1
|
Panez-Toro I, Heymann D, Gouin F, Amiaud J, Heymann MF, Córdova LA. Roles of inflammatory cell infiltrate in periprosthetic osteolysis. Front Immunol 2023; 14:1310262. [PMID: 38106424 PMCID: PMC10722268 DOI: 10.3389/fimmu.2023.1310262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Classically, particle-induced periprosthetic osteolysis at the implant-bone interface has explained the aseptic loosening of joint replacement. This response is preceded by triggering both the innate and acquired immune response with subsequent activation of osteoclasts, the bone-resorbing cells. Although particle-induced periprosthetic osteolysis has been considered a foreign body chronic inflammation mediated by myelomonocytic-derived cells, current reports describe wide heterogeneous inflammatory cells infiltrating the periprosthetic tissues. This review aims to discuss the role of those non-myelomonocytic cells in periprosthetic tissues exposed to wear particles by showing original data. Specifically, we discuss the role of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+) coexisting with CD68+/TRAP- multinucleated giant cells associated with both polyethylene and metallic particles infiltrating retrieved periprosthetic membranes. This review contributes valuable insight to support the complex cell and molecular mechanisms behind the aseptic loosening theories of orthopedic implants.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
- The University of Sheffield, Dept of Oncology and Metabolism, Sheffield, United Kingdom
| | - François Gouin
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
| | - Jérôme Amiaud
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
| | - Marie-Françoise Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Oral and Maxillofacial Surgery, Clínica MEDS, Santiago, Chile
| |
Collapse
|
2
|
Shen H, Kushioka J, Toya M, Utsunomiya T, Hirata H, Huang EE, Tsubosaka M, Gao Q, Li X, Teissier V, Zhang N, Goodman SB. Sex differences in the therapeutic effect of unaltered versus NFκB sensing IL-4 over-expressing mesenchymal stromal cells in a murine model of chronic inflammatory bone loss. Front Bioeng Biotechnol 2022; 10:962114. [PMID: 36046680 PMCID: PMC9421000 DOI: 10.3389/fbioe.2022.962114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Wear particles from joint arthroplasties induce chronic inflammation associated with prolonged upregulation of nuclear factor kappa-B (NF-κB) signaling in macrophages and osteoclasts, which leads to osteolysis and implant loosening. Mesenchymal stromal cell (MSC)-based therapy showed great potential for immunomodulation and mitigation of osteolysis in vivo, especially in the chronic phase of inflammation. We previously generated genetically modified MSCs that secrete the anti-inflammatory cytokine interleukin 4 (IL-4) in response to NF-κB activation (NFκB-IL-4 MSCs). However, whether the impact of sexual difference in the internal environment can alter the therapeutic effects of IL-4 over-secreting MSCs that simultaneously mitigate prolonged inflammation and enhance bone formation remains unknown. This study investigated the therapeutic effects of unaltered MSCs versus NFκB-IL-4 MSCs in mitigating chronic inflammation and enhancing bone formation in male and female mice. The murine model was established by continuous infusion of polyethylene particles contaminated with lipopolysaccharide (cPE) into the medullary cavity of the distal femur for 6 weeks to induce chronic inflammation. Unaltered MSCs or NFκB-IL-4 MSCs were infused into the femoral intramedullary cavity in sex-matched groups beginning 3 weeks after primary surgery. Femurs were harvested at 6 weeks, and bone marrow density was measured with micro-computational tomography. Numbers of osteoclast-like cells, osteoblasts, and macrophages were evaluated with histochemical and immunofluorescence staining. cPE infusion resulted in severe bone loss at the surgery site, increased tartrate-resistant acid phosphatase positive osteoclasts and M1 pro-inflammatory macrophages, and decreased alkaline phosphatase expression. MSC-based therapy effectively decreased local bone loss and polarized M1 macrophages into an M2 anti-inflammatory phenotype. In females, unaltered MSCs demonstrated a larger impact in enhancing the osteogenesis, but they demonstrated similar anti-inflammatory effects compared to NFκB-IL-4 MSCs. These results demonstrated that local inflammatory bone loss can be effectively modulated via MSC-based treatments in a sexually dimorphic manner, which could be an efficacious therapeutic strategy for treatment of periprosthetic osteolysis in both genders.
