1
|
Vishwanath S, Carnell GW, Billmeier M, Ohlendorf L, Neckermann P, Asbach B, George C, Sans MS, Chan A, Olivier J, Nadesalingam A, Einhauser S, Temperton N, Cantoni D, Grove J, Jordan I, Sandig V, Tonks P, Geiger J, Dohmen C, Mummert V, Samuel AR, Plank C, Kinsley R, Wagner R, Heeney JL. Computationally designed Spike antigens induce neutralising responses against the breadth of SARS-COV-2 variants. NPJ Vaccines 2024; 9:164. [PMID: 39251608 PMCID: PMC11384739 DOI: 10.1038/s41541-024-00950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Updates of SARS-CoV-2 vaccines are required to generate immunity in the population against constantly evolving SARS-CoV-2 variants of concerns (VOCs). Here we describe three novel in-silico designed spike-based antigens capable of inducing neutralising antibodies across a spectrum of SARS-CoV-2 VOCs. Three sets of antigens utilising pre-Delta (T2_32), and post-Gamma sequence data (T2_35 and T2_36) were designed. T2_32 elicited superior neutralising responses against VOCs compared to the Wuhan-1 spike antigen in DNA prime-boost immunisation regime in guinea pigs. Heterologous boosting with the attenuated poxvirus - Modified vaccinia Ankara expressing T2_32 induced broader neutralising immune responses in all primed animals. T2_32, T2_35 and T2_36 elicited broader neutralising capacity compared to the Omicron BA.1 spike antigen administered by mRNA immunisation in mice. These findings demonstrate the utility of structure-informed computationally derived modifications of spike-based antigens for inducing broad immune responses covering more than 2 years of evolved SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sneha Vishwanath
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - George William Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Luis Ohlendorf
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Charlotte George
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Maria Suau Sans
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Andrew Chan
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Joey Olivier
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Angalee Nadesalingam
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Diego Cantoni
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | | | - Paul Tonks
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | | | | | - Verena Mummert
- Ethris GmbH, Semmelweisstraße 3, 82152, Planegg, Germany
| | | | | | - Rebecca Kinsley
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
- DIOSynVax Ltd, University of Cambridge, Cambridge, United Kingdom
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- DIOSynVax Ltd, University of Cambridge, Cambridge, United Kingdom
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonathan Luke Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom.
- DIOSynVax Ltd, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
2
|
Göbel S, Jaén KE, Dorn M, Neumeyer V, Jordan I, Sandig V, Reichl U, Altomonte J, Genzel Y. Process intensification strategies toward cell culture-based high-yield production of a fusogenic oncolytic virus. Biotechnol Bioeng 2023; 120:2639-2657. [PMID: 36779302 DOI: 10.1002/bit.28353] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50 /mL), more than 4-100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15-30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Karim E Jaén
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Marie Dorn
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Faculty of Process and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Victoria Neumeyer
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | | | | | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
3
|
Wang Y. Rendezvous with Vaccinia Virus in the Post-smallpox Era: R&D Advances. Viruses 2023; 15:1742. [PMID: 37632084 PMCID: PMC10457812 DOI: 10.3390/v15081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Smallpox was eradicated in less than 200 years after Edward Jenner's practice of cowpox variolation in 1796. The forty-three years of us living free of smallpox, beginning in 1979, never truly separated us from poxviruses. The recent outbreak of monkeypox in May 2022 might well warn us of the necessity of keeping up both the scientific research and public awareness of poxviruses. One of them in particular, the vaccinia virus (VACV), has been extensively studied as a vector given its broad host range, extraordinary thermal stability, and exceptional immunogenicity. Unceasing fundamental biological research on VACV provides us with a better understanding of its genetic elements, involvement in cellular signaling pathways, and modulation of host immune responses. This enables the rational design of safer and more efficacious next-generation vectors. To address the new technological advancement within the past decade in VACV research, this review covers the studies of viral immunomodulatory genes, modifications in commonly used vectors, novel mechanisms for rapid generation and purification of recombinant virus, and several other innovative approaches to studying its biology.
