1
|
Li C, Luo G, Zeng Y, Song F, Yang H, Zhang S, Wang Y, Li T, Ge S, Xia N. Establishment of Sandwich ELISA for Quality Control in Rotavirus Vaccine Production. Vaccines (Basel) 2022; 10:243. [PMID: 35214701 PMCID: PMC8876306 DOI: 10.3390/vaccines10020243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Non-replicating rotavirus vaccines are alternative strategies that may improve the protective efficacy of rotavirus vaccines in low- and middle-income countries. The truncated spike protein VP4 (aa26-476, VP4*)was a candidate antigen for the development of recombinant rotavirus vaccines, with higher immunogenicity and protective efficacy compared to VP8* and VP5* alone. This article describes the development of three genotype-specific sandwich ELISAs for P[4], P[6], and P[8]-VP4*, which are important for quality control in rotavirus vaccine production. Our results showed that the detection systems had good specificity for the different genotype VP4* and were not influenced by the E. coli host proteins. Moreover, the detection systems play an important role in determining whether the target protein was contaminated by VP4* proteins of other genotypes. They can also detect the adsorption rate of the adjuvant to the P[4], P[6], P[8]-VP4* protein during the process development. The three detection systems will play an important role in the quality control and process development of VP4* based rotavirus vaccines and facilitate the development of recombinant rotavirus vaccines.
Collapse
Affiliation(s)
- Cao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Guoxing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Yuanjun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Feibo Song
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China;
| | - Han Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (C.L.); (G.L.); (Y.Z.); (H.Y.); (S.Z.); (Y.W.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, China;
| |
Collapse
|
2
|
Pietri GP, Tontini M, Brogioni B, Oldrini D, Robakiewicz S, Henriques P, Calloni I, Abramova V, Santini L, Malić S, Miklić K, Lisnic B, Bertuzzi S, Unione L, Balducci E, de Ruyck J, Romano MR, Jimenez-Barbero J, Bouckaert J, Jonjic S, Rovis TL, Adamo R. Elucidating the Structural and Minimal Protective Epitope of the Serogroup X Meningococcal Capsular Polysaccharide. Front Mol Biosci 2021; 8:745360. [PMID: 34722634 PMCID: PMC8551719 DOI: 10.3389/fmolb.2021.745360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the considerable progress toward the eradication of meningococcal disease with the introduction of glycoconjugate vaccines, previously unremarkable serogroup X has emerged in recent years, recording several outbreaks throughout the African continent. Different serogroup X polysaccharide-based vaccines have been tested in preclinical trials, establishing the principles for further improvement. To elucidate the antigenic determinants of the MenX capsular polysaccharide, we generated a monoclonal antibody, and its bactericidal nature was confirmed using the rabbit serum bactericidal assay. The antibody was tested by the inhibition enzyme-linked immunosorbent assay and surface plasmon resonance against a set of oligosaccharide fragments of different lengths. The epitope was shown to be contained within five to six α-(1–4) phosphodiester mannosamine repeating units. The molecular interactions between the protective monoclonal antibody and the MenX capsular polysaccharide fragment were further detailed at the atomic level by saturation transfer difference nuclear magnetic resonance (NMR) spectroscopy. The NMR results were used for validation of the in silico docking analysis between the X-ray crystal structure of the antibody (Fab fragment) and the modeled hexamer oligosaccharide. The antibody recognizes the MenX fragment by binding all six repeating units of the oligosaccharide via hydrogen bonding, salt bridges, and hydrophobic interactions. In vivo studies demonstrated that conjugates containing five to six repeating units can produce high functional antibody levels. These results provide an insight into the molecular basis of MenX vaccine-induced protection and highlight the requirements for the epitope-based vaccine design.
Collapse
Affiliation(s)
- Gian Pietro Pietri
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | | - Stefania Robakiewicz
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | | | - Ilaria Calloni
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | - Vera Abramova
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Suzana Malić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Karmela Miklić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sara Bertuzzi
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | - Luca Unione
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | | | - Jérôme de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | | | - Jesus Jimenez-Barbero
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry II, University of the Basque Country, Universidad Del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | |
Collapse
|