1
|
Zhang Y, Wang L, Wang Y, Li L, Zhou J, Dou D, Wu Z, Yu L, Fan Y. Degradable Antimicrobial Ureteral Stent Construction with Silver@graphdiyne Nanocomposite. Adv Healthc Mater 2023; 12:e2300885. [PMID: 37256720 DOI: 10.1002/adhm.202300885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/18/2023] [Indexed: 06/02/2023]
Abstract
In the surgical treatment of urinary diseases, ureteral stents are commonly used interventional medical devices. Although polymer ureteral stents with polyurethane as the main constituent are widely used in the clinic, the need for secondary surgery to remove them and their propensity to cause bacterial infections greatly limit their effectiveness. To satisfy clinical requirements, an electrospinning-based strategy to fabricate PLGA ureteral stents with silver@graphdiyne is innovated. Silver (Ag) nanoparticles are uniformly loaded on the surface of graphdiyne (GDY) flakes. It is found that the incorporation of Ag nanoparticles into GDY markedly increases their antibacterial properties. Subsequently, the synthesized and purified Ag@GDY is homogeneously blended with poly(lactic-co-glycolic acid) (PLGA) as an antimicrobial agent, and electrospinning along with high-speed collectors is used to make tubular stents. The antibacterial effect of Ag@GDY and the porous microstructure of the stents can effectively prevent bacterial biofilm formation. Furthermore, the stents gradually decrease in toughness but increase in strength during the degradation process. The cellular and subcutaneous implantation experiments demonstrate the moderate biocompatibility of the stents. In summary, considering these performance characteristics and the technical feasibility of the approach taken, this study opens new possibilities for the design and application of biodegradable ureteral stents.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jin Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Dandan Dou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lu Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
2
|
Dixon DT, Gomillion CT. 3D-Printed conductive polymeric scaffolds with direct current electrical stimulation for enhanced bone regeneration. J Biomed Mater Res B Appl Biomater 2023; 111:1351-1364. [PMID: 36825765 DOI: 10.1002/jbm.b.35239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Various methods have been used to treat bone defects caused by genetic disorders, injury, or disease. Yet, there is still great need to develop alternative approaches to repair damaged bone tissue. Bones naturally exhibit piezoelectric potential, or the ability to convert mechanical stresses into electrical impulses. This phenomenon has been utilized clinically to enhance bone regeneration in conjunction with electrical stimulation (ES) therapies; however, oftentimes with critical-sized bone defects, the bioelectric potential at the site of injury is compromised, resulting in less desirable outcomes. In the present study, the potential of a 3D-printed conductive polymer blend to enhance bone formation through restoration of the bioelectrical microenvironment was evaluated. A commercially available 3D printer was used to create circular, thin-film scaffolds consisting of either polylactide (PLA) or a conductive PLA (CPLA) composite. Preosteoblast cells were seeded onto the scaffolds and subjected to direct current ES via a purpose-built cell culture chamber. It was found that CPLA scaffolds had no adverse effects on cell viability, proliferation or differentiation when compared with control scaffolds. The addition of ES, however, resulted in a significant increase in the expression of osteocalcin, a protein indicative of osteoblast maturation, after 14 days of culture. Furthermore, xylenol orange staining also showed the presence of increased mineralized calcium nodules in cultures undergoing stimulation. This study demonstrates the potential for low-cost, conductive scaffolding materials to support cell viability and enhance in vitro mineralization in conjunction with ES.
Collapse
Affiliation(s)
- Damion T Dixon
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Cheryl T Gomillion
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Safi C, Solano AG, Liberelle B, Therriault H, Delattre L, Abdelkhalek M, Wang C, Bergeron-Fortier S, Moreau V, De Crescenzo G, Faucheux N, Lauzon MA, Paquette B, Virgilio N. Effect of Chitosan on Alginate-Based Macroporous Hydrogels for the Capture of Glioblastoma Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:4531-4540. [PMID: 35948423 DOI: 10.1021/acsabm.2c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma multiforme is a type of brain cancer associated with a very low survival rate since a large number of cancer cells remain infiltrated in the brain despite the treatments currently available. This work presents a macroporous hydrogel trap, destined to be implanted in the surgical cavity following tumor resection and designed to attract and retain cancer cells, in order to eliminate them afterward with a lethal dose of stereotactic radiotherapy. The biocompatible hydrogel formulation comprises sodium alginate (SA) and chitosan (CHI) bearing complementary electrostatic charges and stabilizing the gels in saline and cell culture media, as compared to pristine SA gels. The highly controlled and interconnected porosity, characterized by X-ray microCT, yields mechanical properties comparable to those of brain tissues and allows F98 glioblastoma cells to penetrate the gels within the entire volume, as confirmed by fluorescence microscopy. The addition of a grafted -RGD peptide on SA, combined with CHI, significantly enhances the adhesion and retention of F98 cells within the gels. Overall, the best compromise between low proliferation and a high level of accumulation and retention of F98 cells was obtained with the hydrogel formulated with 1% SA and 0.2% CHI, without the -RGD adhesion peptide.
Collapse
Affiliation(s)
- Caroline Safi
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Angela Giraldo Solano
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Benoit Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Hélène Therriault
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Lisa Delattre
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Melek Abdelkhalek
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Changsheng Wang
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Simon Bergeron-Fortier
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Vaiana Moreau
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Marc-Antoine Lauzon
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Benoit Paquette
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nick Virgilio
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
4
|
Ivanova TA, Golubeva EN. Aliphatic Polyesters for Biomedical Purposes: Design and Kinetic Regularities of Degradation in vitro. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Shape Memory Materials from Rubbers. MATERIALS 2021; 14:ma14237216. [PMID: 34885377 PMCID: PMC8658094 DOI: 10.3390/ma14237216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023]
Abstract
Smart materials are much discussed in the current research scenario. The shape memory effect is one of the most fascinating occurrences in smart materials, both in terms of the phenomenon and its applications. Many metal alloys and polymers exhibit the shape memory effect (SME). Shape memory properties of elastomers, such as rubbers, polyurethanes, and other elastomers, are discussed in depth in this paper. The theory, factors impacting, and key uses of SME elastomers are all covered in this article. SME has been observed in a variety of elastomers and composites. Shape fixity and recovery rate are normally analysed through thermomechanical cycle studies to understand the effectiveness of SMEs. Polymer properties such as chain length, and the inclusion of fillers, such as clays, nanoparticles, and second phase polymers, will have a direct influence on the shape memory effect. The article discusses these aspects in a simple and concise manner.
