1
|
Nazari N, Imani R, Nasiraie LR. Fiber/hydrogel hybrid wound dressing based on eggshell membrane containing postbiotic ingredients. BIOMATERIALS ADVANCES 2024; 165:214004. [PMID: 39213956 DOI: 10.1016/j.bioadv.2024.214004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Skin is the largest organ in body which has important functions. Therefore, to have a healthy skin is very essential, and wound dressings are specifically designed to promote the wound healing process. The aim of this study is to prepare and characterize a fiber-hydrogel wound dressing based on eggshell membrane (ESM) enriched with postbiotic compounds extracted from Lactobacillus plantarum NIMBB003 bacteria. For this purpose, ESM was effectively separated from eggshells through acidic treatment. Then, ultrasound was used for an optimal duration of 1.89 min at 95 % of device's power to expand the pore size of ESM from 6.89 to 10.84 μm to enhance hydrogel infiltration into ESM. The hydrogel (alginate and oxidized alginate) was then infiltrated into the ESM. ATR, SEM, and weight measurement of samples showed the proper infiltration of the hydrogel within the ESM structure. However, biostability analysis revealed that alginate hydrogel was more stable in the hybrid structure compared to oxidase alginate hydrogel. Alginate infiltration into ESM, improved the ultimate strength of the ESM to 1.89 ± 0.17 MPa and water uptake degree to 368.05 % ± 24.34 %. The water vapor transmission rate of the designed dressing was 34.14 ± 1.05 mg/cm2 after 72 h, which means the proper moist management in wound bed. Finally, addition of postbiotics at a concentration of 10 mg/ml into the hydrogel improved cell proliferation in five days. Furthermore, human dermal fibroblast cells adhered to the wound dressings properly and spread along the fibers of the ESM. In general, the developed wound dressing composed of natural biomaterials with extracellular matrix-like structure, can be used effectively to assist the wound healing process.
Collapse
Affiliation(s)
- Neda Nazari
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Leila Roozbeh Nasiraie
- Department of Food Science & Technology, Islamic Azad University, Nour, Iran; Research and Development Center, Shams Bavarane Salamate Nour Consulting & Production Services, Tehran, Iran
| |
Collapse
|
2
|
Salim NV, Madhan B, Glattauer V, Ramshaw JAM. Comprehensive review on collagen extraction from food by-products and waste as a value-added material. Int J Biol Macromol 2024; 278:134374. [PMID: 39098671 DOI: 10.1016/j.ijbiomac.2024.134374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The consumption of animal products has witnessed a significant increase over the years, leading to a growing need for industries to adopt strict waste control measures to mitigate environmental impacts. The disposal of animal waste in landfill can result in diverse and potentially hazardous decomposition by-products. Animal by-products, derived from meat, poultry, seafood and fish industries, offer a substantial raw material source for collagen and gelatin production due to their high protein content. Collagen, being a major protein component of animal tissues, represents an abundant resource that finds application in various chemical and material industries. The demand for collagen-based products continues to grow, yet the availability of primary material remains limited and insufficient to meet projected needs. Consequently, repurposing waste materials that contain collagen provides an opportunity to meet this need while at the same time minimizing the amount of waste that is dumped. This review examines the potential to extract value from the collagen content present in animal-derived waste and by-products. It provides a systematic evaluation of different species groups and discusses various approaches for processing and fabricating repurposed collagen. This review specifically focuses on collagen-based research, encompassing an examination of its physical and chemical properties, as well as the potential for chemical modifications. We have detailed how the research and knowledge built on collagen structure and function will drive the new initiatives that will lead to the development of new products and opportunities in the future. Additionally, it highlights emerging approaches for extracting high-quality protein from waste and discusses efforts to fabricate collagen-based materials leading to the development of new and original products within the chemical, biomedical and physical science-based industries.
Collapse
Affiliation(s)
- Nisa V Salim
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia.
| | - Balaraman Madhan
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600 020, India
| | | | - John A M Ramshaw
- School of Engineering, Swinburne University of Technology, Hawthorne, Victoria 3122, Australia
| |
Collapse
|
3
|
Esmaeili S, Rahmati M, Zamani S, Djalilian AR, Arabpour Z, Salehi M. A comparison of several separation processes for eggshell membrane powder as a natural biomaterial for skin regeneration. Skin Res Technol 2024; 30:e70038. [PMID: 39256190 PMCID: PMC11387111 DOI: 10.1111/srt.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Numerous studies have focused on skin damage, the most prevalent physical injury, aiming to improve wound healing. The exploration of biomaterials, specifically eggshell membranes (ESMs), is undertaken to accelerate the recovery of skin injuries. The membrane must be separated from the shell to make this biomaterial usable. Hence, this investigation aimed to identify more about the methods for membrane isolation and determine the most efficient one for usage as a biomaterial. METHODS AND MATERIALS For this purpose, ESM was removed from eggs using different protocols (with sodium carbonate, acetic acid, HCl, calcium carbonate, and using forceps for separation). Consequently, we have examined the membranes' mechanical and morphological qualities. RESULTS According to the analysis of microscopic surface morphology, the membranes have appropriate porosity. MTT assay also revealed that the membranes have no cytotoxic effect on 3T3 cells. The results indicated that the ESM had acquired acceptable coagulation and was compatible with blood. Based on the obtained results, Provacol 4 (0.5-mol HCl and neutralized with 0.1-mol NaOH) was better than other methods of extraction and eggshell separation because it was more cell-compatible and more compatible with blood. CONCLUSION This study demonstrates that ESMs can be used as a suitable biomaterial in medical applications.
Collapse
Affiliation(s)
- Samaneh Esmaeili
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Majid Rahmati
- Department of Medical BiotechnologySchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Sepehr Zamani
- Student Research CommitteeSchool of MedicineShahroud University of Medical SciencesShahroudIran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research CenterShahroud University of Medical SciencesShahroudIran
- Department of Tissue EngineeringSchool of MedicineShahroud University of Medical SciencesShahroudIran
| |
Collapse
|
4
|
Banu SA, Pawde AM, Sharun K, Kalaiselvan E, Shivaramu S, Mathesh K, Chandra V, Kumar R, Maiti SK, Verma MR, Singh KP, Amarpal. Evaluation of bone marrow-derived mesenchymal stem cells with eggshell membrane for full-thickness wound healing in a rabbit model. Cell Tissue Bank 2024; 25:493-508. [PMID: 37542003 DOI: 10.1007/s10561-023-10105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Biomaterials capable of managing wounds should have essential features like providing a natural microenvironment for wound healing and as support material for stimulating tissue growth. Eggshell membrane (ESM) is a highly produced global waste due to increased egg consumption. The unique and fascinating properties of ESM allow their potential application in tissue regeneration. The wound healing capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs), ESM, and their combination in rabbits with full-thickness skin defect (2 × 2 cm2) was evaluated. Twenty-five clinically healthy New Zealand White rabbits were divided into five groups of five animals each, with group A receiving no treatment (control group), group B receiving only fibrin glue (FG), group C receiving FG and ESM as a dressing, group D receiving FG and BM-MSCs, and group E receiving a combination of FG, ESM, and BM-MSCs. Wound healing was assessed using clinical, macroscopical, photographic, histological, histochemical, hematological, and biochemical analysis. Macroscopic examination of wounds revealed that healing was exceptional in group E, followed by groups D and C, compared to the control group. Histopathological findings revealed improved quality and a faster rate of healing in group E compared to groups A and B. In addition, healing in group B treated with topical FG alone was nearly identical to that in control group A. However, groups C and D showed improved and faster recovery than control groups A and B. The macroscopic, photographic, histological, and histochemical evaluations revealed that the combined use of BM-MSCs, ESM, and FG had superior and faster healing than the other groups.