Collapse
Affiliation(s)
- Yuxiang Wang
- Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Gränicher G, Babakhani M, Göbel S, Jordan I, Marichal-Gallardo P, Genzel Y, Reichl U. A high cell density perfusion process for Modified Vaccinia virus Ankara production: Process integration with inline DNA digestion and cost analysis. Biotechnol Bioeng 2021; 118:4720-4734. [PMID: 34506646 DOI: 10.1002/bit.27937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/10/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
By integrating continuous cell cultures with continuous purification methods, process yields and product quality attributes have been improved over the last 10 years for recombinant protein production. However, for the production of viral vectors such as Modified Vaccinia virus Ankara (MVA), no such studies have been reported although there is an increasing need to meet the requirements for a rising number of clinical trials against infectious or neoplastic diseases. Here, we present for the first time a scalable suspension cell (AGE1.CR.pIX cells) culture-based perfusion process in bioreactors integrating continuous virus harvesting through an acoustic settler with semi-continuous chromatographic purification. This allowed obtaining purified MVA particles with a space-time yield more than 600% higher for the integrated perfusion process (1.05 × 1011 TCID50 /Lbioreactor /day) compared to the integrated batch process. Without further optimization, purification by membrane-based steric exclusion chromatography resulted in an overall product recovery of 50.5%. To decrease the level of host cell DNA before chromatography, a novel inline continuous DNA digestion step was integrated into the process train. A detailed cost analysis comparing integrated production in batch versus production in perfusion mode showed that the cost per dose for MVA was reduced by nearly one-third using this intensified small-scale process.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Masoud Babakhani
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair for Bioprocess Engineering, Faculty of Process- and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sven Göbel
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Institute of Biochemical Engineering, Faculty 4 - Energy-, Process- and Bio-Engineering, University of Stuttgart, Stuttgart, Germany
| | | | - Pavel Marichal-Gallardo
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Chair for Bioprocess Engineering, Faculty of Process- and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Gränicher G, Tapia F, Behrendt I, Jordan I, Genzel Y, Reichl U. Production of Modified Vaccinia Ankara Virus by Intensified Cell Cultures: A Comparison of Platform Technologies for Viral Vector Production. Biotechnol J 2021; 16:e2000024. [PMID: 32762152 PMCID: PMC7435511 DOI: 10.1002/biot.202000024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Modified Vaccinia Ankara (MVA) virus is a promising vector for vaccination against various challenging pathogens or the treatment of some types of cancers, requiring a high amount of virions per dose for vaccination and gene therapy. Upstream process intensification combining perfusion technologies, the avian suspension cell line AGE1.CR.pIX and the virus strain MVA-CR19 is an option to obtain very high MVA yields. Here the authors compare different options for cell retention in perfusion mode using conventional stirred-tank bioreactors. Furthermore, the authors study hollow-fiber bioreactors and an orbital-shaken bioreactor in perfusion mode, both available for single-use. Productivity for the virus strain MVA-CR19 is compared to results from batch and continuous production reported in literature. The results demonstrate that cell retention devices are only required to maximize cell concentration but not for continuous harvesting. Using a stirred-tank bioreactor, a perfusion strategy with working volume expansion after virus infection results in the highest yields. Overall, infectious MVA virus titers of 2.1-16.5 × 109 virions/mL are achieved in these intensified processes. Taken together, the study shows a novel perspective on high-yield MVA virus production in conventional bioreactor systems linked to various cell retention devices and addresses options for process intensification including fully single-use perfusion platforms.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Felipe Tapia
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Ilona Behrendt
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
- Chair for Bioprocess EngineeringOtto‐von‐Guericke‐University MagdeburgUniversitätsplatz 2Magdeburg39106Germany
| |
Collapse
|
6
|
Lothert K, Pagallies F, Eilts F, Sivanesapillai A, Hardt M, Moebus A, Feger T, Amann R, Wolff MW. A scalable downstream process for the purification of the cell culture-derived Orf virus for human or veterinary applications. J Biotechnol 2020; 323:221-230. [PMID: 32860824 DOI: 10.1016/j.jbiotec.2020.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
The large demand for safe and efficient viral vector-based vaccines and gene therapies against both inherited and acquired diseases accelerates the development of viral vectors. One outstanding example, the Orf virus, has a wide range of applications, a superior efficacy and an excellent safety profile combined with a reduced pathogenicity compared to other viral vectors. However, besides these favorable attributes, an efficient and scalable downstream process still needs to be developed. Recently, we screened potential chromatographic stationary phases for Orf virus purification. Based on these previous accomplishments, we developed a complete downstream process for the cell culture-derived Orf virus. The described process comprises a membrane-based clarification step, a nuclease treatment, steric exclusion chromatography, and a secondary chromatographic purification step using Capto® Core 700 resin. The applicability of this process to a variety of diverse Orf virus vectors was shown, testing two different genotypes. These studies render the possibility to apply the developed downstream scheme for both genotypes, and lead to overall virus yields of about 64 %, with step recoveries of >70 % for the clarification, and >90 % for the chromatography train. Protein concentrations of the final product are below the detection limits, and the final DNA concentration of about 1 ng per 1E + 06 infective virus units resembles a total DNA depletion of 96-98 %.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Arabi Sivanesapillai
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Giessen, Germany
| | - Anna Moebus
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Giessen, Germany
| | - Thomas Feger
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
7
|
O'Donnell K, Marzi A. The Ebola virus glycoprotein and its immune responses across multiple vaccine platforms. Expert Rev Vaccines 2020; 19:267-277. [PMID: 32129120 DOI: 10.1080/14760584.2020.1738225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: For over 40 years, ebolaviruses have been responsible for sporadic outbreaks of severe and often fatal hemorrhagic fever in humans and nonhuman primates across western and central Africa. In December 2013, an unprecedented Ebola virus (EBOV) epidemic began in West Africa and resulted in the largest outbreak to date. The past and current epidemics in West Africa and the Democratic Republic of the Congo has focused attention on the potential vaccine platforms developed over the past 20 years.Areas covered: This review summarizes the extraordinary progress using a variety of vaccination platforms including DNA, subunit, and several viral vector approaches, replicating and non-replicating, incorporating the primary antigen of EBOV, the glycoprotein. These vaccine constructs have shown varying degrees of protective efficacy in the 'gold-standard' nonhuman primate model for EBOV infections and were immunogenic in human clinical trials.Expert commentary: A number of these vaccine platforms have moved into phase III clinical trials over the past years and with the recent approval of the first EBOV vaccine in the European Union and the USA there is a strong potential to prevent future outbreaks/epidemics of EBOV infections on the scale of the West African epidemic.
