2472630319890309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many important vaccines use bacterial capsular polysaccharides, or shorter polysaccharides or oligosaccharides, derived from the capsular polysaccharides, conjugated to protein. It is imperative that manufacturers understand the carbohydrate composition of these vaccines and deliver a product with a consistent polysaccharide or polysaccharide conjugate composition and content. High-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) is a major technique used to understand the carbohydrate composition of these vaccines and ensure product quality. HPAE-PAD separates and detects carbohydrates without analyte derivatization. This paper describes the basics of the HPAE-PAD technique and then reviews how it has been applied to Haemophilus influenzae type b, pneumococcal, meningococcal, group B streptococcal, and Salmonella polysaccharide and corresponding conjugate vaccines.
Collapse
|
6
|
Tavakoli M, Bouzari S, Jafari A, Oloomi M, Asadi Karam MR, Najar-Peerayeh S, Siadat SD. Effect of nontypeable Haemophilus influenzae protein E (PE) as a microbial adjuvant on the amount of antibody against PRP of Haemophilus influenzae type b (Hib) in BALB/c mice. Microb Pathog 2019; 129:78-81. [PMID: 30682526 DOI: 10.1016/j.micpath.2019.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Minoo Tavakoli
- Biology Department, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Saeid Bouzari
- Molecular Biology Department, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Anis Jafari
- Molecular Biology Department, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mana Oloomi
- Molecular Biology Department, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Shahin Najar-Peerayeh
- Bacteriology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Davar Siadat
- Mycobacteriology and Pulmonary Research Department, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
|
8
|
Gao F, Swann C, Rigsby P, Rijpkema S, Lockyer K, Logan A, Bolgiano B. Evaluation of two WHO First International Standards for Vi polysaccharide from Citrobacter freundii and Salmonella enterica subspecies enterica serovar Typhi. Biologicals 2018; 57:34-45. [PMID: 30502020 DOI: 10.1016/j.biologicals.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022] Open
Abstract
Numerous Vi capsular polysaccharide (Vi PS) conjugate vaccines to protect young children and infants from Typhoid are either licensed or under development. These vaccines are evaluated by laboratory methods to ensure their potency and that quality requirement are met. International Standard (IS) preparations of Vi PS are needed to calibrate and harmonise these assays. Twenty laboratories from 12 countries participated in a collaborative study to evaluate two candidate ISs: Citrobacter freundii Vi PS (NIBSC code 12/244) and Salmonella enterica serovar Typhi Vi PS (16/126). On the basis of returned results and stability profiles, these standards were established by the WHO Expert Committee on Biological Standardization in Oct 2017 as the First WHO IS for C. freundii Vi PS with a content of 1.94 ± 0.12 mg Vi PS per ampoule (expanded uncertainty with coverage factor of k = 2.11 corresponding to a 95% level of confidence) and the First WHO IS for S. Typhi Vi PS with a content of 2.03 ± 0.10 mg Vi PS per ampoule (expanded uncertainty with coverage factor of k = 2.11), as determined by quantitative NMR. The study also showed the ISs are suitable for physicochemical and immuno assays used for the quantitation of the Vi PS component in Vi PS and conjugate vaccines.
Collapse
Affiliation(s)
- Fang Gao
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK.
| | - Carolyn Swann
- Laboratory for Molecular Structure and Blanche Lane, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Peter Rigsby
- Biostatistics, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Sjoerd Rijpkema
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Kay Lockyer
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Alastair Logan
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire, EN6 3QG, UK
| | | |
Collapse
|
9
|
Abstract
Compared with biologics, vaccine potency assays represent a special challenge due to their unique compositions, multivalency, long life cycles and global distribution. Historically, vaccines were released using in vivo potency assays requiring immunization of dozens of animals. Modern vaccines use a variety of newer analytical tools including biochemical, cell-based and immunochemical methods to measure potency. The choice of analytics largely depends on the mechanism of action and ability to ensure lot-to-lot consistency. Live vaccines often require cell-based assays to ensure infectivity, whereas recombinant vaccine potency can be reliably monitored with immunoassays. Several case studies are presented to demonstrate the relationship between mechanism of action and potency assay. A high-level decision tree is presented to assist with assay selection.
Collapse
|
10
|
Baek JY, Geissner A, Rathwell DCK, Meierhofer D, Pereira CL, Seeberger PH. A modular synthetic route to size-defined immunogenic Haemophilus influenzae b antigens is key to the identification of an octasaccharide lead vaccine candidate. Chem Sci 2017; 9:1279-1288. [PMID: 29675174 PMCID: PMC5887106 DOI: 10.1039/c7sc04521b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/05/2017] [Indexed: 01/03/2023] Open
Abstract
A Haemophilus influenzae b vaccine lead antigen was identified by the immunological evaluation of chemically precisely defined capsular polysaccharide repeating unit oligosaccharides.