Collapse
Affiliation(s)
- S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - E Kalaiselvan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Shivaraju Shivaramu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karikalan Mathesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikas Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Med Ram Verma
- Division of Livestock Economics, Statistics and Information Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
5
|
Du J, Zhu Q, Guo J, Wu Y, Hu Z, Yang S, Jiang J. Effects of ultrasonic and steam-cooking treatments on the physicochemical properties of bamboo shoots protein and the stability of O/W emulsion. Heliyon 2023; 9:e19825. [PMID: 37810120 PMCID: PMC10559217 DOI: 10.1016/j.heliyon.2023.e19825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
In this study, the effects of ultrasonic and steam-cooking treatments on the physicochemical and emulsifying properties of bamboo shoots protein (BSP) were investigated. The particle size and the polydispersity index (PDI) of U-BSP (ultrasonic-BSP) both decreased. Fourier transform infrared spectroscopy (FTIR) showed that the secondary structure of U-BSP was more loose. Furthermore, X-ray diffraction (XRD) and thermogravimetric (TGA) analysis suggested that crystallinity amd thermal stability of U-BSP both deceased. The water and oil holding capacity (WHC/OHC) of U-BSP increased, while steam-cooking treatment had the reverse effect. We also investigated the effects of ultrasonic and steam-cooking treatments on BSP-stabilized emulsions. The viscosity of emulsion stabilized by U-BSP increased and the distribution of emulsion droplets was more uniform and smaller. The results showed that ultrasonic treatment significantly improved the stability of BSP-stabilized emulsions, while steam-cooking treatment had a significant negative impact on the stability of BSP-stabilized emulsions. The work indicated ultrasonication is an effective treatment to improve the emulsifying properties of BSP.
Collapse
Affiliation(s)
- Jingjing Du
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Qian Zhu
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Jiagang Guo
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Yuhan Wu
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Zhangqing Hu
- College of Tea & Food Science, Anhui Engineering Laboratory of Agricultural Products Processing, Anhui Agricultural University, Hefei, 230036, China
| | - Song Yang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Jian Jiang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
- Anhui Engineering Laboratory for Functional Microorganisms and Fermented Foods, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| |
Collapse
|
6
|
Synthesis and characterization of eggshell membrane polymer-TiO2 nanocomposite for newly synthesized ionic liquid release. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02584-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Manufacturing of Biocomposites for Domestic Applications Using Bio-Based Filler Materials. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6030078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Filler materials are considered added value (volume) to composite materials. The addition of filler materials leads to altering the material characteristics. Nowadays, there has been a notable increase in bio-based materials in polymers and polymer composites. In this regard, agricultural wastes (low-cost renewable substrates) are used as filler content to prepare bioplastic composites, as they are available plenty in quantity and economical in price. Bioplastics composite samples are compounded by adding different amounts of eggshell powder and walnut shell powder in weight proportion to the plasticized PLA. The plasticization is realized with 5 wt.% of Epoxidized Soybean Oil. The prepared bioplastic granules are further processed by injection molding to dog bone-shaped samples subjected to different mechanical, thermal, and optical microscopy tests. Mechanical tests such as Tensile, Charpy Impact, and Flexural tests yielded decreased properties compared to virgin PLA. However, the properties of plasticized PLA–ES composite showed better results than plasticized PLA–WS composite.
Collapse
|
8
|
Thin Film Biocomposite Membrane for Forward Osmosis Supported by Eggshell Membrane. MEMBRANES 2022; 12:membranes12020166. [PMID: 35207088 PMCID: PMC8879599 DOI: 10.3390/membranes12020166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022]
Abstract
There is a general drive to adopt highly porous and less tortuous supports for forward osmosis (FO) membranes to reduce internal concentration polarization (ICP), which regulates the osmotic water permeation. As an abundant waste material, eggshell membrane (ESM) has a highly porous and fibrous structure that meets the requirements for FO membrane substrates. In this study, a polyamide-based biocomposite FO membrane was fabricated by exploiting ESM as a membrane support. The polyamide layer was deposited by the interfacial polymerization technique and the composite membrane exhibited osmotically driven water flux. Further, biocomposite FO membranes were developed by surface coating with GO for stable formation of the polyamide layer. Finally, the osmotic water flux of the eggshell composite membrane with a low structural parameter (~138 µm) reached 46.19 L m−2 h−1 in FO mode using 2 M NaCl draw solution.
Collapse
|
9
|
Preparation and Characterization of Antibacterial Films with Eggshell-Membrane Biopolymers Incorporated with Chitosan and Plant Extracts. Polymers (Basel) 2022; 14:polym14030383. [PMID: 35160373 PMCID: PMC8839977 DOI: 10.3390/polym14030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
A series of films containing chitosan (CS), eggshell membrane (ESM), soluble eggshell membrane (SEP), and plant extracts from Thymus vulgaris and Origanum valgare were prepared with varying concentrations and compositions. These novel films were characterized extensively with respect to film thickness and uniformity, solution absorption, degradation, microenvironmental pH, and antibacterial properties. All the films were flexible with appropriate mechanical stability. After 48 h of soaking in a lysozyme solution, all the films degraded 64 ± 4%, which would be expected to allow for the release of the plant extracts. The plant extracts on their own showed a pH of approximately 4, with the blended films having microenvironmental pHs from approximately 6.4–7.0, which would be expected to promote wound healing. A CS-ESM-SEP film with 5% of each plant extract inhibited almost all E. coli growth in liquid cultures and had no detriments to fluid absorption. Fluid absorption was approximately 100–150% by weight for all the films. The incorporation of SEP and plant extracts to a CS-ESM film provides a promising and novel method for the incorporation of SEP and antibacterial agents in a film with no detriment to wound fluid absorption or film degradation.