Collapse
Affiliation(s)
- Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ejun Elijah Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- *Correspondence: Stuart B. Goodman,
| |
Collapse
|
3
|
Zhou C, Wang Y, Meng J, Yao M, Xu H, Wang C, Bi F, Zhu H, Yang G, Shi M, Yan S, Wu H. Additive Effect of Parathyroid Hormone and Zoledronate Acid on Prevention Particle Wears-Induced Implant Loosening by Promoting Periprosthetic Bone Architecture and Strength in an Ovariectomized Rat Model. Front Endocrinol (Lausanne) 2022; 13:871380. [PMID: 35546997 PMCID: PMC9084285 DOI: 10.3389/fendo.2022.871380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Implant-generated particle wears are considered as the major cause for the induction of implant loosening, which is more susceptible to patients with osteoporosis. Monotherapy with parathyroid hormone (PTH) or zoledronate acid (ZOL) has been proven efficient for preventing early-stage periprosthetic osteolysis, while the combination therapy with PTH and ZOL has exerted beneficial effects on the treatment of posterior lumbar vertebral fusion and disuse osteopenia. However, PTH and ZOL still have not been licensed for the treatment of implant loosening to date clinically. In this study, we have explored the effect of single or combined administration with PTH and ZOL on implant loosening in a rat model of osteoporosis. After 12 weeks of ovariectomized surgery, a femoral particle-induced periprosthetic osteolysis model was established. Vehicle, PTH (5 days per week), ZOL (100 mg/kg per week), or combination therapy was utilized for another 6 weeks before sacrifice, followed by micro-CT, histology, mechanical testing, and bone turnover examination. PTH monotherapy or combined PTH with ZOL exerted a protective effect on maintaining implant stability by elevating periprosthetic bone mass and inhibiting pseudomembrane formation. Moreover, an additive effect was observed when combining PTH with ZOL, resulting in better fixation strength, higher periprosthetic bone mass, and less pseudomembrane than PTH monotherapy. Taken together, our results suggested that a combination therapy of PTH and ZOL might be a promising approach for the intervention of early-stage implant loosening in patients with osteoporosis.
Collapse
Affiliation(s)
- Chenhe Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yangxin Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jiahong Meng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Huikang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fanggang Bi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanxiao Zhu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Guang Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Mingmin Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Haobo Wu, ; Shigui Yan, ; Mingmin Shi,
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Haobo Wu, ; Shigui Yan, ; Mingmin Shi,
| | - Haobo Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Haobo Wu, ; Shigui Yan, ; Mingmin Shi,
| |
Collapse
|
4
|
Yu Y, Jiang L, Li J, Lei L, Li H. Hexokinase 2-mediated glycolysis promotes receptor activator of NF-κB ligand expression in Porphyromonas gingivalis lipopolysaccharide-treated osteoblasts. J Periodontol 2021; 93:1036-1047. [PMID: 34585393 DOI: 10.1002/jper.21-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/25/2021] [Accepted: 09/19/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glucose metabolism plays a pivotal role in sustaining the inflammatory response to microbial stimulation by providing sufficient energy in immune cells. The main purpose of our study was to explore whether hexokinase 2 (HK2)-mediated glycolysis affected the expression of receptor activator of NF-κB Ligand (RANKL) in Porphyromonas gingivalis lipopolysaccharide (P. gingivalis-LPS)-treated osteoblasts and evaluate the potential involvement of the AKT/PI3K pathway activation during HK2-mediated glycolysis. METHODS Primary mice osteoblasts were treated with P. gingivalis-LPS, whereas the HK2 inhibitor (Lonidamine, LND) and small interference RNA were used to restrain HK2 expression. Conditioned medium from osteoblasts was utilized for culturing osteoclast precursors. The mRNA and protein levels of genes involved in glycolysis and bone metabolism including RANKL and osteoprotegerin (OPG) were detected by real-time PCR and western blotting. HK2 and lactate levels were detected by ELISA. Tartrate-resistant acid phosphatase (TRAP) staining was utilized to assess osteoclast formation. The involvement of the AKT/PI3K pathway in osteoblasts was explored by Western blotting. RESULTS P. gingivalis-LPS enhanced HK2 expression along with rising glycolysis in osteoblasts. LND and HK2-knockdown decreased RANKL expression and the RANKL/OPG ratio in osteoblasts, leading to less osteoclast formation from osteoclast precursors as evidenced by TRAP staining, while the osteogenic potential and proliferation of osteoblasts were not affected by HK2-knockdown. Moreover, P. gingivalis-LPS activated the AKT/PI3K pathway, which could regulate HK2 and RANKL expression in osteoblasts. CONCLUSIONS HK2-mediated glycolysis promoted RANKL in osteoblasts and enhanced osteoclast differentiation. Targeting glycolysis may provide novel therapeutic methods for reducing alveolar bone loss.