Collapse
Affiliation(s)
- Kyle O'Donnell
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
8
|
Jordan I, Horn D, Thiele K, Haag L, Fiddeke K, Sandig V. A Deleted Deletion Site in a New Vector Strain and Exceptional Genomic Stability of Plaque-Purified Modified Vaccinia Ankara (MVA). Virol Sin 2019; 35:212-226. [PMID: 31833037 PMCID: PMC7198643 DOI: 10.1007/s12250-019-00176-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/18/2019] [Indexed: 12/29/2022] Open
Abstract
Vectored vaccines based on highly attenuated modified vaccinia Ankara (MVA) are reported to be immunogenic, tolerant to pre-existing immunity, and able to accommodate and stably maintain very large transgenes. MVA is usually produced on primary chicken embryo fibroblasts, but production processes based on continuous cell lines emerge as increasingly robust and cost-effective alternatives. An isolate of a hitherto undescribed genotype was recovered by passage of a non-plaque-purified preparation of MVA in a continuous anatine suspension cell line (CR.pIX) in chemically defined medium. The novel isolate (MVA-CR19) replicated to higher infectious titers in the extracellular volume of suspension cultures and induced fewer syncytia in adherent cultures. We now extend previous studies with the investigation of the point mutations in structural genes of MVA-CR19 and describe an additional point mutation in a regulatory gene. We furthermore map and discuss an extensive rearrangement of the left telomer of MVA-CR19 that appears to have occurred by duplication of the right telomer. This event caused deletions and duplications of genes that may modulate immunologic properties of MVA-CR19 as a vaccine vector. Our characterizations also highlight the exceptional genetic stability of plaque-purified MVA: although the phenotype of MVA-CR19 appears to be advantageous for replication, we found that all genetic markers that differentiate wildtype and MVA-CR19 are stably maintained in passages of recombinant viruses based on either wildtype or MVA-CR.
Collapse
Affiliation(s)
- Ingo Jordan
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany.
| | - Deborah Horn
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany
| | - Kristin Thiele
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany.,Sartorius Stedim Cellca GmbH, Erwin-Rentschler-Str 21, 88471, Laupheim, Germany
| | - Lars Haag
- Vironova AB, Gävlegatan 22, 113 30, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Universitetsjukhuset i Huddinge, 14152, Huddinge, Sweden
| | | | - Volker Sandig
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany
| |
Collapse
|
9
|
Vázquez-Ramírez D, Jordan I, Sandig V, Genzel Y, Reichl U. High titer MVA and influenza A virus production using a hybrid fed-batch/perfusion strategy with an ATF system. Appl Microbiol Biotechnol 2019; 103:3025-3035. [PMID: 30796494 PMCID: PMC6447503 DOI: 10.1007/s00253-019-09694-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/20/2023]
Abstract
A cultivation strategy to increase the productivity of Modified Vaccinia Ankara (MVA) virus in high-cell density processes is presented. Based on an approach developed in shake flask cultures, this strategy was established in benchtop bioreactors, comprising the growth of suspension AGE1.CR.pIX cells to high cell densities in a chemically defined medium before infection with the MVA-CR19 virus strain. First, a perfusion regime was established to optimize the cell growth phase. Second, a fed-batch regime was chosen for the initial infection phase to facilitate virus uptake and cell-to-cell spreading. Afterwards, a switch to perfusion enabled the continuous supply of nutrients for the late stages of virus propagation. With maximum infectious titers of 1.0 × 1010 IU/mL, this hybrid fed-batch/perfusion strategy increased product titers by almost one order of magnitude compared to conventional batch cultivations. Finally, this strategy was also applied to the production of influenza A/PR/8/34 (H1N1) virus considered for manufacturing of inactivated vaccines. Using the same culture system, a total number of 3.8 × 1010 virions/mL was achieved. Overall, comparable or even higher cell-specific virus yields and volumetric productivities were obtained using the same cultivation systems as for the conventional batch cultivations. In addition, most viral particles were found in the culture supernatant, which can simplify further downstream operations, in particular for MVA viruses. Considering the current availability of well-described perfusion/cell retention technologies, the present strategy may contribute to the development of new approaches for viral vaccine production.