Collapse
|
6
|
Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering. Polymers (Basel) 2021; 13:polym13203453. [PMID: 34685212 PMCID: PMC8539307 DOI: 10.3390/polym13203453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Fabricating polymeric scaffolds using cost-effective manufacturing processes is still challenging. Gas foaming techniques using supercritical carbon dioxide (scCO2) have attracted attention for producing synthetic polymer matrices; however, the high-pressure requirements are often a technological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a, offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature conditions and the use of low-cost equipment. Here, we report for the first time the use of Freon R134a for generating porous polymer matrices, specifically polylactide (PLA). PLA scaffolds processed with Freon R134a exhibited larger pore sizes, and total porosity, and appropriate mechanical properties compared with those achieved by scCO2 processing. PLGA scaffolds processed with Freon R134a were highly porous and showed a relatively fragile structure. Human mesenchymal stem cells (MSCs) attached to PLA scaffolds processed with Freon R134a, and their metabolic activity increased during culturing. In addition, MSCs displayed spread morphology on the PLA scaffolds processed with Freon R134a, with a well-organized actin cytoskeleton and a dense matrix of fibronectin fibrils. Functionalization of Freon R134a-processed PLA scaffolds with protein nanoparticles, used as bioactive factors, enhanced the scaffolds' cytocompatibility. These findings indicate that gas foaming using compressed Freon R134a could represent a cost-effective and environmentally friendly fabrication technology to produce polymeric scaffolds for tissue engineering approaches.
Collapse
|
7
|
Higuera GA, Ramos T, Gloria A, Ambrosio L, Di Luca A, Pechkov N, de Wijn JR, van Blitterswijk CA, Moroni L. PEOT/PBT Polymeric Pastes to Fabricate Additive Manufactured Scaffolds for Tissue Engineering. Front Bioeng Biotechnol 2021; 9:704185. [PMID: 34595158 PMCID: PMC8476768 DOI: 10.3389/fbioe.2021.704185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
The advantages of additive manufactured scaffolds, as custom-shaped structures with a completely interconnected and accessible pore network from the micro- to the macroscale, are nowadays well established in tissue engineering. Pore volume and architecture can be designed in a controlled fashion, resulting in a modulation of scaffold’s mechanical properties and in an optimal nutrient perfusion determinant for cell survival. However, the success of an engineered tissue architecture is often linked to its surface properties as well. The aim of this study was to create a family of polymeric pastes comprised of poly(ethylene oxide therephthalate)/poly(butylene terephthalate) (PEOT/PBT) microspheres and of a second biocompatible polymeric phase acting as a binder. By combining microspheres with additive manufacturing technologies, we produced 3D scaffolds possessing a tailorable surface roughness, which resulted in improved cell adhesion and increased metabolic activity. Furthermore, these scaffolds may offer the potential to act as drug delivery systems to steer tissue regeneration.
Collapse
Affiliation(s)
- Gustavo A Higuera
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Tiago Ramos
- Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Naples, Italy
| | - Andrea Di Luca
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Nicholas Pechkov
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Joost R de Wijn
- Institute for BioMedical Technology and Technical Medicine (MIRA), Tissue Regeneration Department, University of Twente, Enschede, Netherlands
| | - Clemens A van Blitterswijk
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
8
|
Trofimchuk ES, Potseleev VV, Khavpachev MA, Moskvina MA, Nikonorova NI. Polylactide-Based Porous Materials: Synthesis, Hydrolytic Degradation Features, and Application Areas. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Sun Z, Song Y, Ma G, Gao P, Xie Z, Gao X, Li Y, Xu J, Zhong G, Li Z. Imparting Gradient and Oriented Characters to Cocontinuous Structure for Improving Integrated Performance. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhao‐Bo Sun
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Ying‐Nan Song
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Guo‐Qi Ma
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Ping‐Ping Gao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Ze‐Xiang Xie
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xue‐Qin Gao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Yue Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Jia‐Zhuang Xu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Gan‐Ji Zhong
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Zhong‐Ming Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
10
|
Tyubaeva P, Zykova A, Podmasteriev V, Olkhov A, Popov A, Iordanskii A. The Investigation of the Structure and Properties of Ozone-Sterilized Nonwoven Biopolymer Materials for Medical Applications. Polymers (Basel) 2021; 13:1268. [PMID: 33924704 PMCID: PMC8070622 DOI: 10.3390/polym13081268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/22/2023] Open
Abstract
Nowadays, the development and research of nonwoven medical fibrous materials based on biopolymers is an area of a great practical interest. One of the most promising methods for producing nonwoven materials with a highly developed surface is electrospinning (ES). In this article, the possibility of efficient sterilization of ultrathin fibers based on polyhydroxybutyrate (PHB) by ozone treatment was considered. The purpose of this work was to select the most optimal morphology of nonwoven materials for medical purposes and to establish the correlation between the supramolecular structure and the physical properties of fibrous materials while under the influence of an ozone sterilization process.