Collapse
Affiliation(s)
- Yi Yu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lishan Jiang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingwen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lang Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Abstract
AbstractThe success of implant performance and arthroplasty is based on several factors, including oxidative stress-induced osteolysis. Oxidative stress is a key factor of the inflammatory response. Implant biomaterials can release wear particles which may elicit adverse reactions in patients, such as local inflammatory response leading to tissue damage, which eventually results in loosening of the implant. Wear debris undergo phagocytosis by macrophages, inducing a low-grade chronic inflammation and reactive oxygen species (ROS) production. In addition, ROS can also be directly produced by prosthetic biomaterial oxidation. Overall, ROS amplify the inflammatory response and stimulate both RANKL-induced osteoclastogenesis and osteoblast apoptosis, resulting in bone resorption, leading to periprosthetic osteolysis. Therefore, a growing understanding of the mechanism of oxidative stress-induced periprosthetic osteolysis and anti-oxidant strategies of implant design as well as the addition of anti-oxidant agents will help to improve implants’ performances and therapeutic approaches.
Collapse
|
6
|
Fibroblast-like cells change gene expression of bone remodelling markers in transwell cultures. Eur J Med Res 2020; 25:52. [PMID: 33121539 PMCID: PMC7596965 DOI: 10.1186/s40001-020-00453-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Periprosthetic fibroblast-like cells (PPFs) play an important role in aseptic loosening of arthroplasties. Various studies have examined PPF behavior in monolayer culture systems. However, the periprosthetic tissue is a three-dimensional (3D) mesh, which allows the cells to interact in a multidirectional way. The expression of bone remodeling markers of fibroblast-like cells in a multilayer environment changes significantly versus monolayer cultures without the addition of particles or cytokine stimulation. Gene expression of bone remodeling markers was therefore compared in fibroblast-like cells from different origins and dermal fibroblasts under transwell culture conditions versus monolayer cultures. Methods PPFs from periprosthetic tissues (n = 12), osteoarthritic (OA) synovial fibroblast-like cells (SFs) (n = 6), and dermal fibroblasts (DFs) were cultured in monolayer (density 5.5 × 103/cm2) or multilayer cultures (density 8.5 × 105/cm2) for 10 or 21 days. Cultures were examined via histology, TRAP staining, immunohistochemistry (anti-S100a4), and quantitative real-time PCR. Results Fibroblast-like cells (PPFs/SFs) and dermal fibroblasts significantly increased the expression of RANKL and significantly decreased the expression of ALP, COL1A1, and OPG in multilayer cultures. PPFs and SFs in multilayer cultures further showed a higher expression of cathepsin K, MMP-13, and TNF-α. In multilayer PPF cultures, the mRNA level of TRAP was also found to be significantly increased. Conclusion The multilayer cultures are able to induce significant expression changes in fibroblast-like cells depending on the nature of cellular origin without the addition of any further stimulus. This system might be a useful tool to get more in vivo like results regarding fibroblast-like cell cultures.