The first glycoconjugate vaccine using isolated glycans was licensed to protect children from Haemophilus influenzae serotype b (Hib) infections. Subsequently, the first semisynthetic glycoconjugate vaccine using a mixture of antigens derived by polymerization targeted the same pathogen. Still, a detailed understanding concerning the correlation between oligosaccharide chain length and the immune response towards the polyribosyl-ribitol-phosphate (PRP) capsular polysaccharide that surrounds Hib remains elusive. The design of semisynthetic and synthetic Hib vaccines critically depends on the identification of the minimally protective epitope. Here, we demonstrate that an octasaccharide antigen containing four repeating disaccharide units resembles PRP polysaccharide in terms of immunogenicity and recognition by anti-Hib antibodies. Key to this discovery was the development of a modular synthesis that enabled access to oligosaccharides up to decamers. Glycan arrays containing the synthetic oligosaccharides were used to analyze anti-PRP sera for antibodies. Conjugates of the synthetic antigens and the carrier protein CRM197, which is used in licensed vaccines, were employed in immunization studies in rabbits.
Collapse
Affiliation(s)
- J Y Baek
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ;
| | - A Geissner
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| | - D C K Rathwell
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| | - D Meierhofer
- Max-Planck Institute for Molecular Genetics (MPIMG) , 14195 Berlin , Germany
| | - C L Pereira
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ;
| | - P H Seeberger
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany . ; .,Freie Universität Berlin , Department of Chemistry and Biochemistry , 14195 Berlin , Germany
| |
Collapse
|
11
|
Vipond C, Swann CJ, Dougall TW, Rigsby P, Gao F, Beresford NJ, Bolgiano B. Evaluation of candidate international standards for meningococcal serogroups A and X polysaccharide. Biologicals 2017; 47:33-45. [DOI: 10.1016/j.biologicals.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/03/2017] [Indexed: 12/29/2022] Open
|
12
|
Momen SB, Siadat SD, Akbari N, Ranjbar B, Khajeh K. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b. Jundishapur J Microbiol 2016; 9:e25246. [PMID: 27630761 PMCID: PMC5011407 DOI: 10.5812/jjm.25246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/05/2015] [Accepted: 12/08/2015] [Indexed: 12/02/2022] Open
Abstract
Background Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. Objectives To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). Materials and Methods We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. Results The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. Conclusions We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.
Collapse
Affiliation(s)
- Seyed Bahman Momen
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat-Modares University, Tehran, IR Iran
| | | | - Neda Akbari
- Department of Microbiology, Faculty of Basic Sciences, Arak Branch, Islamic Azad University, Arak, IR Iran
| | - Bijan Ranjbar
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat-Modares University, Tehran, IR Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat-Modares University, Tehran, IR Iran
- Corresponding author: Khosro Khajeh, Department of Biochemistry, Faculty of Biological Sciences, Tarbiat-Modares University, Tehran, IR Iran. Tel: +98-2182884717, Fax: +98-2182884718, E-mail:
| |
Collapse
|
13
|
van der Put RM, de Haan A, van den IJssel JG, Hamidi A, Beurret M. HPAEC-PAD quantification of Haemophilus influenzae type b polysaccharide in upstream and downstream samples. Vaccine 2015; 33:6908-13. [DOI: 10.1016/j.vaccine.2014.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 11/26/2022]
|
14
|
Otto RBD, Burkin K, Amir SE, Crane DT, Bolgiano B. Patterns of binding of aluminum-containing adjuvants to Haemophilus influenzae type b and meningococcal group C conjugate vaccines and components. Biologicals 2015; 43:355-62. [PMID: 26194164 PMCID: PMC4582044 DOI: 10.1016/j.biologicals.2015.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/14/2015] [Accepted: 06/16/2015] [Indexed: 12/17/2022] Open
Abstract
The basis of Haemophilus influenzae type b (Hib) and Neisseria meningitidis serogroup C (MenC) glycoconjugates binding to aluminum-containing adjuvants was studied. By measuring the amount of polysaccharide and protein in the non-adsorbed supernatant, the adjuvant, aluminum phosphate, AlPO4, was found to be less efficient than aluminum hydroxide, Al(OH)3 at binding to the conjugates, at concentrations relevant to licensed vaccine formulations and when equimolar. At neutral pH, binding of TT conjugates to AlPO4 was facilitated through the carrier protein, with only weak binding of AlPO4 to CRM197 being observed. There was slightly higher binding of either adjuvant to tetanus toxoid conjugates, than to CRM197 conjugates. This was verified in AlPO4 formulations containing DTwP-Hib, where the adsorption of TT-conjugated Hib was higher than CRM197-conjugated Hib. At neutral pH, the anionic Hib and MenC polysaccharides did not appreciably bind to AlPO4, but did bind to Al(OH)3, due to electrostatic interactions. Phosphate ions reduced the binding of the conjugates to the adjuvants. These patterns of adjuvant adsorption can form the basis for future formulation studies with individual and combination vaccines containing saccharide-protein conjugates.