Collapse
Affiliation(s)
- Polina Tyubaeva
- Department of Chemistry and Physics, Plekhanov Russian University of Economics, 117997 Moscow, Russia; (A.Z.); (A.O.); (A.P.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anna Zykova
- Department of Chemistry and Physics, Plekhanov Russian University of Economics, 117997 Moscow, Russia; (A.Z.); (A.O.); (A.P.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Vyacheslav Podmasteriev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anatoly Olkhov
- Department of Chemistry and Physics, Plekhanov Russian University of Economics, 117997 Moscow, Russia; (A.Z.); (A.O.); (A.P.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anatoly Popov
- Department of Chemistry and Physics, Plekhanov Russian University of Economics, 117997 Moscow, Russia; (A.Z.); (A.O.); (A.P.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
11
|
Co-continuous phase prediction in poly(lactic acid) /poly(caprolactone) blends from melt viscosity measurements. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1904983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Andrews J, Handler RA, Blaisten-Barojas E. Structure, energetics and thermodynamics of PLGA condensed phases from Molecular Dynamics. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Effect of Olefin-based Compatibilizers on the Formation of Cocontinuous Structure in Immiscible HDPE/iPP Blends. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2433-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Sato S, Yamauchi J, Takahashi Y, Kanehashi S, Nagai K. Effects of Nanofiller-Induced Crystallization on Gas Barrier Properties in Poly(lactic acid)/Montmorillonite Composite Films. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuichi Sato
- Department of Electronic Engineering, Tokyo Denki University, 5 Senju-Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan
| | - Johta Yamauchi
- Department of Applied Chemistry, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan
| | - Yoichi Takahashi
- Department of Applied Chemistry, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan
| | - Shinji Kanehashi
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Kazukiyo Nagai
- Department of Applied Chemistry, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan
| |
Collapse
|
15
|
Yan X, Cayla A, Salaün F, Devaux E, Liu P, Mao J, Huang T. Porous fibers surface decorated with nanofillers: From melt‐spun PP/PVA blend fibers with silica nanoparticles. J Appl Polym Sci 2020. [DOI: 10.1002/app.48470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiang Yan
- ENSAIT, GEMTEX–Laboratoire de Génie et Matériaux Textiles F‐59000 Lille France
| | - Aurélie Cayla
- ENSAIT, GEMTEX–Laboratoire de Génie et Matériaux Textiles F‐59000 Lille France
| | - Fabien Salaün
- ENSAIT, GEMTEX–Laboratoire de Génie et Matériaux Textiles F‐59000 Lille France
| | - Eric Devaux
- ENSAIT, GEMTEX–Laboratoire de Génie et Matériaux Textiles F‐59000 Lille France
| | - Pengqing Liu
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and EngineeringSichuan University 24 South Section 1 Yihuan Road 610065 Chengdu China
| | - Jianzhao Mao
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and EngineeringSichuan University 24 South Section 1 Yihuan Road 610065 Chengdu China
| | - Tingjian Huang
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and EngineeringSichuan University 24 South Section 1 Yihuan Road 610065 Chengdu China
| |
Collapse
|
16
|
Degradable porous drug-loaded polymer scaffolds for localized cancer drug delivery and breast cell/tissue growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110794. [PMID: 32409024 DOI: 10.1016/j.msec.2020.110794] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/25/2020] [Accepted: 02/29/2020] [Indexed: 12/14/2022]
Abstract
This paper presents the results of a combined experimental and analytical study of blended FDA-approved polymers [polylactic-co-glycolic acid (PLGA), polyethylene glycol (PEG) and polycaprolactone (PCL)] with the potential for sustained localized cancer drug release. Porous drug-loaded 3D degradable PLGA-PEG and PLGA-PCL scaffolds were fabricated using a multistage process that involved solvent casting and particulate leaching with lyophilization. The physicochemical properties including the mechanical, thermal and biostructural properties of the drug-loaded microporous scaffolds were characterized. The release of the encapsulated prodigiosin (PG) or paclitaxel (PTX) drug (from the drug-loaded polymer scaffolds) was also studied experimentally at human body temperature (37 °C) and hyperthermic temperatures (41 and 44 °C). These characteristic controlled and localized in vitro drug release from the properties of the microporous scaffold were analyzed using kinetics and thermodynamic models. Subsequently, normal breast cells (MCF-10A) were cultured for a 28-day period on the resulting 3D porous scaffolds in an effort to study the possible regrowth of normal breast tissue, following drug release. The effects of localized cancer drug release on breast cancer cells and normal breast cell proliferation are demonstrated for scenarios that are relevant to palliative breast tumor surgery for 16 weeks under in vivo conditions. Results from the in vitro drug release show a sustained anomalous (non-Fickian) drug release that best fits the Korsmeyer-Peppas (KP) kinetic model with a non-spontaneous thermodynamic process that leads to a massive decrease in breast cancer cell (MDA-MB-231) viability. Our findings from the animal suggest that localized drug release from drug-based 3D resorbable porous scaffolds can be used to eliminate/treat local recurred triple negative breast tumors and promote normal breast tissue regeneration after surgical resection.
Collapse
|
17
|
Liu H, Li X, Wei T, Xu S, Chen S, Cheng SH, Sun D. Precise Drug Delivery by Using PLGA-Based Microspheres and Optical Manipulators. IEEE Trans Nanobioscience 2019; 19:192-202. [PMID: 31831429 DOI: 10.1109/tnb.2019.2958820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The accurate delivery of precise amounts of drugs to a specific location can considerably affect various clinical applications. The precise control of drug amount and position is crucial to a successful drug delivery. This paper proposes the use of poly(lactide-co-glycolicacid) (PLGA)-based microspheres to contain precise amounts of drugs and an optical tweezer manipulator to transport these drug-containing microspheres to their targeted sites in vivo. The drugs were delivered by the PLGA-based microspheres to the yolk sac of zebrafish embryos, and a sustained drug release was observed to examine the anti-angiogenesis and angiogenesis activities. The PLGA-based microspheres degraded in zebrafish, thereby verifying that these microspheres can be used as drug carriers in vivo to ensure good biocompatibility and biodegradation. The proposed precise drug delivery approach can be used in protein tests and drug property characterization in vivo.
Collapse
|
18
|
Li F, Zhang Y, Zhao X, Chen Q, Li Y, You J. Graft ratio: Quantitative measurement and direct evidence for its blending sequence dependence during reactive compatibilization in PVDF/PLLA. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Alessandrino A, Fregnan F, Biagiotti M, Muratori L, Bassani GA, Ronchi G, Vincoli V, Pierimarchi P, Geuna S, Freddi G. SilkBridge™: a novel biomimetic and biocompatible silk-based nerve conduit. Biomater Sci 2019; 7:4112-4130. [PMID: 31359013 DOI: 10.1039/c9bm00783k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silk fibroin (Bombyx mori) was used to manufacture a nerve conduit (SilkBridge™) characterized by a novel 3D architecture. The wall of the conduit consists of two electrospun layers (inner and outer) and one textile layer (middle), perfectly integrated at the structural and functional level. The manufacturing technology conferred high compression strength on the device, thus meeting clinical requirements for physiological and pathological compressive stresses. In vitro cell interaction studies were performed through direct contact assays with SilkBridge™ using the glial RT4-D6P2T cells, a schwannoma cell line, and a mouse motor neuron NSC-34 cell line. The results revealed that the material is capable of sustaining cell proliferation, that the glial RT4-D6P2T cells increased their density and organized themselves in a glial-like morphology, and that NSC-34 motor neurons exhibited a greater neuritic length with respect to the control substrate. In vivo pilot assays were performed on adult female Wistar rats. A 10 mm long gap in the median nerve was repaired with 12 mm SilkBridge™. At two weeks post-operation several cell types colonized the lumen. Cells and blood vessels were also visible between the different layers of the conduit wall. Moreover, the presence of regenerated myelinated fibers with a thin myelin sheath at the proximal level was observed. Taken together, all these results demonstrated that SilkBridge™ has an optimized balance of biomechanical and biological properties, being able to sustain a perfect cellular colonization of the conduit and the progressive growth of the regenerating nerve fibers.