Collapse
Affiliation(s)
- Daniel Vázquez-Ramírez
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Ingo Jordan
- ProBioGen AG, Goethestr. 54, 13086, Berlin, Germany
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.,Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
10
|
Vázquez-Ramírez D, Genzel Y, Jordan I, Sandig V, Reichl U. High-cell-density cultivations to increase MVA virus production. Vaccine 2018; 36:3124-3133. [PMID: 29433897 PMCID: PMC7115588 DOI: 10.1016/j.vaccine.2017.10.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/05/2022]
Abstract
Strategies for the production of MVA virus at high-cell-densities are presented. High-cell-density cultures can be downscaled from bioreactor to shake flasks. Optimal MVA virus production requires a combination of fed-batch and semi-perfusion.
Increasing the yield and the productivity in cell culture-based vaccine manufacturing using high-cell-density (HCD) cultivations faces a number of challenges. For example, medium consumption should be low to obtain a very high concentration of viable host cells in an economical way but must be balanced against the requirement that accumulation of toxic metabolites and limitation of nutrients have to be avoided. HCD cultivations should also be optimized to avoid unwanted induction of apoptosis or autophagy during the early phase of virus infection. To realize the full potential of HCD cultivations, a rational analysis of the cultivation conditions of the appropriate host cell line together with the optimal infection conditions for the chosen viral vaccine strain needs to be performed for each particular manufacturing process. We here illustrate our strategy for production of the modified vaccinia Ankara (MVA) virus isolate MVA-CR19 in the avian suspension cell line AGE1.CR.pIX at HCD. As a first step we demonstrate that the adjustment of the perfusion rate strictly based on the measured cell concentration and the glucose consumption rate of cells enables optimal growth in a 0.8 L bioreactor equipped with an ATF2 system. Concentrations up to 57 × 106 cells/mL (before infection) were obtained with a viability exceeding 95%, and a maximum specific cell growth rate of 0.019 h−1 (doubling time = 36.5 h). However, not only the cell-specific MVA-CR19 virus yield but also the volumetric productivity was reduced compared to infections at conventional-cell-density (CCD). To facilitate optimization of the virus propagation phase at HCD, a larger set of feeding strategies was analyzed in small-scale cultivations using shake flasks. Densities up to 63 × 106 cells/mL were obtained at the end of the cell growth phase applying a discontinuous perfusion mode (semi-perfusion) with the same cell-specific perfusion rate as in the bioreactor (0.060 nL/(cell d)). At this cell concentration, a medium exchange at time of infection was required to obtain expected virus yields during the first 24 h after infection. Applying an additional fed-batch feeding strategy during the whole virus replication phase resulted in a faster virus titer increase during the first 36 h after infection. In contrast, a semi-continuous virus harvest scheme improved virus accumulation and recovery at a rather later stage of infection. Overall, a combination of both fed-batch and medium exchange strategies resulted in similar cell-specific virus yields as those obtained for CCD processes but 10-fold higher MVA-CR19 titers, and four times higher volumetric productivity.
Collapse
Affiliation(s)
- Daniel Vázquez-Ramírez
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Ingo Jordan
- ProBioGen AG, Goethestr. 54, 13086 Berlin, Germany
| | | | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany; Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
11
|
Tapia F, Jordan I, Genzel Y, Reichl U. Efficient and stable production of Modified Vaccinia Ankara virus in two-stage semi-continuous and in continuous stirred tank cultivation systems. PLoS One 2017; 12:e0182553. [PMID: 28837572 PMCID: PMC5570375 DOI: 10.1371/journal.pone.0182553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/19/2017] [Indexed: 11/18/2022] Open
Abstract
One important aim in cell culture-based viral vaccine and vector production is the implementation of continuous processes. Such a development has the potential to reduce costs of vaccine manufacturing as volumetric productivity is increased and the manufacturing footprint is reduced. In this work, continuous production of Modified Vaccinia Ankara (MVA) virus was investigated. First, a semi-continuous two-stage cultivation system consisting of two shaker flasks in series was established as a small-scale approach. Cultures of the avian AGE1.CR.pIX cell line were expanded in the first shaker, and MVA virus was propagated and harvested in the second shaker over a period of 8-15 days. A total of nine small-scale cultivations were performed to investigate the impact of process parameters on virus yields. Harvest volumes of 0.7-1 L with maximum TCID50 titers of up to 1.0×109 virions/mL were obtained. Genetic analysis of control experiments using a recombinant MVA virus containing green-fluorescent-protein suggested that the virus was stable over at least 16 d of cultivation. In addition, a decrease or fluctuation of infectious units that may indicate an excessive accumulation of defective interfering particles was not observed. The process was automated in a two-stage continuous system comprising two connected 1 L stirred tank bioreactors. Stable MVA virus titers, and a total production volume of 7.1 L with an average TCID50 titer of 9×107 virions/mL was achieved. Because titers were at the lower range of the shake flask cultivations potential for further process optimization at large scale will be discussed. Overall, MVA virus was efficiently produced in continuous and semi-continuous cultivations making two-stage stirred tank bioreactor systems a promising platform for industrial production of MVA-derived recombinant vaccines and viral vectors.