Collapse
|
10
|
Alhasyimi A, Suparwitri S. Potency of hyaluronic acid from eggshell–membrane for open gingival embrasure reconstruction following orthodontic tooth movement (a histomorphological study). Dent Res J (Isfahan) 2022. [DOI: 10.4103/1735-3327.363566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Mahdavi S, Amirsadeghi A, Jafari A, Niknezhad SV, Bencherif SA. Avian Egg: A Multifaceted Biomaterial for Tissue Engineering. Ind Eng Chem Res 2021; 60:17348-17364. [PMID: 35317347 PMCID: PMC8935878 DOI: 10.1021/acs.iecr.1c03085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most components in avian eggs, offering a natural and environmentally friendly source of raw materials, hold great potential in tissue engineering. An avian egg consists of several beneficial elements: the protective eggshell, the eggshell membrane, the egg white (albumen), and the egg yolk (vitellus). The eggshell is mostly composed of calcium carbonate and has intrinsic biological properties that stimulate bone repair. It is a suitable precursor for the synthesis of hydroxyapatite and calcium phosphate, which are particularly relevant for bone tissue engineering. The eggshell membrane is a thin protein-based layer with a fibrous structure and is constituted of several valuable biopolymers, such as collagen and hyaluronic acid, that are also found in the human extracellular matrix. As a result, the eggshell membrane has found several applications in skin tissue repair and regeneration. The egg white is a protein-rich material that is under investigation for the design of functional protein-based hydrogel scaffolds. The egg yolk, mostly composed of lipids but also diverse essential nutrients (e.g., proteins, minerals, vitamins), has potential applications in wound healing and bone tissue engineering. This review summarizes the advantages and status of each egg component in tissue engineering and regenerative medicine, but also covers their current limitations and future perspectives.
Collapse
Affiliation(s)
- Shahriar Mahdavi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Arman Jafari
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02128, United States
| |
Collapse
|
12
|
Chicken feet yellow membrane/over-oxidized carbon paste electrodes: A novel electrochemical platform for determination of vitamin C. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Dos Santos AM, Carvalho SG, Meneguin AB, Sábio RM, Gremião MPD, Chorilli M. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: Challenges, advances and future perspectives. J Control Release 2021; 334:353-366. [PMID: 33901582 DOI: 10.1016/j.jconrel.2021.04.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
Colon-targeted oral delivery of drugs remains as an appealing and promising approach for the treatment of prevalent intestinal diseases (ID), such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Notwithstanding, there are numerous challenges to effective drug delivery to the colon, which requires the design of advanced strategies. Micro- and nanoparticles have received great attention as colon-targeted delivery platforms due to their reduced size and structural composition that favors the accumulation and/or residence time of drugs at the site of action and/or absorption, contributing to localized therapy. The choice by natural polysaccharides imparts key properties and advantages to the nano-in-microparticulate systems to effective colon-specific oral delivery. This review proposes to discuss the physiological barriers imposed by the gastrointestinal tract (GIT) against oral administration of drugs, as well as pathological factors and challenges of the ID for oral delivery of colon-targeted systems. We then provide an updated progress about polysaccharides-based colon-targeted drug delivery systems, including microparticulate, nanoparticulate and nano-in-microparticulate systems, highlighting their key properties, advantages and limitations to achieving targeted delivery and efficacious therapy within the colon. Lastly, we provide future perspectives, towards advances in the field and clinical translation of colon-targeted oral delivery systems for ID therapy.
Collapse
Affiliation(s)
- Aline Martins Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil.
| | - Suzana Gonçalves Carvalho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil
| | | | - Rafael Miguel Sábio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil
| | | | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil.
| |
Collapse
|
14
|
Amirsadeghi A, Khorram M, Hashemi SS. Preparation of multilayer electrospun nanofibrous scaffolds containing soluble eggshell membrane as potential dermal substitute. J Biomed Mater Res A 2021; 109:1812-1827. [PMID: 33763964 DOI: 10.1002/jbm.a.37174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/24/2020] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
Electrospinning of natural and synthetic polymers has shown to be a great candidate for the fabrication of tissue engineering scaffolds due to their similarity to the nanofibrous structure of natural extracellular matrix (ECM). Moreover, the addition of ECM-like proteins could enhance the biocompatibility of these scaffolds. In this study, soluble eggshell protein (SEP) was first extracted and synthesized from the raw eggshell membrane. The characteristics and biocompatibility of the extracted SEP were evaluated using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) analysis and 3-(4,5- dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) (MTT) assay. For scaffolds fabrication, a three-layer nanofibrous composite structure was produced using the electrospinning technique. The outer layers composed of polyvinyl alcohol, chitosan, and extracted SEP while the middle layer composed of polyethylene oxide, gelatin, and zinc oxide nanoparticles (ZnO-NPs). For each layer, the electrospinning parameters were adjusted to form bead-free fibers. To improve fibers' stability against body fluids, the produced fibers were crosslinked using glutaraldehyde vapor. Several techniques such as scanning electron microscopy (SEM), energy dispersive X-ray, ATR-FTIR, swelling, tensile test, in vitro biodegradation, and MTT assay were implemented to evaluate the physical, chemical, and biological characterization of the fabricated fibers. The results showed that crosslinked fibers have adequate stability in water, suitable mechanical properties, and promising water uptake capacity. The MTT results also revealed that SEP and ZnO-NPs could increase scaffolds biocompatibility. Moreover, SEM photographs of cultured fibroblasts cells on the scaffolds showed that cells were well attached on the scaffolds and preserve their natural spindle shapes. Altogether, our findings demonstrated that the produced three-layer composite scaffolds are potential candidates for skin tissue engineering.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Seyeddeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Gwon Y, Park S, Kim W, Han T, Kim H, Kim J. Radially patterned transplantable biodegradable scaffolds as topographically defined contact guidance platforms for accelerating bone regeneration. J Biol Eng 2021; 15:12. [PMID: 33752709 PMCID: PMC7986475 DOI: 10.1186/s13036-021-00263-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The healing of large critical-sized bone defects remains a clinical challenge in modern orthopedic medicine. The current gold standard for treating critical-sized bone defects is autologous bone graft; however, it has critical limitations. Bone tissue engineering has been proposed as a viable alternative, not only for replacing the current standard treatment, but also for producing complete regeneration of bone tissue without complex surgical treatments or tissue transplantation. In this study, we proposed a transplantable radially patterned scaffold for bone regeneration that was defined by capillary force lithography technology using biodegradable polycaprolactone polymer. RESULTS The radially patterned transplantable biodegradable scaffolds had a radial structure aligned in a central direction. The radially aligned pattern significantly promoted the recruitment of host cells and migration of osteoblasts into the defect site. Furthermore, the transplantable scaffolds promoted regeneration of critical-sized bone defects by inducing cell migration and differentiation. CONCLUSIONS Our findings demonstrated that topographically defined radially patterned transplantable biodegradable scaffolds may have great potential for clinical application of bone tissue regeneration.
Collapse
Affiliation(s)
- Yonghyun Gwon
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Taeseong Han
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
16
|
Been S, Choi J, Cho H, Jeon G, Song JE, Bucciarelli A, Khang G. Preparation and characterization of a soluble eggshell membrane/agarose composite scaffold with possible applications in cartilage regeneration. J Tissue Eng Regen Med 2021; 15:375-387. [PMID: 33533202 DOI: 10.1002/term.3178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
Abstract
Articular hyaline cartilage is an extremely hydrated, not vascularized tissue with a low-cell density. The damage of this tissue can occur after injuries or gradual stress and tears (osteoarthritis), minor damages can be self-healed in several weeks, but major injuries may eventually require surgery. In fact, in this case, because of nature of the cartilage (the absence of cells and vascularization) it is difficult to expect its natural regeneration in a reasonable amount of time. In recent years, cell therapy, in which cells are directly transplanted, has attracted attention. In this study, a scaffold for implanting chondrocytes was prepared. The scaffold was made as a sponge using the eggshell membrane and agarose. The eggshell membrane is structurally similar to the extracellular matrix and nontoxic due to its many collagen components and has good biocompatibility and biodegradability. However, scaffolds made of collagen only has poor mechanical properties. For this reason, the disulfide bond of collagen extracted from the insoluble eggshell membrane was cut, converted into water-soluble, and then mixed with agarose to prepare a scaffold. Agarose is capable of controlling mechanical properties, has excellent biocompatibility, and is suitable for forming a hydrogel having a three-dimensional porosity. The scaffold was examined for Fourier-transform infrared, mechanical properties, biodegradability, and biocompatibility. In in vitro experiment, cytotoxicity, cell proliferation, and messenger RNA expression were investigated. The study demonstrated that the agarose/eggshell membrane scaffold can be used for chondrocyte transplantation.