Collapse
Affiliation(s)
| | - F Fregnan
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - M Biagiotti
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| | - L Muratori
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - G A Bassani
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| | - G Ronchi
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - V Vincoli
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| | - P Pierimarchi
- Institute of Translational Pharmacology, National Research Council, 00083 Rome, Italy
| | - S Geuna
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, 10124 Torino, Italy
| | - G Freddi
- Silk Biomaterials Srl, 22074 Lomazzo (Co), Italy.
| |
Collapse
|
20
|
Chen J, Ye J, Liao X, Li S, Xiao W, Yang Q, Li G. Organic solvent free preparation of porous scaffolds based on the phase morphology control using supercritical CO2. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Allaf RM, Albarahmieh E, AlHamarneh BM. Solid-state compounding of immiscible PCL-PEO blend powders for molding processes. J Mech Behav Biomed Mater 2019; 97:198-211. [PMID: 31125892 DOI: 10.1016/j.jmbbm.2019.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 02/05/2023]
Abstract
Solid-state milling is a promising ecologically friendly method for fabricating polymeric blend and composite powder raw materials for several subsequent manufacturing processes. Biodegradable polymers, blends, and composites are expected to find extensive use by industry due to their environmental friendliness and acceptable mechanical and thermal properties for several applications. Poly-ε-caprolactone (PCL), poly-ethylene-oxide (PEO), and their blends have attracted so much attention to replace commodity polymers in future applications. Therefore, in the current research, bulk compounding of PCL-PEO blends with various compositions using solid-state cryomilling was investigated. Structural, mechanical, thermal, and hydrophilicity properties were examined on samples obtained by compression molding to explore the capabilities of the milling process for various applications. Morphology of the blends was explored by scanning electron microscopy (SEM), which showed a clear phase separation in blends after heating. Dispersed as well as co-continuous morphologies were achieved by varying composition. Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) of the blends indicated insignificant amorphization by milling. Tensile strength, modulus, and percentage elongation at break of the blends demonstrated significant variations due to processing parameters.
Collapse
Affiliation(s)
- Rula M Allaf
- Industrial Engineering Department, School of Applied Technical Sciences, German-Jordanian University, Amman, 11180, Jordan.
| | - Esra'a Albarahmieh
- Pharmaceutical-Chemical Engineering Department, School of Applied Medical Sciences, German-Jordanian University, Amman, 11180, Jordan.
| | - Baider M AlHamarneh
- Mechanical and Maintenance Engineering Department, School of Applied Technical Sciences, German-Jordanian University, Amman, 11180, Jordan.
| |
Collapse
|
22
|
Gancheva T, Virgilio N. Tailored macroporous hydrogel–nanoparticle nanocomposites for monolithic flow-through catalytic reactors. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00337h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Highly porous poly(N-isopropylacrylamide) PNIPAam hydrogel monoliths with tunable microstructures and comprising gold, silver or palladium nanoparticles, display significant catalytic activity when used in flow-through microreactors.
Collapse
Affiliation(s)
- Teodora Gancheva
- CREPEC
- Department of Chemical Engineering
- Polytechnique Montréal
- Québec
- Canada
| | - Nick Virgilio
- CREPEC
- Department of Chemical Engineering
- Polytechnique Montréal
- Québec
- Canada
| |
Collapse
|
23
|
Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique. Acta Biomater 2018; 79:168-181. [PMID: 30121374 DOI: 10.1016/j.actbio.2018.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023]
Abstract
Innterconnected porous architecture is critical for tissue engineering scaffold as well as biomimetic nanofibrous structure. In addition, a paradigm shift is recently taking place in the scaffold design from homogeneous porous scaffold to heterogeneous porous scaffold for the complex tissues. In this study, a versatile and simple one-pot method, dual phase separation, is developed to fabricate macroporous nanofibrous scaffold by phase separating the mixture solutions of immiscible polymer blends without using porogens. The macropores in the scaffold are interconnected, and their size can be tuned by the polymer blend ratio. Moreover, benefiting from the easy operation of dual phase separation technique, an innovative, versatile and facile two-step phase separation method is developed to fabricate heterogeneous porous layered nanofibrous scaffolds with different shapes, such as bilayered tubular scaffold and tri-layered cylindrical scaffold. The bilayered tubular nanofibrous scaffold composed of poly(l-lactic acid) (PLLA)/poly(l-lactide-co-ε-caprolactone) (PLCL) microporous inner layer and PLLA/poly(ε-caprolactone) (PCL) macroporous outer layer matches simultaneously the functional growth of endothelial cells (ECs) and smooth muscle cells (SMCs), and shows the favorable performance for potential small diameter blood vessel application. Therefore, this study provides the novel and facile strategies to fabricate macroporous nanofibrous scaffold and heterogeneous porous layered nanofibrous scaffold for tissue engineering applications. STATEMENT OF SIGNIFICANCE The fabrication of porous tissue engineering scaffold made of non-water-soluble polymer commonly requires the use of porogen materials. This is complex and time-consuming, resulting in greater difficulty to prepare heterogeneous porous layered scaffold for multifunctional tissues repair, such as blood vessel and osteochondral tissue. Herein, a novel, versatile and simple one-pot dual phase separation technique is developed for the first time to fabricate porous scaffold without using porogens. Simultaneously, it also endows the resultant scaffold with the biomimetic nanofibrous architecture. Based on the easy operation of this dual phase separation technique, a facile two-step phase separation method is also put forward for the first time and applied in fabricating heterogeneous porous layered nanofibrous scaffold for tissue engineering applications.
Collapse
|
24
|
Han W, Liao X, He B, Yang Q, Li G. Disclosing the crystallization behavior and morphology of poly(ϵ-caprolactone) within poly(ϵ-caprolactone)/poly( l-lactide) blends. POLYM INT 2018. [DOI: 10.1002/pi.5548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weiqiang Han
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Sichuan China
| | - Xia Liao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Sichuan China
| | - Bin He
- National Engineering Research Center for Biomaterials; Sichuan University; Sichuan China
| | - Qi Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Sichuan China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Sichuan China
| |
Collapse
|
25
|
Sharma S, Bhaskar N, Bose S, Basu B. Biomimetic porous high-density polyethylene/polyethylene- grafted-maleic anhydride scaffold with improved in vitro cytocompatibility. J Biomater Appl 2018; 32:1450-1463. [PMID: 29621928 DOI: 10.1177/0885328218766742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.