Collapse
|
7
|
Wang Q, Ge G, Liang X, Bai J, Wang W, Zhang W, Zheng K, Yang S, Wei M, Yang H, Xu Y, Liu B, Geng D. Punicalagin ameliorates wear-particle-induced inflammatory bone destruction by bi-directional regulation of osteoblastic formation and osteoclastic resorption. Biomater Sci 2020; 8:5157-5171. [PMID: 32840273 DOI: 10.1039/d0bm00718h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periprosthetic osteolysis (PPO) and subsequent aseptic loosening are the main causes of implant failure and revision surgery. Emerging evidence has suggested that wear-particle-induced chronic inflammation, osteoblast inhibition and osteoclast formation at the biointerface of implant materials are responsible for PPO. Punicalagin (PCG), a polyphenolic compound molecularly extracted from pomegranate rinds, plays a critical role in antioxidant, anticancer and anti-inflammatory activities. However, whether PCG could attenuate chronic inflammation and bone destruction at sites of titanium (Ti)-particle-induced osteolysis remains to be determined. In this study, we explored the effect of PCG on Ti-particle-induced osteolysis in vivo and osteoblast and osteoclast differentiation in vitro. We found that PCG could relieve wear-particle-induced bone destruction in a murine calvarial osteolysis model by increasing bone formation activity and suppressing bone resorption activity. PCG treatment also reduced the Ti-particle-induced inflammatory response in vivo and vitro. In addition, we also observed that PCG promotes osteogenic differentiation of MC3T3-E1 cells under inflammatory conditions and inhibits RANKL-induced osteoclast formation of bone marrow-derived macrophages (BMMs). Meanwhile, the induction of the RANKL to OPG ratio was reversed by PCG treatment in vivo and in vitro, which demonstrated that PCG could also indirectly inhibit osteoclastogenesis. Collectively, our findings suggest that PCG represents a potential approach for the treatment of wear-particle-induced inflammatory osteolysis.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rezende TMB, Ribeiro Sobrinho AP, Vieira LQ, Sousa MGDC, Kawai T. Mineral trioxide aggregate (MTA) inhibits osteoclastogenesis and osteoclast activation through calcium and aluminum activities. Clin Oral Investig 2020; 25:1805-1814. [PMID: 32789653 DOI: 10.1007/s00784-020-03483-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the effect(s) of mineral trioxide aggregate (MTA) on in vitro RANKL-mediated osteoclast-dependent bone resorption events and the influence of Ca2+ and Al3+ on the osteoclastogenesis inhibition by MTA. MATERIALS AND METHODS Two types of osteoclast precursors, RAW 264.7 (RAW) cell line or bone marrow cells (obtained from BALB/c mice and stimulated with recombinant (r) macrophage colony stimulation factor (M-CSF), were stimulated with or without recombinant (r) activator of nuclear kappa B ligand (RANKL), in the presence or absence of MTA for 6 to 8 days. White Angelus MTA and Bios MTA (Angelus, Londrina, Paraná, Brazil) were prepared and inserted into capillary tubes (direct contact surface = 0.50 mm2 and 0.01 mm2). Influence of MTA on these types of osteoclast precursors was measured by the number of differentiated tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (RAW and bone marrow cells), TRAP enzyme activity (RAW cells), cathepsin K gene expression (RAW cells), and resorptive pit formation (RAW cells) by mature osteoclasts. Besides, RAW cells were also stimulated with Ca2+ and Al3+ to evaluate the influence of these ions on MTA anti-osteoclastogenic potential. RESULTS In bone marrow and RAW cells, the number of TRAP-positive mature osteoclast cells induced by rRANKL was significantly inhibited by the presence of MTA compared with control rRANKL stimulation without MTA (p < 0.05), along with the reduction of TRAP enzyme activity (p < 0.05) and the low expression of cathepsin K gene (p < 0.05). In contrast, to control mature osteoclasts, the resorption area on dentin was significantly decreased for mature osteoclasts incubated with MTA (p < 0.05). rRANKL-stimulated RAW cells treated with Ca2+ and Al3+ decreased the number of osteoclasts cells. Besides, the aluminum oxide was the dominant suppressor of the osteoclastogenesis process. CONCLUSIONS MTA significantly suppressed RANKL-mediated osteoclastogenesis and osteoclast activity and, therefore, appears able to suppress bone resorption events in periapical lesions. This process might be related to Ca2+ and Al3+ activities. CLINICAL RELEVANCE MTA is an important worldwidely acknowleged biomaterial. The knowledge about its molecular activities on osteoclasts might contribute to improving the understanding of its clinical efficacy.
Collapse
Affiliation(s)
- Taia Maria Berto Rezende
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil. .,Curso de Odontologia, Universidade Católica de Brasília, Brasília, DF, Brazil. .,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| | - Antônio Paulino Ribeiro Sobrinho
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, NOVA Southeastern University, Fort Lauderdale, FL, USA.,Cell Therapy Institute, Center for Collaborative Research, NOVA Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
9
|
Zhang L, Haddouti EM, Welle K, Burger C, Wirtz DC, Schildberg FA, Kabir K. The Effects of Biomaterial Implant Wear Debris on Osteoblasts. Front Cell Dev Biol 2020; 8:352. [PMID: 32582688 PMCID: PMC7283386 DOI: 10.3389/fcell.2020.00352] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Aseptic loosening subsequent to periprosthetic osteolysis is the leading cause for the revision of arthroplasty failure. The biological response of macrophages to wear debris has been well established, however, the equilibrium of bone remodeling is not only dictated by osteoclastic bone resorption but also by osteoblast-mediated bone formation. Increasing evidence shows that wear debris significantly impair osteoblastic physiology and subsequent bone formation. In the present review, we update the current state of knowledge regarding the effect of biomaterial implant wear debris on osteoblasts. The interaction of osteoblasts with osteoclasts and macrophages under wear debris challenge, and potential treatment options targeting osteoblasts are also presented.
