1
|
Daristotle JL, Erdi M, Lau LW, Zaki ST, Srinivasan P, Balabhadrapatruni M, Ayyub OB, Sandler AD, Kofinas P. Biodegradable, Tissue Adhesive Polyester Blends for Safe, Complete Wound Healing. ACS Biomater Sci Eng 2021; 7:3908-3916. [PMID: 34323468 PMCID: PMC8594560 DOI: 10.1021/acsbiomaterials.1c00865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pressure-sensitive adhesives typically used for bandages are nonbiodegradable, inhibiting healing, and may cause an allergic reaction. Here, we investigated the effect of biodegradable copolymers with promising thermomechanical properties on wound healing for their eventual use as biodegradable, biocompatible adhesives. Blends of low molecular weight (LMW) and high molecular weight (HMW) poly(lactide-co-caprolactone) (PLCL) are investigated as tissue adhesives in comparison to a clinical control. Wounds treated with PLCL blend adhesives heal completely with similar vascularization, scarring, and inflammation indicators, yet require fewer dressing changes due to integration of the PLCL adhesive into the wound. A blend of LMW and HMW PLCL produces an adhesive material with significantly higher adhesive strength than either neat polymer. Wound adhesion is comparable to a polyurethane bandage, utilizing conventional nonbiodegradable adhesives designed for extremely strong adhesion.
Collapse
Affiliation(s)
- John L Daristotle
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Dr., College Park, Maryland 20742, United States
| | - Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, 4418 Stadium Dr., College Park, Maryland 20742, United States
| | - Lung W Lau
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, 111 Michigan Avenue NW, Washington, District of Columbia 20010, United States
| | - Shadden T Zaki
- Department of Materials Science and Engineering, University of Maryland, 4418 Stadium Dr., College Park, Maryland 20742, United States
| | - Priya Srinivasan
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, 111 Michigan Avenue NW, Washington, District of Columbia 20010, United States
| | - Manogna Balabhadrapatruni
- Department of Chemical and Biomolecular Engineering, University of Maryland, 4418 Stadium Dr., College Park, Maryland 20742, United States
| | - Omar B Ayyub
- Department of Chemical and Biomolecular Engineering, University of Maryland, 4418 Stadium Dr., College Park, Maryland 20742, United States
| | - Anthony D Sandler
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, 111 Michigan Avenue NW, Washington, District of Columbia 20010, United States
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, 4418 Stadium Dr., College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Cohn D, Sloutski A, Elyashiv A, Varma VB, Ramanujan R. In Situ Generated Medical Devices. Adv Healthc Mater 2019; 8:e1801066. [PMID: 30828989 DOI: 10.1002/adhm.201801066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Medical devices play a major role in all areas of modern medicine, largely contributing to the success of clinical procedures and to the health of patients worldwide. They span from simple commodity products such as gauzes and catheters, to highly advanced implants, e.g., heart valves and vascular grafts. In situ generated devices are an important family of devices that are formed at their site of clinical function that have distinct advantages. Among them, since they are formed within the body, they only require minimally invasive procedures, avoiding the pain and risks associated with open surgery. These devices also display enhanced conformability to local tissues and can reach sites that otherwise are inaccessible. This review aims at shedding light on the unique features of in situ generated devices and to underscore leading trends in the field, as they are reflected by key developments recently in the field over the last several years. Since the uniqueness of these devices stems from their in situ generation, the way they are formed is crucial. It is because of this fact that in this review, the medical devices are classified depending on whether their in situ generation entails chemical or physical phenomena.
Collapse
Affiliation(s)
- Daniel Cohn
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Aaron Sloutski
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Ariel Elyashiv
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Vijaykumar B. Varma
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Raju Ramanujan
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| |
Collapse
|
3
|
Bhagat V, Becker ML. Degradable Adhesives for Surgery and Tissue Engineering. Biomacromolecules 2017; 18:3009-3039. [DOI: 10.1021/acs.biomac.7b00969] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vrushali Bhagat
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
4
|
Balk M, Behl M, Wischke C, Zotzmann J, Lendlein A. Recent advances in degradable lactide-based shape-memory polymers. Adv Drug Deliv Rev 2016; 107:136-152. [PMID: 27262926 DOI: 10.1016/j.addr.2016.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 11/24/2022]
Abstract
Biodegradable polymers are versatile polymeric materials that have a high potential in biomedical applications avoiding subsequent surgeries to remove, for example, an implanted device. In the past decade, significant advances have been achieved with poly(lactide acid) (PLA)-based materials, as they can be equipped with an additional functionality, that is, a shape-memory effect (SME). Shape-memory polymers (SMPs) can switch their shape in a predefined manner upon application of a specific external stimulus. Accordingly, SMPs have a high potential for applications ranging from electronic engineering, textiles, aerospace, and energy to biomedical and drug delivery fields based on the perspectives of new capabilities arising with such materials in biomedicine. This study summarizes the progress in SMPs with a particular focus on PLA, illustrates the design of suitable homo- and copolymer structures as well as the link between the (co)polymer structure and switching functionality, and describes recent advantages in the implementation of novel switching phenomena into SMP technology.