Collapse
Affiliation(s)
- Swati Sharma
- 1 Laboratory for Biomaterials, Materials Research Center, 29120 Indian Institute of Science , Bangalore, India
| | - Nitu Bhaskar
- 1 Laboratory for Biomaterials, Materials Research Center, 29120 Indian Institute of Science , Bangalore, India
| | - Surjasarathi Bose
- 2 Department of Materials Engineering, 29120 Indian Institute of Science , Bangalore, India
| | - Bikaramjit Basu
- 1 Laboratory for Biomaterials, Materials Research Center, 29120 Indian Institute of Science , Bangalore, India.,3 Center for Biosystems Science and Engineering, 29120 Indian Institute of Science , Bangalore, India
| |
Collapse
|
26
|
Huang L, Zhu L, Shi X, Xia B, Liu Z, Zhu S, Yang Y, Ma T, Cheng P, Luo K, Huang J, Luo Z. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater 2018; 68:223-236. [PMID: 29274478 DOI: 10.1016/j.actbio.2017.12.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022]
Abstract
Scaffolds with inner fillers that convey directional guidance cues represent promising candidates for nerve repair. However, incorrect positioning or non-uniform distribution of intraluminal fillers might result in regeneration failure. In addition, proper porosity (to enhance nutrient and oxygen exchange but prevent fibroblast infiltration) and mechanical properties (to ensure fixation and to protect regenerating axons from compression) of the outer sheath are also highly important for constructing advanced nerve scaffolds. In this study, we constructed a compound scaffold using a stage-wise strategy, including directionally freezing orientated collagen-chitosan (O-CCH) filler, electrospinning poly(ε-caprolactone) (PCL) sheaths and assembling O-CCH/PCL scaffolds. Based on scanning electron microscopy (SEM) and mechanical tests, a blend of collagen/chitosan (1:1) was selected for filler fabrication, and a wall thickness of 400 μm was selected for PCL sheath production. SEM and three-dimensional (3D) reconstruction further revealed that the O-CCH filler exhibited a uniform, longitudinally oriented microstructure (over 85% of pores were 20-50 μm in diameter). The electrospun PCL porous sheath with pore sizes of 6.5 ± 3.3 μm prevented fibroblast invasion. The PCL sheath exhibited comparable mechanical properties to commercially available nerve conduits, and the O-CCH filler showed a physiologically relevant substrate stiffness of 2.0 ± 0.4 kPa. The differential degradation time of the filler and sheath allows the O-CCH/PCL scaffold to protect regenerating axons from compression stress while providing enough space for regenerating nerves. In vitro and in vivo studies indicated that the O-CCH/PCL scaffolds could promote axonal regeneration and Schwann cell migration. More importantly, functional results indicated that the CCH/PCL compound scaffold induced comparable functional recovery to that of the autograft group at the end of the study. Our findings demonstrated that the O-CCH/PCL scaffold with uniform longitudinal guidance filler and a porous sheath exhibits favorable properties for clinical use and promotes nerve regeneration and functional recovery. The O-CCH/PCL scaffold provides a promising new path for developing an optimal therapeutic alternative for peripheral nerve reconstruction. STATEMENT OF SIGNIFICANCE Scaffolds with inner fillers displaying directional guidance cues represent a promising candidate for nerve repair. However, further clinical translation should pay attention to the problem of non-uniform distribution of inner fillers, the porosity and mechanical properties of the outer sheath and the morphological design facilitating operation. In this study, a stage-wise fabrication strategy was used, which made it possible to develop an O-CCH/PCL compound scaffold with a uniform longitudinally oriented inner filler and a porous outer sheath. The uniform distribution of the pores in the O-CCH/PCL scaffold provides a solution to resolve the problem of non-uniform distribution of inner fillers, which impede the clinical translation of scaffolds with longitudinal microstructured fillers, especially for aligned-fiber-based scaffolds. In vitro and in vivo studies indicated that the O-CCH/PCL scaffolds could provide topographical cues for axonal regeneration and SC migration, which were not found for random scaffolds (with random microstructure resemble sponge-based scaffolds). The electrospun porous PCL sheath of the O-CCH/PCL scaffold not only prevented fibroblast infiltration, but also satisfied the mechanical requirements for clinical use, paving the way for clinical translation. The differential degradation time of the O-CCH filler and the PCL sheath makes O-CCH/PCL scaffold able to provide long protection for regenerating axons from compression stress, but enough space for regenerating nerve. These findings highlight the possibility of developing an optimal therapeutic alternative for nerve defects using the O-CCH/PCL scaffold.
