1
|
White NJ. Monoclonal Antibodies to Treat Diphtheria. J Infect Dis 2024:jiae500. [PMID: 39570033 DOI: 10.1093/infdis/jiae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Affiliation(s)
- N J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Friedrichs B, Rehg S, Hanschmann KM, Öppling V, Bekeredjian-Ding I. Determination of DTaP vaccine potency by multiplex immunogenicity testing using electrochemiluminescence. NPJ Vaccines 2024; 9:142. [PMID: 39112508 PMCID: PMC11306252 DOI: 10.1038/s41541-024-00915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Lot release testing of diphtheria, tetanus and acellular pertussis vaccines traditionally relied on in vivo protection models involving challenge of laboratory animals with toxins. Meanwhile, many labs have switched to serological testing of these vaccines, which is often performed in separate in vivo assays, even if all components were formulated into one vaccine product. Here we describe the results of simultaneous serological potency determination of diphtheria (D), tetanus (T) and acellular pertussis (aP) antigens obtained following immunization of guinea pigs with multicomponent pediatric and booster vaccines from different manufacturers. The 4th World Health Organization (WHO) International Standard (IS) for diphtheria toxoid (No. 07/216) and the 4th WHO IS for tetanus toxoid (No. 08/218) were used as reference preparations. For aP, a pediatric vaccine batch containing the antigens pertussis toxoid, filamentous hemagglutinin, pertactin and fimbriae proteins type 2/3 was established as internal control. Quantification of IgG against D, T and aP antigens in guinea pig sera was performed using a hexaplex electrochemiluminescence immunoassay. We further provide proof-of-concept using experimental vaccine samples lacking or containing reduced amounts of diphtheria toxoid in the presence of full amounts of tetanus and pertussis antigens and alum adjuvant. Importantly, the assay confirmed dose-response relationships for all antigens tested and was able to detect diphtheria out-of-specification batches. The results confirmed the suitability of the protocol for combined serology batch release testing of DTaP combination vaccines as first measure towards implementation of full in vitro testing of DTaP vaccines. This report summarizes the data and the protocol used for validation prior to implementation of this method in routine batch release testing of DTaP vaccines, which led to replacement of in vivo challenge experiments in our laboratory following the 3 R (replace, reduce, refine) principle.
Collapse
Affiliation(s)
- Bärbel Friedrichs
- Paul-Ehrlich Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Strasse 51-59, D-63225, Langen, Germany
| | - Simone Rehg
- Paul-Ehrlich Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Strasse 51-59, D-63225, Langen, Germany
| | - Kay-Martin Hanschmann
- Paul-Ehrlich Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Strasse 51-59, D-63225, Langen, Germany
| | - Volker Öppling
- Paul-Ehrlich Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Strasse 51-59, D-63225, Langen, Germany
| | - Isabelle Bekeredjian-Ding
- Paul-Ehrlich Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Strasse 51-59, D-63225, Langen, Germany.
- Institute for Medical Microbiology and Hospital Hygiene, Philipps-University Marburg, Hans-Meerweinstr. 2, D-35043, Marburg, Germany.
| |
Collapse
|
3
|
Khalili E, Lakzaei M, Aminian M. Neutralizing anti-diphtheria toxin scFv produced by phage display. Biotechnol Lett 2024; 46:385-398. [PMID: 38607601 DOI: 10.1007/s10529-024-03476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/10/2024] [Accepted: 02/10/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Diphtheria can be prevented by vaccination, but some epidemics occur in several places, and diphtheria's threat is considerable. Administration of diphtheria antitoxin (DAT) produced from hyperimmunized animals is the most common treatment. Recombinant human antibody fragments such as single-chain variable fragments (scFv) produced by phage display library may introduce an interesting approach to overcome the limitations of the traditional antibody therapy. In the present study, B cells of immunized volunteers were used to construct a human single-chain fragment (HuscFv) library. MATERIALS AND METHODS The library was constructed with the maximum combination of heavy and light chains. As an antigen, Diphtheria toxoid (DTd) was used in four-round phage bio-panning to select phage clones that display DTd bound HuscFv from the library. After panning, individual scFv clones were selected. Clones that were able to detect DTd in an initial screening assay were transferred to Escherichia coli HB2151 to express the scFvs and purification was followed by Ni metal ion affinity chromatography. Toxin neutralization test was performed on Vero cells. The reactivity of the soluble scFv with diphtheria toxin were done and affinity calculation based on Beatty method was calculated. RESULTS The size of the constructed scFv library was calculated to be 1.3 × 106 members. Following four rounds of selection, 40 antibody clones were isolated which showed positive reactivity with DTd in an ELISA assay. Five clones were able to neutralize DTd in Vero cell assay. These neutralizing clones were used for soluble expression and purification of scFv fragments. Some of these soluble scFv fragments show neutralizing activity ranging from 0.6 to 1.2 µg against twofold cytotoxic dose of diphtheria toxin. The affinity constant of the selected scFv antibody was determined almost 107 M-1. CONCLUSION This study describes the prosperous construction and isolation of scFv from the immune library, which specifically neutralizes diphtheria toxin. The HuscFv produced in this study can be a potential candidate to substitute the animal antibody for treating diphtheria and detecting toxins.