Collapse
Affiliation(s)
- Felipe Tapia
- International Max Planck Research School for Advanced Methods in Process and Systems Engineering, Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
12
|
Jordan I, John K, Höwing K, Lohr V, Penzes Z, Gubucz-Sombor E, Fu Y, Gao P, Harder T, Zádori Z, Sandig V. Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines. Avian Pathol 2017; 45:137-55. [PMID: 26814192 DOI: 10.1080/03079457.2016.1138280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Veterinary vaccines contribute to food security, interrupt zoonotic transmissions, and help to maintain overall health in livestock. Although vaccines are usually cost-effective, their adoption depends on a multitude of factors. Because poultry vaccines are usually given to birds with a short life span, very low production cost per dose is one important challenge. Other hurdles are to ensure a consistent and reliable supply of very large number of doses, and to have flexible production processes to accommodate a range of different pathogens and dosage requirements. Most poultry vaccines are currently being produced on primary avian cells derived from chicken or waterfowl embryos. This production system is associated with high costs, logistic complexities, rigid intervals between harvest and production, and supply limitations. We investigated whether the continuous cell lines Cairina retina and CR.pIX may provide a substrate independent of primary cell cultures or embryonated eggs. Viruses examined for replication in these cell lines are strains associated with, or contained in vaccines against egg drop syndrome, Marek's disease, Newcastle disease, avian influenza, infectious bursal disease and Derzsy's disease. Each of the tested viruses required the development of unique conditions for replication that are described here and can be used to generate material for in vivo efficacy studies and to accelerate transfer of the processes to larger production volumes.
Collapse
Affiliation(s)
| | | | | | | | - Zoltán Penzes
- b Ceva-Phylaxia Veterinary Biologicals Co. Ltd. , Budapest , Hungary
| | | | - Yan Fu
- c Ningbo Tech-Bank Co Ltd , Shanghai , People's Republic of China
| | - Peng Gao
- c Ningbo Tech-Bank Co Ltd , Shanghai , People's Republic of China
| | - Timm Harder
- d Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald-Insel Riems , Germany
| | - Zoltán Zádori
- e Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences , Budapest , Hungary
| | | |
Collapse
|
13
|
Léon A, David AL, Madeline B, Guianvarc'h L, Dureau E, Champion-Arnaud P, Hebben M, Huss T, Chatrenet B, Schwamborn K. The EB66® cell line as a valuable cell substrate for MVA-based vaccines production. Vaccine 2016; 34:5878-5885. [PMID: 27997338 DOI: 10.1016/j.vaccine.2016.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 11/17/2022]
Abstract
The selection of a cell substrate is a critical step for the development and manufacturing of a viral vaccine candidate. Several parameters such as cell susceptibility and permissiveness to the viral pathogens but also performance in terms of viral antigens quality and production yields are important considerations when identifying the ideal match between a viral vaccine and cell substrate. The modified vaccinia virus Ankara (MVA) is a replication-deficient viral vector that holds great promise as a vaccine platform, however only limited cell substrates have been tested or are available for industrialization. Here we evaluate the duck embryo-derived EB66® cell line as potential cell substrate for MVA production. To this end, we used two recombinant MVA constructs and demonstrated that EB66® cells are propagating the tested MVA viruses very efficiently, while preserving viral attenuation and transgene expression for up to 20 serial passages. Furthermore we developed upstream and downstream processes that enable industrialization of the virus production. In conclusion, we showed that EB66® cells can be used as potent cell substrate for MVA-based vaccines and represent therefore an attractive alternative for vaccine production.
Collapse
Affiliation(s)
- Arnaud Léon
- Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France.
| | | | - Brice Madeline
- Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France
| | | | - Elodie Dureau
- Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France
| | | | - Matthias Hebben
- Valneva SE, 6 rue Alain Bombard, 44800 Saint-Herblain, France
| | - Thierry Huss
- Transgene SA, 400 boulevard Gonthier d'Andernach - Parc d'Innovation - CS80166, 67405 Illkirch Graffenstaden cedex, France
| | | | | |
Collapse
|
14
|
Volz A, Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res 2016; 97:187-243. [PMID: 28057259 PMCID: PMC7112317 DOI: 10.1016/bs.aivir.2016.07.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology.
Collapse
Affiliation(s)
- A Volz
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany
| | - G Sutter
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany.
| |
Collapse
|
15
|
Abstract
A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.
Collapse
|
16
|
Gallo-Ramírez LE, Nikolay A, Genzel Y, Reichl U. Bioreactor concepts for cell culture-based viral vaccine production. Expert Rev Vaccines 2015; 14:1181-95. [PMID: 26178380 DOI: 10.1586/14760584.2015.1067144] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vaccine manufacturing processes are designed to meet present and upcoming challenges associated with a growing vaccine market and to include multi-use facilities offering a broad portfolio and faster reaction times in case of pandemics and emerging diseases. The final products, from whole viruses to recombinant viral proteins, are very diverse, making standard process strategies hardly universally applicable. Numerous factors such as cell substrate, virus strain or expression system, medium, cultivation system, cultivation method, and scale need consideration. Reviewing options for efficient and economical production of human vaccines, this paper discusses basic factors relevant for viral antigen production in mammalian cells, avian cells and insect cells. In addition, bioreactor concepts, including static systems, single-use systems, stirred tanks and packed-beds are addressed. On this basis, methods towards process intensification, in particular operational strategies, the use of perfusion systems for high product yields, and steps to establish continuous processes are introduced.