Collapse
Affiliation(s)
- Liangliang Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lei Zhu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaowei Shi
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhongyang Liu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shu Zhu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yafeng Yang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Teng Ma
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Pengzhen Cheng
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kai Luo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
27
|
Roointan A, Kianpour S, Memari F, Gandomani M, Gheibi Hayat SM, Mohammadi-Samani S. Poly(lactic-co-glycolic acid): The most ardent and flexible candidate in biomedicine! INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1405350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Memari
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Molood Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus international University, Nicosia, Cyprus
| | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Chen H, Wang H, Li B, Feng B, He X, Fu W, Yuan H, Xu Z. Enhanced chondrogenic differentiation of human mesenchymal stems cells on citric acid-modified chitosan hydrogel for tracheal cartilage regeneration applications. RSC Adv 2018; 8:16910-16917. [PMID: 35540552 PMCID: PMC9080310 DOI: 10.1039/c8ra00808f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/30/2018] [Indexed: 11/30/2022] Open
Abstract
Congenital tracheal stenosis in infants and children is a worldwide clinical problem. Tissue engineering is a promising method for correcting long segmental tracheal defects. Nonetheless, the lack of desirable scaffolds always limits the development and applications of tissue engineering in clinical practice. In this study, a citric-acid-functionalized chitosan (CC) hydrogel was fabricated by a freeze–thaw method. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed that citric acid was successfully attached to the chitosan hydrogel. Scanning electron microscopy (SEM) images and compression tests showed that the CC hydrogel had an interconnected porous structure and better wet mechanical properties. Using morphological and proliferation analyses, cell biocompatibility of the CC hydrogel was shown by culturing human mesenchymal stem cells (hMSCs) on it. Specific expression of cartilage-related markers was analyzed by real-time polymerase chain reaction and western blotting. The expression of chondrocytic markers was strongly upregulated in the culture on the CC hydrogel. Hematoxylin and eosin staining revealed that the cells had the characteristic shape of chondrocytes and clustered into the CC hydrogel. Both Alcian blue staining and a sulfated glycosaminoglycan (sGAG) assay indicated that the CC hydrogel promoted the expression of glycosaminoglycans (GAGs). In a nutshell, these results suggested that the CC hydrogel enhanced chondrogenic differentiation of hMSCs. Thus, the newly developed CC hydrogel may be a promising tissue-engineered scaffold for tracheal cartilage regeneration. A novel citric acid functionalized chitosan hydrogel for tracheal cartilage regeneration applications.![]()
Collapse
Affiliation(s)
- Hao Chen
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
| | - Hao Wang
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
| | - Biyun Li
- School of Life Sciences
- Nantong University
- Nantong
- China
| | - Bei Feng
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| | - Xiaomin He
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| | - Wei Fu
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| | - Huihua Yuan
- School of Life Sciences
- Nantong University
- Nantong
- China
| | - Zhiwei Xu
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| |
Collapse
|
29
|
Li J, Peng C, Wang Z, Ren J. Preparation of thermo-responsive drug-loaded nanofibrous films created by electrospinning. RSC Adv 2018; 8:17551-17557. [PMID: 35539269 PMCID: PMC9080397 DOI: 10.1039/c8ra02442a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/06/2018] [Indexed: 12/28/2022] Open
Abstract
We prepared thermosensitive and biocompatible drug-loaded nanofibrous films by an electrospinning technique using a block copolymer, poly(N-isopropylacrylamide)-b-poly(l-lactide) (PNLA), and poly(l-lactide) (PLLA). The copolymer PNLA was synthesized by the radical polymerization of N-isopropylacrylamide (NIPAAm), followed by the ring-opening polymerization of l-lactide. The properties of PNIPAAm and PNLA were selectively discussed based on the results of NMR, FT-IR, GPC, and CA analyses. Because of the low molecular weight of PNIPAAm and PNLA and the hydrolysis of PNLA resulting from its hydrophilicity, these copolymers were inappropriate for electrospinning separately. Hence, a mixture of PNLA and PLLA was used to prepare electrospun nanofibrous films. SEM images of the PNLA/PLLA electrospun films showed that homogeneous fibres with smooth surfaces were obtained. In vitro release studies indicated that the drug-release rate of the PNLA/PLLA electrospun nanofibrous films can be adjusted by the content and molecular weight of PNLA and by the environmental temperature. The results demonstrate that electrospinning is a promising way to create stimuli-responsive fibrous films with potential applications in the design of controllable drug delivery systems. Thermosensitive and biocompatible PNLA/PLLA drug-loaded nanofibrous films with different morphologies and controlled drug release behaviors by electrospinning technique.![]()
Collapse
Affiliation(s)
- Jianbo Li
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials
- Ministry of Education
- Tongji University
| | - Chengwei Peng
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials
- Ministry of Education
- Tongji University
| | - Zhimei Wang
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials
- Ministry of Education
- Tongji University
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Engineering Materials
- Ministry of Education
- Tongji University
| |
Collapse
|
30
|
Babaie E, Bhaduri SB. Fabrication Aspects of Porous Biomaterials in Orthopedic Applications: A Review. ACS Biomater Sci Eng 2017; 4:1-39. [DOI: 10.1021/acsbiomaterials.7b00615] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elham Babaie
- Department
of Bioengineering, Bioscience Research Collaborative, Rice University, Houston, Texas 77030, United States
| | - Sarit B. Bhaduri
- Department
of Mechanical and Industrial Engineering and Division of Dentistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
31
|
Zhang J, Zheng T, Alarçin E, Byambaa B, Guan X, Ding J, Zhang YS, Li Z. Porous Electrospun Fibers with Self-Sealing Functionality: An Enabling Strategy for Trapping Biomacromolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201701949. [PMID: 29094479 PMCID: PMC5845855 DOI: 10.1002/smll.201701949] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/25/2017] [Indexed: 05/30/2023]
Abstract
Stimuli-responsive porous polymer materials have promising biomedical application due to their ability to trap and release biomacromolecules. In this work, a class of highly porous electrospun fibers is designed using polylactide as the polymer matrix and poly(ethylene oxide) as a porogen. Carbon nanotubes (CNTs) with different concentrations are further impregnated onto the fibers to achieve self-sealing functionality induced by photothermal conversion upon light irradiation. The fibers with 0.4 mg mL-1 of CNTs exhibit the optimum encapsulation efficiency of model biomacromolecules such as dextran, bovine serum albumin, and nucleic acids, although their photothermal conversion ability is slightly lower than the fibers with 0.8 mg mL-1 of CNTs. Interestingly, reversible reopening of the surface pores is accomplished with the degradation of PLA, affording a further possibility for sustained release of biomacromolecules after encapsulation. Effects of CNT loading on fiber morphology, structure, thermal/mechanical properties, degradation, and cell viability are also investigated. This novel class of porous electrospun fibers with self-sealing capability has great potential to serve as an enabling strategy for trapping/release of biomacromolecules with promising applications in, for example, preventing inflammatory diseases by scavenging cytokines from interstitial body fluids.
Collapse
Affiliation(s)
- Jin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ting Zheng
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Emine Alarçin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Batzaya Byambaa
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xiaofei Guan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zhongming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
32
|
Tabasi RY, Ajji A. Tailoring Heat-Seal Properties of Biodegradable Polymers through Melt Blending. INT POLYM PROC 2017. [DOI: 10.3139/217.3484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
In this study, we address heat-seal properties of poly (lactic acid) (PLA), blended with Poly (butylene adipate-co-terephthalate) (PBAT). The objective is to correlate blends crystalline structure and morphology to corresponding heat-seal of blends films. The SEM micrographs show a two-phase elongated morphology where stretched ellipsoids developed through elongational flow during the cast film process. To distinguish the effect of crystallization, we also prepared amorphous and crystalline PBAT films and then compared them to blends with PLA. Heat-sealed areas were created by putting film surfaces in intimate contact for 1 s at the pressure of 0.5 N/mm2 or Pa and in the temperature range of 70 to 140 °C. Thermal analysis shows that the crystalline structure of PBAT has a significant effect on shifting its heat-seal initiation temperature (Tsi) up to 20 °C. Regarding the blends, incorporation of PBAT as a dispersed phase lowers Tsi of blend samples. Here, gradual decrease in PBAT crystallinity caused by the hindering effect of PLA rigid molecules correlates with the shift in heat-seal initiation temperature. As mentioned above, elongated disperse morphology with higher aspect ratio of the dispersed phase compared to spherical dispersed domain, is formed through film cast process. This enhances the adhesion process by providing higher contact area. The blends also show higher toughness and better puncture resistance, which is an asset for flexible packaging applications and would enhance the mechanical performance of the seal layer.