Collapse
Affiliation(s)
- Suyoung Been
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jeongmin Choi
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Hunhwi Cho
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Gayeong Jeon
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jeong E Song
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Alessio Bucciarelli
- Microsystems Technology Group, Materials and Microsystems Center (CMM), Fondazione Bruno Kessler, Trento, Italy
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
17
|
Kim D, Gwon Y, Park S, Kim W, Yun K, Kim J. Eggshell membrane as a bioactive agent in polymeric nanotopographic scaffolds for enhanced bone regeneration. Biotechnol Bioeng 2021; 118:1862-1875. [PMID: 33527343 DOI: 10.1002/bit.27702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
A bone regeneration scaffold is typically designed as a platform to effectively heal a bone defect while preventing soft tissue infiltration. Despite the wide variety of scaffold materials currently available, such as collagen, critical problems in achieving bone regeneration remain, including a rapid absorption period and low tensile strength as well as high costs. Inspired by extracellular matrix protein and topographical cues, we developed a polycaprolactone-based scaffold for bone regeneration using a soluble eggshell membrane protein (SEP) coating and a nanotopography structure for enhancing the physical properties and bioactivity. The scaffold exhibited adequate flexibility and mechanical strength as a biomedical platform for bone regeneration. The highly aligned nanostructures and SEP coating were found to regulate and enhance cell morphology, adhesion, proliferation, and differentiation in vitro. In a calvaria bone defect mouse model, the scaffolds coated with SEP applied to the defect site promoted bone regeneration along the direction of the nanotopography in vivo. These findings demonstrate that bone-inspired nanostructures and SEP coatings have high potential to be applicable in the design and manipulation of scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Daun Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Yonghyun Gwon
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Woochan Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Kwidug Yun
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Bayraktar O, Yahsi Y, Köse MD. Electroencapsulation of Trans-resveratrol in Nanoparticles Composed of Silk Fibroin and Soluble Eggshell Membrane Protein. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02576-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Bahadori Y, Razmi H. Design of an electrochemical platform for the determination of diclofenac sodium utilizing a graphenized pencil graphite electrode modified with a Cu–Al layered double hydroxide/chicken feet yellow membrane. NEW J CHEM 2021. [DOI: 10.1039/d1nj02258j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel electrochemical sensor based on a Cu–Al layered double hydroxide (Cu–Al LDH)/chicken feet yellow membrane (CFYM) modified graphenized pencil graphite electrode (GPGE) was designed.
Collapse
Affiliation(s)
- Younes Bahadori
- Department of Chemistry
- Faculty of Basic Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| | - Habib Razmi
- Department of Chemistry
- Faculty of Basic Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| |
Collapse
|
20
|
Moopayak W, Tangboriboon N. Mangosteen peel and seed as antimicrobial and drug delivery in rubber products. J Appl Polym Sci 2020. [DOI: 10.1002/app.49119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wasan Moopayak
- Materials Engineering Department, Faculty of EngineeringKasetsart University Bangkok Thailand
| | - Nuchnapa Tangboriboon
- Materials Engineering Department, Faculty of EngineeringKasetsart University Bangkok Thailand
| |
Collapse
|
21
|
Saqib QM, Khan MU, Bae J. Inner egg shell membrane based bio-compatible capacitive and piezoelectric function dominant self-powered pressure sensor array for smart electronic applications. RSC Adv 2020; 10:29214-29227. [PMID: 35521090 PMCID: PMC9055931 DOI: 10.1039/d0ra02949a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Flexible pressure sensors play a key role as an interface between the mechanical movements and electrical stimuli in smart skins, soft robotics, and health monitoring systems. However, conventional pressure sensors face several challenges in terms of their bio-compatibility, higher cost, and complicated fabrication process. This paper demonstrates a novel 5 × 5 bio-compatible capacitive and self-powered piezoelectric pressure sensor array using natural inner egg shell membrane (IESM). The proposed sensor array is supported by two different sensing modes, which are capacitive and piezoelectric function dominant self-powered mode. The capacitive mode can detect both static and dynamic pressures and the piezoelectric function dominant self-powered mode can be adopted to detect the dynamic pressure applied on the device. The fabricated device with a sensing area of 4 mm2 offered the sensitivity of 37.54 ± 1.488 MPa-1 in the capacitive pressure sensing range from 0 to 0.05 MPa. The device showed the response (T res) and recovery time (T rec) of 60 ms and 45 ms, respectively. The device achieves the sensitivity of 16.93 V MPa-1 from the sensing range of 0 to 0.098 MPa in the self-powered pressure sensing. These results depict that the proposed pressure sensor array will ensure a promising role in green, wearable, and soft electronic applications.
Collapse
Affiliation(s)
- Qazi Muhammad Saqib
- Department of Ocean System Engineering, Jeju National University 102 Jejudaehakro Jeju 63243 Republic of Korea
| | - Muhammad Umair Khan
- Department of Ocean System Engineering, Jeju National University 102 Jejudaehakro Jeju 63243 Republic of Korea
| | - Jinho Bae
- Department of Ocean System Engineering, Jeju National University 102 Jejudaehakro Jeju 63243 Republic of Korea
| |
Collapse
|
22
|
Liu Y, Cai Z, Ma M, Sheng L, Huang X. Effect of eggshell membrane as porogen on the physicochemical structure and protease immobilization of chitosan-based macroparticles. Carbohydr Polym 2020; 242:116387. [PMID: 32564851 DOI: 10.1016/j.carbpol.2020.116387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/20/2023]
Abstract
Chitosan-based macroparticle is a common carrier for enzyme immobilization applied in food industry. Driven by the requirement of large carrier pores for the biomacromolecular substrates such as protein, the eggshell membrane powder (ESMP) was employed as multifunctional porogen to improve the physicochemical structure of chitosan-based macroparticles. The prepared macroparticles were characterized by SEM, XRD, FTIR, Raman spectroscopy, nitrogen adsorption-desorption isotherms, and thermogravimetric analysis. The results showed that an increase of ESMP percentage could improve the porosity of macro holes in macroparticles, and it also enlarged the size of mesopores. Moreover, the ESMP significantly increased (P < 0.05) the amount of papain immobilization, whereas the specific activity of immobilized papain achieved a maximum value of 871.95 U/mg at CSESM2 and then declined with the increase of ESMP. Therefore, the inclusion of 20 % ESMP in chitosan-based macroparticles gave the highest activity of its immobilized protease.