Collapse
Affiliation(s)
- Robert B D Otto
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | - Karena Burkin
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | - Saba Erum Amir
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | - Dennis T Crane
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| |
Collapse
|
15
|
International collaborative study for establishment of the 2nd WHO International Standard for Haemophilus influenzae type b polysaccharide. Biologicals 2015; 43:492-503. [PMID: 26298195 DOI: 10.1016/j.biologicals.2015.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/08/2015] [Accepted: 07/20/2015] [Indexed: 11/23/2022] Open
Abstract
In this report we present the results of a collaborative study for the preparation and calibration of a replacement International Standard (IS) for Haemophilus influenzae type b polysaccharide (polyribosyl ribitol phosphate; 5-d-ribitol-(1 → 1)-β-d-ribose-3-phosphate; PRP). Two candidate preparations were evaluated. Thirteen laboratories from 9 different countries participated in the collaborative study to assess the suitability and determine the PRP content of two candidate standards. On the basis of the results from this study, Candidate 2 (NIBSC code 12/306) has been established as the 2nd WHO IS for PRP by the Expert Committee of Biological Standards of the World Health Organisation with a content of 4.904 ± 0.185mg/ampoule, as determined by the ribose assays carried out by 11 of the participating laboratories.
Collapse
|
16
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Saydam M, Rigsby P, Mawas F. A novel enzyme-linked immuno-sorbent assay (ELISA) for the quantification of total and free polysaccharide in Haemophilus influenzae b-Tetanus toxoid conjugate vaccines in monovalent and combined vaccine formulations. Biologicals 2013; 42:29-33. [PMID: 24200313 DOI: 10.1016/j.biologicals.2013.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/13/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022] Open
Abstract
Current Haemophilus influenzae b conjugate vaccines (Hib), which are made of purified capsular polysaccharide (poly-ribosyl-ribitol-phosphate; PRP) conjugated to a carrier protein, are almost completely evaluated by physico-chemical methods to ensure the integrity and stability of the vaccine and consistency of manufacture of batches. The absence of a potency assay makes the quantification of total PRP content (in SI units) and of % free polysaccharide in final fills or bulk components of Hib vaccines critical release tests for both manufacturers and national control authorities. Here we describe a simple and sensitive Enzyme-Linked Immuno-sorbent Assay (ELISA) which has been developed to quantify total and free PRP content in Hib-TT vaccine alone or when in combination with other vaccines. The assay is robust, specific and highly sensitive.
Collapse
Affiliation(s)
- Manolya Saydam
- Bacteriology Division, National Institute for Biological Standards and Control, MHRA, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Peter Rigsby
- Biostatistics Division, National Institute for Biological Standards and Control, MHRA, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Fatme Mawas
- Bacteriology Division, National Institute for Biological Standards and Control, MHRA, Potters Bar, Hertfordshire EN6 3QG, UK.
| |
Collapse
|
18
|
Quantitation of serogroups in multivalent polysaccharide-based meningococcal vaccines: Optimisation of hydrolysis conditions and chromatographic methods. Vaccine 2013; 31:3702-11. [DOI: 10.1016/j.vaccine.2013.05.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/24/2013] [Accepted: 05/24/2013] [Indexed: 01/01/2023]
|
19
|
de Haan A, van der Put RMF, Beurret M. HPAEC-PAD method for the analysis of alkaline hydrolyzates of Haemophilus influenzae type b capsular polysaccharide. Biomed Chromatogr 2013; 27:1137-42. [PMID: 23681893 DOI: 10.1002/bmc.2918] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 11/11/2022]
Abstract
A gradient method has been devised for the rapid analysis of alkaline hydrolyzates of Haemophilus influenzae type b (Hib) capsular polysaccharide-based vaccines by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). As compared with published procedures, peak shape and sensitivity were significantly improved with this approach, analysis time was short and there was little interference from impurities. The limits of detection and quantification were established with a purified reference polysaccharide. We propose this method as a practical alternative for the analysis of minute amounts of Hib polysaccharide, which can be lower than with the conventional approaches.
Collapse
Affiliation(s)
- Alex de Haan
- Unit Vaccinology, Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | |
Collapse
|
20
|
Immunogenicity and thermal stability of a combined vaccine against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases. Vaccine 2010; 28:6228-34. [DOI: 10.1016/j.vaccine.2010.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 07/01/2010] [Accepted: 07/04/2010] [Indexed: 11/17/2022]
|
21
|
Purification of capsular polysaccharide produced by Haemophilus influenzae type b through a simple, efficient and suitable method for scale-up. J Ind Microbiol Biotechnol 2008; 35:1217-22. [DOI: 10.1007/s10295-008-0428-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 07/29/2008] [Indexed: 11/26/2022]
|