Collapse
|
5
|
Bochyńska A, Hannink G, Buma P, Grijpma D. Adhesion of tissue glues to different biological substrates. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- A.I. Bochyńska
- MIRA Institute for Biomedical Engineering and Technical Medicine and Faculty of Science and Technology, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Orthopaedic Research Laboratory, Department of Orthopaedics, Nijmegen Centre for Molecular Life Sciences; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| | - G. Hannink
- Orthopaedic Research Laboratory, Department of Orthopaedics, Nijmegen Centre for Molecular Life Sciences; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| | - P. Buma
- Orthopaedic Research Laboratory, Department of Orthopaedics, Nijmegen Centre for Molecular Life Sciences; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| | - D.W. Grijpma
- MIRA Institute for Biomedical Engineering and Technical Medicine and Faculty of Science and Technology, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- W.J. Kolff Institute, Department of Biomedical Engineering; University Medical Centre Groningen, University of Groningen; Groningen the Netherlands
| |
Collapse
|
6
|
Bochyńska AI, Hannink G, Grijpma DW, Buma P. Tissue adhesives for meniscus tear repair: an overview of current advances and prospects for future clinical solutions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:85. [PMID: 26970767 PMCID: PMC4789195 DOI: 10.1007/s10856-016-5694-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
Menisci are crucial structures in the knee joint as they play important functions in load transfer, maintaining joint stability and in homeostasis of articular cartilage. Unfortunately, ones of the most frequently occurring knee injuries are meniscal tears. Particularly tears in the avascular zone of the meniscus usually do not heal spontaneously and lead to pain, swelling and locking of the knee joint. Eventually, after a (partial) meniscectomy, they will lead to osteoarthritis. Current treatment modalities to repair tears and by that restore the integrity of the native meniscus still carry their drawbacks and a new robust solution is desired. A strong tissue adhesive could provide such a solution and could potentially improve on sutures, which are the current gold standard. Moreover, a glue could serve as a carrier for biological compounds known to enhance tissue healing. Only few tissue adhesives, e.g., Dermabond(®) and fibrin glue, are already successfully used in clinical practice for other applications, but are not considered suitable for gluing meniscus tissue due to their sub-optimal mechanical properties or toxicity. There is a growing interest and research field focusing on the development of novel polymer-based tissue adhesives, but up to now, there is no material specially designed for the repair of meniscal tears. In this review, we discuss the current clinical gold standard treatment of meniscal tears and present an overview of new developments in this field. Moreover, we discuss the properties of different tissue adhesives for their potential use in meniscal tear repair. Finally, we formulate recommendations regarding the design criteria of material properties and adhesive strength for clinically applicable glues for meniscal tears.