Collapse
Affiliation(s)
- Yuanyuan Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| |
Collapse
|
23
|
Mohammadzadeh L, Rahbarghazi R, Salehi R, Mahkam M. A novel egg-shell membrane based hybrid nanofibrous scaffold for cutaneous tissue engineering. J Biol Eng 2019; 13:79. [PMID: 31673286 PMCID: PMC6815433 DOI: 10.1186/s13036-019-0208-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/23/2019] [Indexed: 01/17/2023] Open
Abstract
Background The main issue in cutaneous regeneration is to develop engineered scaffolds based on natural extracellular matrix to promote dynamics of skin progenitor cells and accelerate differentiation into mature keratinocytes. Methods In this study, nanofibrous scaffolds composed of a blend poly (ɛ-caprolactone) (PCL), silk fibroin (SF), soluble eggshell membrane (SESM), and Aloe vera (AV) gel were developed by electrospinning method and human basal cells were used to examine differentiation capacity toward keratinocyte-like cells. For this propose, cells were allocated to four distinct groups; control, PCL/SF, PCL/SF/SESM, and PCL/SF/SESM/AV. In all groups, cells were incubated with differentiation medium. Morphology, composition, hydrophilicity and mechanical features of PCL/SF, PCL/SF/SESM and PCL/SF/SESM/AV nanofibers were studied by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), water contact angle and tensile tests. To examine the orientation of basal cells to mature keratinocytes, we performed immunofluorescence analysis by monitoring cytokeratin-19. The expression of genes such as involucrin, keratin-14 and -5 was monitored by real-time PCR assay. Results PCL/SF, PCL/SF/SESM, and PCL/SF/SESM/AV had suitable physic chemical indices and biological activities to be applied as biomimetic scaffolds for the restoration cutaneous tissue. Compared to control, we found an increased basal cell proliferation at 7 and 14 days after plating on scaffolds and reach maximum levels in group PCL/SF/SESM/AV on day 14 (p < 0.05). Electron microscopy showed cell flattening, morphological adaptation. An integrated cell-to-cell connection was generated after cell seeding on scaffolds in all groups. Immunofluorescence imaging showed the ability of basal cells to synthesize cytokeratin-19 in PCL/SF, PCL/SF/SESM, and positive control cells after exposure to differentiation medium. However, these values were less in PCL/SF/SESM/AV compared to other groups. Real-time PCR analysis showed the potency of all scaffolds to induce the transcription of involucrin, keratin-14 and -5, especially involucrin in PCL/SF/SESM/AV group compared to the negative control. Conclusion Modulation of scaffolds with natural biopolymers could enable us to synthesize structures appropriate for cutaneous regeneration.
Collapse
Affiliation(s)
- Leila Mohammadzadeh
- 1Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Reza Rahbarghazi
- 2Stem Cell research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- 3Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehrdad Mahkam
- 1Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
24
|
Zhao QC, Zhao JY, Ahn DU, Jin YG, Huang X. Separation and Identification of Highly Efficient Antioxidant Peptides from Eggshell Membrane. Antioxidants (Basel) 2019; 8:antiox8100495. [PMID: 31635262 PMCID: PMC6826681 DOI: 10.3390/antiox8100495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
The enzymatic hydrolysates (EHs) of the eggshell membrane (ESM) were obtained after incubating eggshell membrane in solutions prepared with Na2SO3 and alkaline protease combinations. The effects of enzyme species, enzyme dosage, Na2SO3 concentration, and hydrolysis time on the antioxidant activity of the ESM-EH were determined. Also, the correlation between the degree of hydrolysis (DH) and the antioxidant activity of ESM-EH was analyzed. The DH of ESM-EH showed a highly positive correlation with the reducing power (R2 = 0.857) and total antioxidant activity (TAA) (R2 = 0.876) and performed negative correlation with the Fe2+-chelating ability (R2 = −0.529). The molecular weight distribution of the ESM-EH was determined by MALDI-TOF/MS. Cation exchange chromatography (Sephadex C-25) was used to isolate the ESM-EH and then the enzymatic hydrolysis fragment (EHF) was obtained. Among the five isolated fragments (F1~F5), fragment 3 (F3), which was composed of 28 polypeptides, showed the highest ability to quench ABTS• (2,2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid) (90.44%) and also displayed stronger TBARS (thiobarbituric acid– reactive substances) (58.17%) and TAA (303.82 µg /mL) than the ESM-EH. Further analysis of the 28 peptides in F3 identified using LC-MS/MS indicated that five peptides (ESYHLPR, NVIDPPIYAR, MFAEWQPR, LLFAMTKPK, MLKMLPFK) showed high water-solubility, biological activities, and antioxidant characteristics. Finally, the TAA of the synthetic peptide was verified, the synthetic peptides ESYHLPR and MFAEWQPR performed the best activity and have high potentials to be used as antioxidant agents in functional foods, pharmaceuticals, or cosmetics.
Collapse
Affiliation(s)
- Qian-Cheng Zhao
- College of Food Science and Technology, National Research and Development Centre for Egg Processing, Huazhong Agricultural University, No 1 Shizishan Street, Wuhan 430070, China.
| | - Jie-Yuan Zhao
- College of Food Science and Technology, National Research and Development Centre for Egg Processing, Huazhong Agricultural University, No 1 Shizishan Street, Wuhan 430070, China.
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Yong-Guo Jin
- College of Food Science and Technology, National Research and Development Centre for Egg Processing, Huazhong Agricultural University, No 1 Shizishan Street, Wuhan 430070, China.
| | - Xi Huang
- College of Food Science and Technology, National Research and Development Centre for Egg Processing, Huazhong Agricultural University, No 1 Shizishan Street, Wuhan 430070, China.
| |
Collapse
|
25
|
Sunlight-Driven Photothermal Effect of Composite Eggshell Membrane Coated with Graphene Oxide and Gold Nanoparticles. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Eggshell membrane (ESM), which consists of unique interwoven shell membrane fibers, provides a unique supporting platform for functional nanoparticles in catalysis and sensing. This work reports a novel strategy for fabricating sunlight-driven photothermal conversion composite membranes by loading graphene oxide (GO) and gold nanoparticles (AuNPs) on the three-dimension (3D) network structured eggshell membrane. Surface morphologies and chemical elements were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. High photothermal conversion under simulated sunlight irradiation, which may be caused by the synergistic effect of GO and AuNPs, was achieved by coating both GO and AuNPs onto ESM. The temperature of ESM modified with AuNPs, and then GO increased from 26.0 °C to 49.0 °C after 10 min of light irradiation. Furthermore, the nanoscaled GO and AuNPs could add benefit to the heating localization of the obtained composite membrane. It is expected this biocompatible ESM modified with GO and AuNPs would have great potential in drug release and photothermal therapy applications.