Collapse
Affiliation(s)
- Lilí Esmeralda Gallo-Ramírez
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg; Sandtorstr. 1, 39106 Magdeburg, Germany
| | | | | | | |
Collapse
|
17
|
Kallel H, Kamen AA. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials. Biotechnol J 2015; 10:741-7. [PMID: 25914340 DOI: 10.1002/biot.201400390] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/03/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates.
Collapse
Affiliation(s)
- Héla Kallel
- Laboratory of Molecular Microbiology Vaccinology and Biotechnology Development, Viral Vaccines R&D Unit. Institut Pasteur de Tunis, Tunis, Tunisia
| | | |
Collapse
|
18
|
Genzel Y. Designing cell lines for viral vaccine production: Where do we stand? Biotechnol J 2015; 10:728-40. [PMID: 25903999 DOI: 10.1002/biot.201400388] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022]
Abstract
Established animal cells, such as Vero, Madin Darby canine kidney (MDCK) or chicken embryo fibroblasts (CEFs), are still the main cell lines used for viral vaccine production, although new "designer cells" have been available for some years. These designer cell lines were specifically developed as a cell substrate for one application and are well characterized. Later screening for other possible applications widened the product range. These cells grow in suspension in chemically defined media under controlled conditions and can be used for up to 100 passages. Scale-up is easier and current process options allow cultivation in disposable bioreactors at cell concentrations higher than 1 × 10(7) cells/mL. This review covers the limitations of established cell lines and discusses the requirements and screening options for new host cells. Currently available designer cells for viral vaccine production (PER.C6, CAP, AGE1.CR, EB66 cells), together with other new cell lines (PBS-1, QOR/2E11, SogE, MFF-8C1 cells) that were recently described as possible cell substrates are presented. Using current process knowledge and cell line development tools, future upstream processing could resemble today's Chinese hamster ovary (CHO) cell processes for monoclonal antibody production: small scale bioreactors (disposable) in perfusion or fed-batch mode with cell concentrations above 1 × 10(8) cells/mL.
Collapse
Affiliation(s)
- Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| |
Collapse
|
19
|
Mészáros I, Tóth R, Bálint Á, Dán Á, Jordan I, Zádori Z. Propagation of viruses infecting waterfowl on continuous cell lines of Muscovy duck (Cairina moschata) origin. Avian Pathol 2014; 43:379-86. [DOI: 10.1080/03079457.2014.939941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Developments in Viral Vector-Based Vaccines. Vaccines (Basel) 2014; 2:624-41. [PMID: 26344749 PMCID: PMC4494222 DOI: 10.3390/vaccines2030624] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022] Open
Abstract
Viral vectors are promising tools for gene therapy and vaccines. Viral vector-based vaccines can enhance immunogenicity without an adjuvant and induce a robust cytotoxic T lymphocyte (CTL) response to eliminate virus-infected cells. During the last several decades, many types of viruses have been developed as vaccine vectors. Each has unique features and parental virus-related risks. In addition, genetically altered vectors have been developed to improve efficacy and safety, reduce administration dose, and enable large-scale manufacturing. To date, both successful and unsuccessful results have been reported in clinical trials. These trials provide important information on factors such as toxicity, administration dose tolerated, and optimized vaccination strategy. This review highlights major viral vectors that are the best candidates for clinical use.
Collapse
|
21
|
Genzel Y, Vogel T, Buck J, Behrendt I, Ramirez DV, Schiedner G, Jordan I, Reichl U. High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells. Vaccine 2014; 32:2770-81. [DOI: 10.1016/j.vaccine.2014.02.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Matrix and backstage: cellular substrates for viral vaccines. Viruses 2014; 6:1672-700. [PMID: 24732259 PMCID: PMC4014716 DOI: 10.3390/v6041672] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 01/04/2023] Open
Abstract
Vaccines are complex products that are manufactured in highly dynamic processes. Cellular substrates are one critical component that can have an enormous impact on reactogenicity of the final preparation, level of attenuation of a live virus, yield of infectious units or antigens, and cost per vaccine dose. Such parameters contribute to feasibility and affordability of vaccine programs both in industrialized countries and developing regions. This review summarizes the diversity of cellular substrates for propagation of viral vaccines from primary tissue explants and embryonated chicken eggs to designed continuous cell lines of human and avian origin.
Collapse
|
23
|
Genzel Y, Rödig J, Rapp E, Reichl U. Vaccine production: upstream processing with adherent or suspension cell lines. Methods Mol Biol 2014; 1104:371-393. [PMID: 24297427 DOI: 10.1007/978-1-62703-733-4_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The production of viral vaccines in cell culture can be accomplished with primary, diploid, or continuous (transformed) cell lines. Each cell line, each virus type, and each vaccine preparation require the specific design of upstream and downstream processing. Media have to be selected as well as production vessels, cultivation conditions, and modes of operation. Many viruses only replicate to high titers in adherently growing cells, but similar to processes established for recombinant protein production, an increasing number of suspension cell lines is being evaluated for future use. Here, we describe key issues to be considered for the establishment of large-scale virus production in bioreactors. As an example upstream processing of cell culture-derived influenza virus production is described in more detail for adherently growing and for suspension cells. In particular, use of serum-containing, serum-free, and chemically defined media as well as choice of cultivation vessel are considered.