Collapse
Affiliation(s)
- R. Y. Tabasi
- Chemical Engineering Department , Polytechnique Montreal, Montreal, QC , Canada
| | - A. Ajji
- Chemical Engineering Department , Polytechnique Montreal, Montreal, QC , Canada
| |
Collapse
|
33
|
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 2017; 35:530-544. [DOI: 10.1016/j.biotechadv.2017.05.006] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
34
|
Jegat C, Virgilio N, Favis BD. Self-assembly of oil microdroplets at the interface in co-continuous polymer blends. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
A novel route to the generation of porous scaffold based on the phase morphology control of co-continuous poly(ε-caprolactone)/polylactide blend in supercritical CO 2. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Investigate the Effect of Thawing Process on the Self-Assembly of Silk Protein for Tissue Applications. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4263762. [PMID: 28367442 PMCID: PMC5359440 DOI: 10.1155/2017/4263762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/16/2016] [Accepted: 12/26/2016] [Indexed: 01/16/2023]
Abstract
Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of -80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of -80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold.
Collapse
|
37
|
Huang A, Jiang Y, Napiwocki B, Mi H, Peng X, Turng LS. Fabrication of poly(ε-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Adv 2017. [DOI: 10.1039/c7ra06987a] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional fibrillated interconnected porous poly(ε-caprolactone) scaffolds were prepared by microcellular injection molding and polymer leaching.
Collapse
Affiliation(s)
- An Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing
- South China University of Technology
- Guangzhou
- China
- Department of Mechanical Engineering
| | - Yongchao Jiang
- Department of Mechanical Engineering
- University of Wisconsin-Madison
- Madison
- USA
- Wisconsin Institute for Discovery
| | - Brett Napiwocki
- Wisconsin Institute for Discovery
- University of Wisconsin-Madison
- Madison
- USA
- Department of Biomedical Engineering
| | - Haoyang Mi
- National Engineering Research Center of Novel Equipment for Polymer Processing
- South China University of Technology
- Guangzhou
- China
- Department of Mechanical Engineering
| | - Xiangfang Peng
- National Engineering Research Center of Novel Equipment for Polymer Processing
- South China University of Technology
- Guangzhou
- China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering
- University of Wisconsin-Madison
- Madison
- USA
- Wisconsin Institute for Discovery
| |
Collapse
|
38
|
Guarino V, D’Albore M, Altobelli R, Ambrosio L. Polymer Bioprocessing to Fabricate 3D Scaffolds for Tissue Engineering. INT POLYM PROC 2016. [DOI: 10.3139/217.3239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Traditional methods for polymer processing involve the use of hazardous organic solvents which may compromise the biological function of scaffolds in tissue engineering. Indeed, the toxic effect of them on biological microenvironment has a tremendous impact on cell fate so altering the main activities involved in in vitro tissue formation. To date, extensive researches focus on seeking newer methods for bio-safely processing polymeric biomaterials to be implanted in the human body. Here, we aim at over viewing two approaches based on solvent free or green solvent based processes in order to identify alternative solutions to fabricate bio-inspired scaffolds to be successfully used in regenerative and degenerative medicine.
Collapse
Affiliation(s)
- V. Guarino
- Institute for Polymers , Composites and Biomaterials, National Research Council of Italy, Naples , Italy
| | - M. D’Albore
- Institute for Polymers , Composites and Biomaterials, National Research Council of Italy, Naples , Italy
| | - R. Altobelli
- Institute for Polymers , Composites and Biomaterials, National Research Council of Italy, Naples , Italy
| | - L. Ambrosio
- Institute for Polymers , Composites and Biomaterials, National Research Council of Italy, Naples , Italy
| |
Collapse
|
39
|
Kalaithong W, Molloy R, Theerathanagorn T, Janvikul W. Novel poly(l-lactide-co-caprolactone)/gelatin porous scaffolds for use in articular cartilage tissue engineering: Comparison of electrospinning and wet spinning processing methods. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wichaya Kalaithong
- Biomedical Polymers Technology Unit, Department of Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai Thailand 50200
| | - Robert Molloy
- Biomedical Polymers Technology Unit, Department of Chemistry, Faculty of Science; Chiang Mai University; Chiang Mai Thailand 50200
- Materials Science Research Center, Faculty of Science; Chiang Mai University; Chiang Mai Thailand 50200
| | - Tharinee Theerathanagorn
- National Metal and Materials Technology Center, National Science and Technology Development Agency; Thailand Science Park Pathum Thani Thailand 12120
| | - Wanida Janvikul
- National Metal and Materials Technology Center, National Science and Technology Development Agency; Thailand Science Park Pathum Thani Thailand 12120
| |
Collapse
|
40
|
Kabbara M, Gancheva T, Gazil O, Virgilio N. Preparation of Porous Organogels Using Water Soluble Polymer Templates. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohamad Kabbara
- CREPEC; Department of Chemical Engineering; Polytechnique Montréal; Montréal Québec H2A 3A7 Canada
| | - Teodora Gancheva
- CREPEC; Department of Chemical Engineering; Polytechnique Montréal; Montréal Québec H2A 3A7 Canada
| | - Olivier Gazil
- CREPEC; Department of Chemical Engineering; Polytechnique Montréal; Montréal Québec H2A 3A7 Canada
| | - Nick Virgilio
- CREPEC; Department of Chemical Engineering; Polytechnique Montréal; Montréal Québec H2A 3A7 Canada
| |
Collapse
|
41
|
Allaf RM, Rivero IV, Ivanov IN. Fabrication and characterization of multiwalled carbon nanotube–loaded interconnected porous nanocomposite scaffolds. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1201761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Effects of nanoparticles on the morphology of immiscible polymer blends – Challenges and opportunities. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.02.023] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Iida R, Yonezu T, Shinkawa Y, Nagai K. Reversible selectivity of water/organic solvent mixtures in poly(lactic acid) film. J Appl Polym Sci 2016. [DOI: 10.1002/app.43822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ryo Iida