Collapse
|
26
|
Shinji T, Moe Y, Yukihiro K, Yoko Y, Hitoshi A. Characterization of an organic-solvent-stable elastase from Pseudomonas indica and its potential use in eggshell membrane hydrolysis. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Kim S, Youn W, Choi IS, Park JH. Thickness-Tunable Eggshell Membrane Hydrolysate Nanocoating with Enhanced Cytocompatibility and Neurite Outgrowth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12562-12568. [PMID: 31448611 DOI: 10.1021/acs.langmuir.9b02055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The eggshell membrane is one of the easily obtainable natural biomaterials, but has been neglected in the biomaterial community, compared with marine biomaterials and discarded as a food waste. In this work, we utilized the ESM hydrolysate (ESMH), which was obtained by the enzymochemical method, as a bioactive functional material for interfacial bioengineering, exemplified by thickness-tunable, layer-by-layer (LbL) nanocoating with the Fe(III)-tannic acid (TA) complex. [Fe(III)-TA/ESMH] LbL films, ending with the ESMH layer, showed great cytocompatiblility with HeLa cells and even primary hippocampal neuron cells. More importantly, the films were found to be neurochemically active, inducing the acceleration of neurite outgrowth for the long-term neuron culture. We believe that the ability for building cytocompatible ESMH films in a thickness-tunable manner would be applicable to a broad range of different nanomaterials in shape and size and would be utilized with multimodal functionalities for biomedical applications, such as bioencapsulation, theranostics, and regenerative medicine.
Collapse
Affiliation(s)
- Seulbi Kim
- Department of Science Education , Ewha Womans University , Seoul 03760 , Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Ji Hun Park
- Department of Science Education , Ewha Womans University , Seoul 03760 , Korea
| |
Collapse
|
28
|
Park S, Kim T, Gwon Y, Kim S, Kim D, Park HH, Lim KT, Jeong HE, Kim K, Kim J. Graphene-Layered Eggshell Membrane as a Flexible and Functional Scaffold for Enhanced Proliferation and Differentiation of Stem Cells. ACS APPLIED BIO MATERIALS 2019; 2:4242-4248. [DOI: 10.1021/acsabm.9b00525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Teayeop Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yonghyun Gwon
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sujin Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Daun Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agricultural and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
29
|
Abstract
This paper presents the heat release characteristics, char formation and fire protection performance of thin-film intumescent coatings that integrate eggshell (ES) as an innovative and renewable flame-retardant bio-filler. A cone calorimeter was used to determine the thermal behavior of the samples in the condensed phase in line with the ISO 5660-1 standard. The fire resistance of the coatings was evaluated using a Bunsen burner test to examine the equilibrium temperature and formation of the char layer. The fire propagation test was also conducted according to BS 476: Part 6. On exposure, the samples X, Y, and Z were qualified to be Class 0 materials due to the indexes of fire propagation being below 12. Samples Y and Z reinforced with 3.50 wt.% and 2.50 wt.% of ES bio-filler, respectively, showed a significant improvement in reducing the heat release rate, providing a more uniform and thicker char layer. As a result, the addition of bio-filler content has proven to be efficient in stopping the fire propagation as well as reducing the total heat released and equilibrium temperature of the intumescent coatings.
Collapse
|
30
|
Chen X, Zhu L, Wen W, Lu L, Luo B, Zhou C. Biomimetic mineralisation of eggshell membrane featuring natural nanofiber network structure for improving its osteogenic activity. Colloids Surf B Biointerfaces 2019; 179:299-308. [DOI: 10.1016/j.colsurfb.2019.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
31
|
Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells. Int J Biol Macromol 2019; 131:949-958. [DOI: 10.1016/j.ijbiomac.2019.03.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
|
32
|
Adali T, Kalkan R, Karimizarandi L. The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels. Int J Biol Macromol 2019; 124:541-547. [DOI: 10.1016/j.ijbiomac.2018.11.226] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/18/2018] [Accepted: 11/25/2018] [Indexed: 11/28/2022]
|
33
|
Processed eggshell membrane powder: Bioinspiration for an innovative wound healing product. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:192-203. [DOI: 10.1016/j.msec.2018.10.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/05/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
|
34
|
Xin Y, Li C, Liu J, Liu J, Liu Y, He W, Gao Y. Adsorption of heavy metal with modified eggshell membrane and the in situ synthesis of Cu-Ag/modified eggshell membrane composites. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180532. [PMID: 30839757 PMCID: PMC6170592 DOI: 10.1098/rsos.180532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 06/09/2023]
Abstract
The objectives of this study were to remove heavy metals from wastewater through the biosorption method with modified biomass as an effective sorbent and to prepare metal/biomass composites with the same modified biomass as a direct template. Eggshell membrane (ESM) was selected and modified to adsorb heavy metals. Adsorption of metal ions on the modified ESM (MESM) might be attributed to electrostatic interaction, ion exchange and coordination effect with chelating ligands containing N and S on the surface of the MESM. The pH of the solution was a key factor affecting the adsorption. The Cu-Ag/MESM composites with uniform Cu-Ag NPs were prepared with MESM as matrices, and with Cu2+ and Ag+ adsorbed as metal sources. The Cu-Ag/MESM showed excellent catalytic performance in the reduction of 4-nitrophenol to 4-aminophenol in the aqueous phase. Because of the high stability of the Cu-Ag NPs supported on the macro-dimension supporter, Cu-Ag/MESM can be easily separated after the catalytic reaction and recycled.
Collapse
Affiliation(s)
- Yaqing Xin
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
- Zhongtian Synergetic Energy Co. Ltd., Ordos 017317, People's Republic of China
| | - Caihong Li
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Jianing Liu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Jinrong Liu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Yuchen Liu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Weiyan He
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Yanfang Gao
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| |
Collapse
|
35
|
Gharibi H, Abdolmaleki A. Thermo-chemical modification of a natural biomembrane to induce mucoadhesion, pH sensitivity and anisotropic mechanical properties. J Mech Behav Biomed Mater 2018; 87:50-58. [PMID: 30032023 DOI: 10.1016/j.jmbbm.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
In the present study due to the distinctive mechanochemical/biological characteristics of natural biomembranes, we state the preparation, characterization and cytocompatibility of modified eggshell membrane (ESM) by citric acid (CA) for biomedical and pharmaceutical applications. FTIR spectroscopy and CHNS analysis demonstrated the successful reaction of ESM with CA. Also, successful modification of the ESM was observed by the change in thermogravimetric analysis. SEM micrographs of neat ESM and ESM-CA gave further insight into membranes morphology and revealed that aligned oriented fibrous frameworks were prepared using thermo-chemical process. The ESM-CA displayed dense and orderly shapes with tailorable architectures to mimic the intended tissue. Moreover, mechanical analyzes for ESM-CA indicated anisotropic mechanical properties and proved that the ESM-CA could induce enhanced mucoadhesion, because of the existence of an enormous amounts of functional groups. It was found that by modification of ESM the swelling behavior was significantly changed. Indomethacin release from the ESM-CA showed enhanced pH sensitivity. The modified membranes have clearly presented adequate mucoadhesion, pH sensitivity and cell viability which can be tailored for potential use in controlled lipophilic drug delivery systems and tissue engineering.