Collapse
Affiliation(s)
- Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | | | | |
Collapse
|
24
|
Jordan I, Lohr V, Genzel Y, Reichl U, Sandig V. Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara. Microorganisms 2013; 1:100-121. [PMID: 27694766 PMCID: PMC5029493 DOI: 10.3390/microorganisms1010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 11/16/2022] Open
Abstract
The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain.
Collapse
Affiliation(s)
- Ingo Jordan
- ProBioGen AG, Goethestr. 54, 13086 Berlin, Germany.
| | - Verena Lohr
- ProBioGen AG, Goethestr. 54, 13086 Berlin, Germany.
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
25
|
Gómez CE, Perdiguero B, García-Arriaza J, Esteban M. Clinical applications of attenuated MVA poxvirus strain. Expert Rev Vaccines 2013; 12:1395-416. [PMID: 24168097 DOI: 10.1586/14760584.2013.845531] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The highly attenuated poxvirus strain modified vaccinia virus Ankara (MVA) has reached maturity as a vector delivery system and as a vaccine candidate against a broad spectrum of diseases. This has been largely recognized from research on virus-host cell interactions and immunological studies in pre-clinical and clinical trials. This review addresses the studies of MVA vectors used in phase I/II clinical trials, with the aim to provide the main findings obtained on their behavior when tested against relevant human diseases and cancer and also highlights the strategies currently implemented to improve the MVA immunogenicity. The authors assess that MVA vectors are progressing as strong vaccine candidates either alone or when administered in combination with other vectors.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Frensing T, Heldt FS, Pflugmacher A, Behrendt I, Jordan I, Flockerzi D, Genzel Y, Reichl U. Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles. PLoS One 2013; 8:e72288. [PMID: 24039749 PMCID: PMC3764112 DOI: 10.1371/journal.pone.0072288] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/13/2013] [Indexed: 01/02/2023] Open
Abstract
Influenza viruses are a major public health burden during seasonal epidemics and a continuous threat due to their potential to cause pandemics. Annual vaccination provides the best protection against the contagious respiratory illness caused by influenza viruses. However, the current production capacities for influenza vaccines are insufficient to meet the increasing demands. We explored the possibility to establish a continuous production process for influenza viruses using the duck-derived suspension cell line AGE1.CR. A two-stage bioreactor setup was designed in which cells were cultivated in a first stirred tank reactor where an almost constant cell concentration was maintained. Cells were then constantly fed to a second bioreactor where virus infection and replication took place. Using this two-stage reactor system, it was possible to continuously produce influenza viruses. Surprisingly, virus titers showed a periodic increase and decrease during the run-time of 17 days. These titer fluctuations were caused by the presence of defective interfering particles (DIPs), which we detected by PCR. Mathematical modeling confirmed this observation showing that constant virus titers can only emerge in the absence of DIPs. Even with very low amounts of DIPs in the seed virus and very low rates for de novo DIP generation, defective viruses rapidly accumulate and, therefore, represent a serious challenge for continuous vaccine production. Yet, the continuous replication of influenza virus using a two-stage bioreactor setup is a novel tool to study aspects of viral evolution and the impact of DIPs.
Collapse
Affiliation(s)
- Timo Frensing
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- * E-mail:
| | - Frank Stefan Heldt
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Antje Pflugmacher
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Ilona Behrendt
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | - Dietrich Flockerzi
- Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
27
|
Cottingham MG, Carroll MW. Recombinant MVA vaccines: dispelling the myths. Vaccine 2013; 31:4247-51. [PMID: 23523407 DOI: 10.1016/j.vaccine.2013.03.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
Diseases such as HIV/AIDS, tuberculosis, malaria and cancer are prime targets for prophylactic or therapeutic vaccination, but have proven partially or wholly resistant to traditional approaches to vaccine design. New vaccines based on recombinant viral vectors expressing a foreign antigen are under intense development for these and other indications. One of the most advanced and most promising vectors is the attenuated, non-replicating poxvirus MVA (modified vaccinia virus Ankara), a safer derivative of the uniquely successful smallpox vaccine. Despite the ability of recombinant MVA to induce potent humoral and cellular immune responses against transgenic antigen in humans, especially when used as the latter element of a heterologous prime-boost regimen, doubts are occasionally expressed about the ultimate feasibility of this approach. In this review, five common misconceptions over recombinant MVA are discussed, and evidence is cited to show that recombinant MVA is at least sufficiently genetically stable, manufacturable, safe, and immunogenic (even in the face of prior anti-vector immunity) to warrant reasonable hope over the feasibility of large-scale deployment, should useful levels of protection against target pathogens, or therapeutic benefit for cancer, be demonstrated in efficacy trials.