Collapse
Affiliation(s)
- A I Bochyńska
- Orthopaedic Research Laboratory, Department of Orthopaedics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Biomaterials Science and Technology, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - G Hannink
- Orthopaedic Research Laboratory, Department of Orthopaedics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | - D W Grijpma
- Department of Biomaterials Science and Technology, MIRA Institute, University of Twente, Enschede, The Netherlands
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - P Buma
- Orthopaedic Research Laboratory, Department of Orthopaedics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Enhanced biocompatibility and wound healing properties of biodegradable polymer-modified allyl 2-cyanoacrylate tissue adhesive. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 51:43-50. [DOI: 10.1016/j.msec.2015.02.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 02/02/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
8
|
Peng HT, Shek PN. Novel wound sealants: biomaterials and applications. Expert Rev Med Devices 2014; 7:639-59. [DOI: 10.1586/erd.10.40] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Larrañaga A, Sarasua JR. Effect of bioactive glass particles on the thermal degradation behaviour of medical polyesters. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2012.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Sriputtirat S, Boonkong W, Pengprecha S, Petsom A, Thongchul N. Low Molecular Weight Poly(Lactide-<i>co</i>-Caprolactone) for Tissue Adhesion and Tetracycline Hydrochloride Controlled Release in Wound Management. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aces.2012.21003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Kucharczyk P, Poljansek I, Sedlarik V, Kasparkova V, Salakova A, Drbohlav J, Cvelbar U, Saha P. Functionalization of polylactic acid through direct melt polycondensation in the presence of tricarboxylic acid. J Appl Polym Sci 2011. [DOI: 10.1002/app.34260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
|
13
|
Song W, Zheng Z, Lu H, Wang X. Incorporation of Multi-Walled Carbon Nanotubes into Biodegradable Telechelic Prepolymers. MACROMOL CHEM PHYS 2008. [DOI: 10.1002/macp.200700362] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Lu XL, Sun ZJ, Cai W, Gao ZY. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:395-9. [PMID: 17607526 DOI: 10.1007/s10856-006-0100-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 12/04/2006] [Indexed: 05/16/2023]
Abstract
The thermal properties, crystalline structure and shape memory effects of poly(L-lactide) (PLLA) and poly(L-lactide-co-epsilon-caprolactone) (PCLA) copolymers are systematically investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and tensile tests. The effects of the deformation strain on the shape recovery rate and recovery stress are also revealed. The polymers have the PLLA crystal and the amorphous phase, which are served as the fixed phase and reversible phase, respectively. The shape recovery rate and the recovery stress are significantly affected by the compositions and the deformation strain. With the increase of the deformation strain, the shape recovery rate decrease and higher shape recovery rate can be obtained in the polymers which have higher epsilon-CL content. However, the variation of recovery stress with the deformation strain is quite different and the maximum recovery stress of all polymers exceeds 3 MPa.
Collapse
Affiliation(s)
- X L Lu
- Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
| | | | | | | |
Collapse
|
15
|
Lu XL, Cai W, Gao ZY. Shape-memory behaviors of biodegradable poly(L-lactide-co-ε-caprolactone) copolymers. J Appl Polym Sci 2008. [DOI: 10.1002/app.27703] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Vidović E, Klee D, Höcker H. Synthesis and characterization of poly(vinyl alcohol)-graft-[poly(D,L-lactide)/poly(D,L-lactide-co-glycolide)] hydrogels. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/pola.22187] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Lu XL, Cai W, Gao Z, Tang WJ. Shape memory effects of poly(L-lactide) and its copolymer with poly(ε-caprolactone). Polym Bull (Berl) 2006. [DOI: 10.1007/s00289-006-0680-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Karikari AS, Edwards WF, Mecham JB, Long TE. Influence of Peripheral Hydrogen Bonding on the Mechanical Properties of Photo-Cross-Linked Star-Shaped Poly(d,l-lactide) Networks. Biomacromolecules 2005; 6:2866-74. [PMID: 16153129 DOI: 10.1021/bm050375i] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four-arm, star-shaped poly(D,L-lactide) (PDLLA) oligomers of controlled molar mass and narrow molar mass distribution were successfully synthesized by use of an ethoxylated pentaerythritol initiator. Derivatization of the terminal hydroxyl groups with either methacrylic anhydride (MAAH) or 2-isocyanatoethyl methacrylate (IEM) to yield PDLLA-M (M = methacrylate end group) and PDLLA-UM (UM = urethane methacrylate end group), respectively, was monitored by in situ Fourier transform infrared (FTIR) spectroscopy. Photo-cross-linking of the functional oligomers yielded networks with high gel contents (>95%). The glass transition temperature (T(g)) of these networks was strongly dependent on prepolymer molar mass, and networks based on low molar mass precursors were more rigid than the networks obtained from higher molar mass oligomers. The tensile strength (TS) and Young's modulus of the PDLLA-M samples, approximately 7 and 17 MPa, respectively, were significantly lower than the values of 19 MPa (TS) and 113-354 MPa (Young's modulus) for the PDLLA-UM samples. The introduction of terminal hydrogen-bonding sites that were adjacent to the photo-cross-linking site resulted in higher performance poly(lactide)-based bioadhesives.
Collapse
Affiliation(s)
- Afia S Karikari
- Department of Chemistry, Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|