Collapse
Affiliation(s)
- Hamidreza Gharibi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Amir Abdolmaleki
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Islamic Republic of Iran.
| |
Collapse
|
36
|
Farrokhzadeh S, Razmi H. Facile preparation of a chicken feet yellow membrane coated fiber for application in solid-phase microextraction. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Samaneh Farrokhzadeh
- Analytical Chemistry Research Laboratory; Faculty of Basic Sciences; Azarbaijan Shahid Madani University; Tabriz Iran
| | - Habib Razmi
- Analytical Chemistry Research Laboratory; Faculty of Basic Sciences; Azarbaijan Shahid Madani University; Tabriz Iran
| |
Collapse
|
37
|
Novel egg white gel polymer electrolyte and a green solid-state supercapacitor derived from the egg and rice waste. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.127] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Baláž M. Ball milling of eggshell waste as a green and sustainable approach: A review. Adv Colloid Interface Sci 2018; 256:256-275. [PMID: 29703593 DOI: 10.1016/j.cis.2018.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 01/03/2023]
Abstract
Eggshell waste belongs to the most abundant natural waste in nature and is created in huge amounts by everyday consumption of eggs. The majority of this material is being discarded, despite the fact that it has multidisciplinary applications. In this review, the possibility of utilizing the method of ball milling to further broaden the application potential of this material is discussed. The particular application fields include the formation of nanophases, bioceramics synthesis, formation of composites and preparation of material with increased sorption ability. In addition, some other specific applications, like the utilization of ball-milled eggshell as a drug delivery agent, or for the formation of antibacterially active species, are also mentioned. The review provides a critical mechanochemical insight into this topic and aims to emphasize the green and sustainable way of utilizing eggshell waste by environmentally friendly method.
Collapse
|
39
|
Yuan L, Zhang J, Wu J, Gao Z, Xie X, Wang Z, Wang X. The effect on quality of pickled salted duck eggs using the novel method of pulsed pressure osmotic dehydration. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Yuan
- Key Laboratory of Agro-products Processing, Institute of Food Science and Technology, Ministry of Agriculture; Chinese Academy of Agricultural Sciences; Beijing, 100193 China
| | - Jie Zhang
- Key Laboratory of Agro-products Processing, Institute of Food Science and Technology, Ministry of Agriculture; Chinese Academy of Agricultural Sciences; Beijing, 100193 China
| | - Jie Wu
- Key Laboratory of Agro-products Processing, Institute of Food Science and Technology, Ministry of Agriculture; Chinese Academy of Agricultural Sciences; Beijing, 100193 China
| | - Zhenjiang Gao
- College of Engineering; China Agricultural University, P.O. Box 194; Beijing 100083 China
| | - Xinfang Xie
- Key Laboratory of Agro-products Processing, Institute of Food Science and Technology, Ministry of Agriculture; Chinese Academy of Agricultural Sciences; Beijing, 100193 China
| | - Zhidong Wang
- Key Laboratory of Agro-products Processing, Institute of Food Science and Technology, Ministry of Agriculture; Chinese Academy of Agricultural Sciences; Beijing, 100193 China
| | - Xiaotuo Wang
- Key Laboratory of Agro-products Processing, Institute of Food Science and Technology, Ministry of Agriculture; Chinese Academy of Agricultural Sciences; Beijing, 100193 China
| |
Collapse
|
40
|
Choi J, Pant B, Lee C, Park M, Park SJ, Kim HY. Preparation and characterization of eggshell membrane/PVA hydrogel via electron beam irradiation technique. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Ahmed TAE, Suso HP, Hincke MT. In-depth comparative analysis of the chicken eggshell membrane proteome. J Proteomics 2017; 155:49-62. [PMID: 28087451 DOI: 10.1016/j.jprot.2017.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
The avian eggshell membrane (ESM) is stabilized by extensive cross-linkages, making the identification of its protein constituents technically challenging. Herein, we applied various extraction/solubilization conditions followed by proteomic analysis to characterize the protein constituents of ESM derived from the unfertilized chicken eggs. The egg white and eggshell proteomes (including previous published work) were determined and compared to ESM to identify proteins that are relatively or highly specific to ESM. Merging the results from different extraction/solubilization conditions with various proteomes allowed the identification of 472, 225, and 488 proteins in the ESM, egg white, and eggshell proteomes, respectively. Of these, 163 and 124 proteins were relatively or highly specific to ESM, respectively. GO term analysis of the common proteins and ESM unique proteins generated 8 and 9 significantly enriched functional groups, respectively. Different families of proteins that were identified as ESM-specific included collagens, CREMPs, histones, AvBDs, lysyl oxidase-like 2 (LOXL2), and ovocalyxin-36 (OCX36). These proteins serve as a foundation for the mechanically stable ESM that rests upon the egg white compartment and is a physical barrier against pathogen invasion. Overall, our results highlight the structural nature of the ESM constituents that are relevant to various biomedical applications, such as wound healing. BIOLOGICAL SIGNIFICANCE The eggshell membranes (ESM) are a highly resilient double-layered fibrous meshwork that is secreted while the forming egg transits a specialized oviduct segment, the white isthmus. The ESM protects against pathogen invasion and provides a platform for nucleation of the calcitic eggshell (ES). ESM is greatly stabilized by the extensive desmosine, isodesmosine and disulfide cross-linkages which make the identification of its protein constituents by standard proteomic approaches technically challenging. Comparative proteomic analyses of ESM, egg white, and ES proteins showed proteins groups that are relatively or highly specific to ESM. These groups of proteins serve as a foundation for the mechanically stable ESM that rests upon the egg white compartment and is a physical barrier against pathogen invasion. These features are essential for eggshell quality and for the prevention of pathogen invasion which reinforce food safety of the table egg.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications (SRTA-City), Alexandria, Egypt; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
42
|
Soluble eggshell membrane: A natural protein to improve the properties of biomaterials used for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:807-821. [DOI: 10.1016/j.msec.2016.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/18/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023]
|
43
|
Rodil A, Laca A, Paredes B, Rendueles M, Meana Á, Díaz M. Gels prepared from egg yolk and its fractions for tissue engineering. Biotechnol Prog 2016; 32:1577-1583. [PMID: 27602804 DOI: 10.1002/btpr.2364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/30/2016] [Indexed: 11/09/2022]
Abstract
New biomaterials prepared from egg yolk and its main fractions (plasma and granules) have been developed for use in tissue engineering. Protein gels obtained via transglutaminase cross-linking were characterized by rheometry, texturometry and scanning electron microscopy. All the gels exhibited suitable physical and mechanical characteristics for use as potential biomaterials in skin regeneration. Specifically, results showed that these materials presented a compact, uniform structure, with granular gel being found to be the most resistant as well as the most elastic material. Accordingly, these gels were subsequently evaluated as scaffolds for murine fibroblast growth. The best results were obtained with granule gels. Not only adhesion and cell growth were detected when using these gels, but also continuous coatings of cells growing on their surface. These findings can be attributed to the higher protein content of this fraction and to the particular structure of its proteins. Thus, granules have proved to be an interesting potential raw material for scaffold development. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1577-1583, 2016.