Collapse
Affiliation(s)
- Matthew G Cottingham
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, UK.
| | | |
Collapse
|
28
|
Jordan I, Horn D, John K, Sandig V. A genotype of modified vaccinia Ankara (MVA) that facilitates replication in suspension cultures in chemically defined medium. Viruses 2013; 5:321-39. [PMID: 23337383 PMCID: PMC3564123 DOI: 10.3390/v5010321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 11/16/2022] Open
Abstract
While vectored vaccines, based on hyperattenuated viruses, may lead to new treatment options against infectious diseases and certain cancers, they are also complex products and sometimes difficult to provide in sufficient amount and purity. To facilitate vaccine programs utilizing host-restricted poxviruses, we established avian suspension cell lines (CR and CR.pIX) and developed a robust, chemically defined, culturing process for production of this class of vectors. For one prominent member, modified vaccinia Ankara (MVA), we now describe a new strain that appears to replicate to greater yields of infectious units, especially in the cell-free supernatant of cultures in chemically defined media. The new strain was obtained by repeated passaging in CR suspension cultures and, consistent with reports on the exceptional genetic stability of MVA, sequencing of 135 kb of the viral genomic DNA revealed that only three structural proteins (A3L, A9L and A34R) each carry a single amino acid exchange (H639Y, K75E and D86Y, respectively). Host restriction in a plaque-purified isolate of the new genotype appears to be maintained in cell culture. Processing towards an injectable vaccine preparation may be simplified with this strain as a complete lysate, containing the main burden of host cell contaminants, may not be required anymore to obtain adequate yields.
Collapse
Affiliation(s)
- Ingo Jordan
- ProBioGen AG, Goethestr. 54, 13086 Berlin, Germany.
| | | | | | | |
Collapse
|
29
|
Lohr V, Genzel Y, Jordan I, Katinger D, Mahr S, Sandig V, Reichl U. Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells. BMC Biotechnol 2012; 12:79. [PMID: 23110398 PMCID: PMC3505166 DOI: 10.1186/1472-6750-12-79] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Current influenza vaccines are trivalent or quadrivalent inactivated split or subunit vaccines administered intramuscularly, or live attenuated influenza vaccines (LAIV) adapted to replicate at temperatures below body temperature and administered intranasally. Both vaccines are considered safe and efficient, but due to differences in specific properties may complement each other to ensure reliable vaccine coverage. By now, licensed LAIV are produced in embryonated chicken eggs. In the near future influenza vaccines for human use will also be available from adherent MDCK or Vero cell cultures, but a scalable suspension process may facilitate production and supply with vaccines. RESULTS We evaluated the production of cold-adapted human influenza virus strains in the duck suspension cell line AGE1.CR.pIX using a chemically-defined medium. One cold-adapted A (H1N1) and one cold-adapted B virus strain was tested, as well as the reference strain A/PR/8/34 (H1N1). It is shown that a medium exchange is not required for infection and that maximum virus titers are obtained for 1 × 10⁻⁶ trypsin units per cell. 1 L bioreactor cultivations showed that 4 × 10⁶ cells/mL can be infected without a cell density effect achieving titers of 1 × 10⁸ virions/mL after 24 h. CONCLUSIONS Overall, this study demonstrates that AGE1.CR.pIX cells support replication of LAIV strains in a chemically-defined medium using a simple process without medium exchanges. Moreover, the process is fast with peak titers obtained 24 h post infection and easily scalable to industrial volumes as neither microcarriers nor medium replacements are required.
Collapse
Affiliation(s)
- Verena Lohr
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Ingo Jordan
- ProBioGen AG, Goethestr. 54, 13086, Berlin, Germany
| | - Dietmar Katinger
- Polymun Scientific GmbH, Donaustr. 99, 3400, Klosterneuburg, Austria
| | - Stefan Mahr
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- University for Applied Sciences, Robert-Gerwig-Platz 1, 78120, Furtwangen, Germany
| | | | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
30
|
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract viral disease in infants and young children. Presently, there are no explicit recommendations for RSV treatment apart from supportive care. The virus is therefore responsible for an estimated 160,000 deaths per year worldwide. Despite half a century of dedicated research, there remains no licensed vaccine product. Herein are described past and current efforts to harness innate and adaptive immune potentials to combat RSV. A plethora of candidate vaccine products and strategies are reviewed. The development of a successful RSV vaccine may ultimately stem from attention to historical lessons, in concert with an integral partnering of immunology and virology research fields.
Collapse
Affiliation(s)
- Julia L Hurwitz
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
31
|
Jordan I, Sandig V. Highly efficient, chemically defined and fully scalable biphasic production of vaccine viruses. BMC Proc 2011; 5 Suppl 8:O1. [PMID: 22373097 PMCID: PMC3284961 DOI: 10.1186/1753-6561-5-s8-o1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Rödig J, Rapp E, Djeljadini S, Lohr V, Genzel Y, Jordan I, Sandig V, Reichl U. Impact of Influenza Virus Adaptation Status on HAN-Glycosylation Patterns in Cell Culture-Based Vaccine Production. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.604454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|