- Department of Applied Chemistry; Meiji University; 1-1-1 Higashi-Mita Tama-Ku, Kawasaki 214-8571 Japan
| | - Tomoki Yonezu
- Department of Applied Chemistry; Meiji University; 1-1-1 Higashi-Mita Tama-Ku, Kawasaki 214-8571 Japan
| | - Yasuaki Shinkawa
- Department of Applied Chemistry; Meiji University; 1-1-1 Higashi-Mita Tama-Ku, Kawasaki 214-8571 Japan
| | - Kazukiyo Nagai
- Department of Applied Chemistry; Meiji University; 1-1-1 Higashi-Mita Tama-Ku, Kawasaki 214-8571 Japan
| |
Collapse
|
44
|
Hickey RJ, Gillard TM, Irwin MT, Lodge TP, Bates FS. Structure, viscoelasticity, and interfacial dynamics of a model polymeric bicontinuous microemulsion. SOFT MATTER 2016; 12:53-66. [PMID: 26439750 DOI: 10.1039/c5sm02009c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have systematically studied the equilibrium structure and dynamics of a polymeric bicontinuous microemulsion (BμE) composed of poly(cyclohexylethylene) (PCHE), poly(ethylene) (PE), and a volumetrically symmetric PCHE-PE diblock copolymer, using dynamic mechanical spectroscopy, small angle X-ray and neutron scattering, and transmission electron microscopy. The BμE was investigated over an 80 °C temperature range, revealing a structural evolution and a rheological response not previously recognized in such systems. As the temperature is reduced below the point associated with the lamellar-disorder transition at compositions adjacent to the microemulsion channel, the interfacial area per chain of the BμE approaches that of the neat (undiluted) lamellar diblock copolymer. With increasing temperature, the diblock-rich interface swells through homopolymer infiltration. Time-temperature-superposed linear dynamic data obtained as a function of frequency show that the viscoelastic response of the BμE is strikingly similar to that of the fluctuating pure diblock copolymer in the disordered state, which we associate with membrane undulations and the breaking and reforming of interfaces. This work provides new insights into the structure and dynamics that characterize thermodynamically stable BμEs in the limits of relatively weak and strong segregation.
Collapse
Affiliation(s)
- Robert J Hickey
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy M Gillard
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Matthew T Irwin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Timothy P Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
45
|
Lv Q, Wu D, Xie H, Peng S, Chen Y, Xu C. Crystallization of poly(ε-caprolactone) in its immiscible blend with polylactide: insight into the role of annealing histories. RSC Adv 2016. [DOI: 10.1039/c6ra07752h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cold crystallization of PLA can improve its affinity to PCL in their blends, and crystallized PLA domains have better nucleation effect to PCL crystallization relative to amorphous PLA ones.
Collapse
Affiliation(s)
- Qiaolian Lv
- School of Chemistry & Chemical Engineering
- Yangzhou University
- China
- Provincial Key Laboratory of Environmental Engineering & Materials
- China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering
- Yangzhou University
- China
- Provincial Key Laboratory of Environmental Engineering & Materials
- China
| | - Hui Xie
- School of Chemistry & Chemical Engineering
- Yangzhou University
- China
| | - Sheng Peng
- School of Chemistry & Chemical Engineering
- Yangzhou University
- China
| | - Yang Chen
- School of Chemistry & Chemical Engineering
- Yangzhou University
- China
- Provincial Key Laboratory of Environmental Engineering & Materials
- China
| | - Chunjiang Xu
- School of Chemistry & Chemical Engineering
- Yangzhou University
- China
- Provincial Key Laboratory of Environmental Engineering & Materials
- China
| |
Collapse
|
46
|
Dou R, Li S, Shao Y, Yin B, Yang M. Insight into the formation of a continuous sheath structure for the PS phase in tri-continuous PVDF/PS/HDPE blends. RSC Adv 2016. [DOI: 10.1039/c5ra22555h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hierarchical tri-continuous structure is formed and controlled in PVDF/PS/HDPE ternary blends. A very high level of PS continuity, about 80%, is achieved only with a PS volume composition as low as 11 vol%.
Collapse
Affiliation(s)
- Rui Dou
- College of Polymer Science and Engineering
- Sichuan University
- State Key Laboratory of Polymer Materials Engineering
- Chengdu
- China
| | - Shuanglin Li
- College of Polymer Science and Engineering
- Sichuan University
- State Key Laboratory of Polymer Materials Engineering
- Chengdu
- China
| | - Yan Shao
- College of Polymer Science and Engineering
- Sichuan University
- State Key Laboratory of Polymer Materials Engineering
- Chengdu
- China
| | - Bo Yin
- College of Polymer Science and Engineering
- Sichuan University
- State Key Laboratory of Polymer Materials Engineering
- Chengdu
- China
| | - Mingbo Yang
- College of Polymer Science and Engineering
- Sichuan University
- State Key Laboratory of Polymer Materials Engineering
- Chengdu
- China
| |
Collapse
|
47
|
Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol 2015; 131:87-104. [DOI: 10.1016/j.pneurobio.2015.06.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023]
|
48
|
Trifkovic M, Hedegaard AT, Sheikhzadeh M, Huang S, Macosko CW. Stabilization of PE/PEO Cocontinuous Blends by Interfacial Nanoclays. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00354] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Milana Trifkovic
- Department
of Chemical Engineering and Petroleum Engineering, University of Calgary, Calgary, Alberta Canada T2N 1N4
| | - Aaron T. Hedegaard
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mehdi Sheikhzadeh
- Instrumentation & Control Engineering Technology, Lambton College, Sarnia, Canada N7S 6K4
| | - Sijia Huang
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher W. Macosko
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
49
|
Allaf RM, Rivero IV, Ivanov IN. Fabrication of co-continuous poly(ε-caprolactone)/polyglycolide blend scaffolds for tissue engineering. J Appl Polym Sci 2015. [DOI: 10.1002/app.42471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rula M. Allaf
- Department of Industrial Engineering; German-Jordanian University; Amman 11180 Jordan
| | - Iris V. Rivero
- Department of Industrial and Manufacturing Systems Engineering; Iowa State University; Ames 50011 Iowa
| | - Ilia N. Ivanov
- Center for Nanophase Materials Sciences; Oak Ridge National Laboratory; Oak Ridge 37831 Tennessee
| |
Collapse
|
50
|
Chitosan surface modification of fully interconnected 3D porous poly(ε-caprolactone) by the LbL approach. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|