Collapse
Affiliation(s)
- Andrea Rodil
- Dept. of Chemical Engineering and Environmental Technology, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33071, Spain
| | - Amanda Laca
- Dept. of Chemical Engineering and Environmental Technology, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33071, Spain
| | - Benjamín Paredes
- Dept. of Chemical Engineering and Environmental Technology, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33071, Spain
| | - Manuel Rendueles
- Dept. of Chemical Engineering and Environmental Technology, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33071, Spain
| | - Álvaro Meana
- Community Center of Blood and Tissues of the Princedom of Asturias, C/Emilio Rodriguez Vigil s/n, Oviedo, 33006, Spain
| | - Mario Díaz
- Dept. of Chemical Engineering and Environmental Technology, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33071, Spain
| |
Collapse
|
44
|
Liu HH, Li Q, Liang X, Xiong X, Yu J, Guo ZX. Antibacterial polycaprolactone electrospun fiber mats prepared by soluble eggshell membrane protein-assisted adsorption of silver nanoparticles. J Appl Polym Sci 2016. [DOI: 10.1002/app.43850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huan-Huan Liu
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering; Tsinghua University; Beijing 100084 People's Republic of China
| | - Qiang Li
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering; Tsinghua University; Beijing 100084 People's Republic of China
| | - Xiao Liang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering; Tsinghua University; Beijing 100084 People's Republic of China
| | - Xi Xiong
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering; Tsinghua University; Beijing 100084 People's Republic of China
| | - Jian Yu
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering; Tsinghua University; Beijing 100084 People's Republic of China
| | - Zhao-Xia Guo
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering; Tsinghua University; Beijing 100084 People's Republic of China
| |
Collapse
|
45
|
Santana A, Melo A, Tavares T, Ferreira IMPLVO. Biological activities of peptide concentrates obtained from hydrolysed eggshell membrane byproduct by optimisation with response surface methodology. Food Funct 2016; 7:4597-4604. [DOI: 10.1039/c6fo00954a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increase of hen egg consumption demands profitable applications for eggshells, in order to minimize environmental and public health problems that could result from their accumulation.
Collapse
Affiliation(s)
- Ana Santana
- LAQV/REQUIMTE – Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- P-4050-313 Porto
- Portugal
| | - Armindo Melo
- LAQV/REQUIMTE – Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- P-4050-313 Porto
- Portugal
| | - Tânia Tavares
- LAQV/REQUIMTE – Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- P-4050-313 Porto
- Portugal
| | | |
Collapse
|
46
|
Jabbari M, Razmi H. New solid phase microextraction fiber based on an eggshell membrane coating for determination of polycyclic aromatic hydrocarbons. RSC Adv 2016. [DOI: 10.1039/c6ra10815f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, we introduced a novel soluble eggshell membrane protein (SEP) coating for the fabrication of a solid phase microextraction (SPME) fiber for the first time.
Collapse
Affiliation(s)
- Mohammad Jabbari
- Analytical Research Lab
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| | - Habib Razmi
- Analytical Research Lab
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| |
Collapse
|
47
|
Yang T, Li Y, Ma M, Lin Q, Sun S, Zhang B, Feng X, Liu J. Protective effect of soluble eggshell membrane protein hydrolysate on cardiac ischemia/reperfusion injury. Food Nutr Res 2015; 59:28870. [PMID: 26699793 PMCID: PMC4689127 DOI: 10.3402/fnr.v59.28870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/14/2015] [Accepted: 11/14/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Soluble eggshell membrane protein (SEP) has been proved to hold the antioxidant activity. The functional role of SEP on cardioprotection was investigated in vivo and in vitro. METHODS Rats and cardiomyocytes were pretreated with SP2, a hydrolysate attained from SEP, and then subjected to ischemia/reperfusion (I/R) or hypoxia/reoxygenation (H/R) and hydrogen peroxide, respectively. The measurement of myocardial infarct size, cell apoptosis assay, cell viability assay, and caspase activity assay were performed on rats and cardiomyocytes. RESULTS The results showed that the treatment of SP2 induced the resistance to I/R or H/R injury on rats and cardiomyocytes as indicated by decreased infarct size and decreased cellular apoptosis. The cardioprotective roles of SP2 were partly resulted from the downregulated expression and activity of caspase-3 in which the effect was similar to the caspase inhibitor, z-VAD-fmk, and could be rescued by caspase activator, PAC-1. CONCLUSIONS This investigation has demonstrated that SP2 attenuated the damage of I/R and H/R on rats and cardiomyocytes by the caspase-dependent pathway. This cardioprotective effect of SP2 suggested a novel therapeutic agent of SEP for ischemic-related heart diseases.
Collapse
Affiliation(s)
- Tao Yang
- National Engineering Laboratory of Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, People's Republic of China.,College of Food Science & Engineering, Central South University of Forestry & Technology, Changsha, People's Republic of China.,Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Yan Li
- National Engineering Laboratory of Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, People's Republic of China.,College of Food Science & Engineering, Central South University of Forestry & Technology, Changsha, People's Republic of China
| | - Meihu Ma
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qinlu Lin
- National Engineering Laboratory of Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, People's Republic of China.,College of Food Science & Engineering, Central South University of Forestry & Technology, Changsha, People's Republic of China
| | - Shuguo Sun
- National Engineering Laboratory of Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, People's Republic of China.,College of Food Science & Engineering, Central South University of Forestry & Technology, Changsha, People's Republic of China
| | - Bin Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Xi Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China;
| |
Collapse
|
48
|
Razmi H, Musevi SJ, Mohammad-Rezaei R. Solid phase extraction of mercury(II) using soluble eggshell membrane protein doped with reduced graphene oxide, and its quantitation by anodic stripping voltammetry. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1665-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Harlina PW, Shahzad R, Ma M, Geng F, Wang Q, He L, Ding S, Qiu N. Effect of Garlic Oil on Lipid Oxidation, Fatty Acid Profiles and Microstructure of Salted Duck Eggs. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Putri Widyanti Harlina
- National Research and Development Center for Egg Processing; College of Food Science and Technology; Wuhan Hubei 430070 China
| | - Raheel Shahzad
- College of Life Science and Technology; Huazhong Agricultural University; Wuhan Hubei China
| | - Meihu Ma
- National Research and Development Center for Egg Processing; College of Food Science and Technology; Wuhan Hubei 430070 China
| | - Fang Geng
- National Research and Development Center for Egg Processing; College of Food Science and Technology; Wuhan Hubei 430070 China
| | - Qingling Wang
- National Research and Development Center for Egg Processing; College of Food Science and Technology; Wuhan Hubei 430070 China
| | - Liyuan He
- National Research and Development Center for Egg Processing; College of Food Science and Technology; Wuhan Hubei 430070 China
| | - Shuqi Ding
- National Research and Development Center for Egg Processing; College of Food Science and Technology; Wuhan Hubei 430070 China
| | - Ning Qiu
- National Research and Development Center for Egg Processing; College of Food Science and Technology; Wuhan Hubei 430070 China
| |
Collapse
|
50
|
Silva I, Nunes A, Rocha SM, Coimbra MA. Composition of food grade Atlantic salts regarding triacylglycerides, polysaccharides and protein. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2014.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|