Collapse
Affiliation(s)
- Ehsan Khalili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Lakzaei
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Aminian
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Maxime V, Isabelle F, Antoine F, Hassall L, Lorenzo T, Wim VM, Romain P, Thierry L, Charline H, Paul S, Alexandre D. Development of a multiplex-based immunoassay for the characterization of diphtheria, tetanus and acellular pertussis antigens in human combined DTaP vaccines. J Immunol Methods 2023; 517:113483. [PMID: 37100343 DOI: 10.1016/j.jim.2023.113483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Routine batch quality testing before vaccine release, notably for potency evaluation, still relies on animal use for several animal and human vaccines. In this context, the VAC2VAC project is a public-private consortium of 22 partners funded by EU whose the main objective is to reduce the number of animal used for batch testing by developing immunoassays that could be implemented for routine potency assessment of vaccines. This paper focused on the development of a Luminex-based multiplex assay to monitor the consistency of antigen quantity and quality throughout the production process of DTaP vaccines from two human vaccine manufacturers. Indepth characterized monoclonal antibody pairs were used for development and optimization of the Luminex assay with non-adsorbed and adsorbed antigens and with complete vaccine formulations from both manufacturers. The multiplex assay demonstrated good specificity, reproducibility and absence of cross-reactivity. Analysis of over and underdosed formulations, heat and H2O2-degraded products as well as batch to batch consistency of vaccines from both manufacturers brought the proof of concept for a future application of the multiplex immunoassay as a useful tool in the frame of DTaP vaccine quality control.
Collapse
Affiliation(s)
| | - Feck Isabelle
- Sciensano, Quality of Vaccines and Blood Products, Belgium
| | | | - Laura Hassall
- National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, United Kingdom
| | | | - Van Molle Wim
- Sciensano, Quality of Vaccines and Blood Products, Belgium
| | | | | | - Hoebreck Charline
- Jefferson Wells consultant on assignment at GlaxoSmithKline, Belgium
| | - Stickings Paul
- National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, United Kingdom
| | | |
Collapse
|
5
|
Miura K, Pham TP, Lee SM, Plieskatt J, Diouf A, Sagara I, Coelho CH, Duffy PE, Wu Y, Long CA. Development and Qualification of an Antigen Integrity Assay for a Plasmodium falciparum Malaria Transmission Blocking Vaccine Candidate, Pfs230. Vaccines (Basel) 2022; 10:vaccines10101628. [PMID: 36298492 PMCID: PMC9607959 DOI: 10.3390/vaccines10101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
During development of a subunit vaccine, monitoring integrity of the recombinant protein for process development and quality control is critical. Pfs230 is a leading malaria transmission blocking vaccine candidate and the first to reach a Phase 2 clinical trial. The Pfs230 protein is expressed on the surface of gametes, and plays an important role in male fertility. While the potency of Pfs230 protein can be determined by a standard membrane-feeding assay (SMFA) using antibodies from immunized subjects, the precision of a general in vivo potency study is known to be poor and is also time-consuming. Therefore, using a well-characterized Pfs230 recombinant protein and two human anti-Pfs230 monoclonal antibodies (mAbs), which have functional activity judged by SMFA, a sandwich ELISA-based in vitro potency assay, called the Antigen Integrity Assay (AIA), was developed. Multiple validation parameters of AIA were evaluated to qualify the assay following International Conference on Harmonization (ICH) Q2(R1) guidelines. The AIA is a high throughput assay and demonstrated excellent precision (3.2 and 5.4% coefficients of variance for intra- and inter-assay variability, respectively) and high sensitivity (>12% impurity in a sample can be detected). General methodologies and the approach to assay validation described herein are amenable to any subunit vaccine as long as more than two functional, non-competing mAbs are available. Thus, this study supports future subunit vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Correspondence:
| | - Thao P. Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shwu-Maan Lee
- PATH’s Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | - Jordan Plieskatt
- PATH’s Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Issaka Sagara
- Malaria Research and Training Centre, University of Science, Techniques and Technologies, Bamako 1805, Mali
| | - Camila H. Coelho
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Yimin Wu
- PATH’s Malaria Vaccine Initiative (MVI), Washington, DC 20001, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
6
|
Houy C, Ming M, Ettorre L, Jin R, Thangavadivel N, Chen T, Su J, Gajewska B. Epitope Profiling of Diphtheria Toxoid Provides Enhanced Monitoring for Consistency Testing during Manufacturing Process Changes. Vaccines (Basel) 2022; 10:vaccines10050775. [PMID: 35632531 PMCID: PMC9147534 DOI: 10.3390/vaccines10050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In the vaccine industry, multiple physicochemical, immunological, in vitro and in vivo analytical methods are applied throughout the manufacturing process to characterize and monitor the quality of vaccines. Presented here is the Single Epitope Antigenicity Test (SEAT), an innovative, quantitative epitope profiling method which provides an extended immunochemical analysis for diphtheria toxoid (DTxd) to be used for consistency testing during manufacturing process changes. The method uses BioLayer Interferometry (BLI) and a panel of monoclonal antibodies (mAbs) to independently assess nine individual antigenic sites of DTxd. The panel includes mAbs which are functional, bind distinct sites on DTxd and are able to distinguish intact DTxd from that which has been exposed to heat treatment. The SEAT method was qualified for precision, accuracy, and linearity, and was used to define a preliminary comparability range for DTxd made using the current manufacturing process. DTxd lots manufactured using alternate processes were assessed in the context of this range to determine the impact on DTxd antigenicity. Epitope profiling by SEAT provides quantitative information on the integrity of multiple important antigenic regions of DTxd, and therefore represents a valuable tool in a comprehensive analytical test package which can be used to support manufacturing process changes for vaccines.
Collapse
Affiliation(s)
- Camille Houy
- Correspondence: ; Tel.: +1-476-667-2700 (ext. 7629)
| | | | | | | | | | | | | | | |
Collapse
|