Collapse
Affiliation(s)
- Li Zhang
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - El-Mustapha Haddouti
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kristian Welle
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Koroush Kabir
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Hu X, Yin Z, Chen X, Jiang G, Yang D, Cao Z, Li S, Liu Z, Peng D, Dou P. Tussilagone Inhibits Osteoclastogenesis and Periprosthetic Osteolysis by Suppressing the NF-κB and P38 MAPK Signaling Pathways. Front Pharmacol 2020; 11:385. [PMID: 32317967 PMCID: PMC7146087 DOI: 10.3389/fphar.2020.00385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Background Aseptic prosthetic loosening is one of the main factors causing poor prognosis of limb function after joint replacement and requires troublesome revisional surgery. It is featured by wear particle-induced periprosthetic osteolysis mediated by excessive osteoclasts activated in inflammatory cell context. Some natural compounds show antiosteoclast traits with high cost-efficiency and few side effects. Tussilagone (TUS), which is the main functional extract from Tussilago farfara generally used for relieving cough, asthma, and eliminating phlegm in traditional medicine has been proven to appease several RAW264.7-mediated inflammatory diseases via suppressing osteoclast-related signaling cascades. However, whether and how TUS can improve aseptic prosthetic loosening via modulating osteoclast-mediated bone resorption still needs to be answered. Methods We established a murine calvarial osteolysis model to detect the preventative effect of TUS on osteolysis in vivo. Micro-CT scanning and histomorphometric analysis were used to determine the variation of bone resorption and osteoclastogenesis. The anti–osteoclast-differentiation and anti–bone-resorption bioactivities of TUS in vitro were investigated using bone slice resorption pit evaluation, and interference caused by cytotoxicity of TUS was excluded according to the CCK-8 assay results. Quantitative polymerase chain reaction (qPCR) analysis was applied to prove the decreased expression of osteoclast-specific genes after TUS treatment. The inhibitory effect of TUS on NF-κB and p38 MAPK signaling pathways was testified by Western blot and NF-κB-linked luciferase reporter gene assay. Results TUS better protected bones against osteolysis in murine calvarial osteolysis model with reduced osteoclasts than those in the control group. In vitro studies also showed that TUS exerted antiosteoclastogenesis and anti–bone-resorption effects in both bone marrow macrophages (BMMs) and RAW264.7 cells, as evidenced by the decline of osteoclast-specific genes according to qPCR. Western blotting revealed that TUS treatment inhibited IκBα degradation and p38 phosphorylation. Conclusions Collectively, our studies proved for the first time that TUS inhibits osteoclastogenesis by suppressing the NF-κB and p38 MAPK signaling pathways, therefore serving as a potential natural compound to treat periprosthetic osteolysis-induced aseptic prosthetic loosening.
Collapse
Affiliation(s)
- Xuantao Hu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziqing Yin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangyao Jiang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Daishui Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziqin Cao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuai Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zicheng Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dan Peng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
11
|
Qu R, Chen X, Yuan Y, Wang W, Qiu C, Liu L, Li P, Zhang Z, Vasilev K, Liu L, Hayball J, Zhao Y, Li Y, Li W. Ghrelin Fights Against Titanium Particle-Induced Inflammatory Osteolysis Through Activation of β-Catenin Signaling Pathway. Inflammation 2019; 42:1652-1665. [DOI: 10.1007/s10753-019-01026-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Diez-Escudero A, Torreggiani E, Di Pompo G, Espanol M, Persson C, Ciapetti G, Baldini N, Ginebra MP. Effect of calcium phosphate heparinization on the in vitro inflammatory response and osteoclastogenesis of human blood precursor cells. J Tissue Eng Regen Med 2019; 13:1217-1229. [PMID: 31050382 DOI: 10.1002/term.2872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/12/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022]
Abstract
The immobilization of natural molecules on synthetic bone grafts stands as a strategy to enhance their biological interactions. During the early stages of healing, immune cells and osteoclasts (OC) modulate the inflammatory response and resorb the biomaterial, respectively. In this study, heparin, a naturally occurring molecule in the bone extracellular matrix, was covalently immobilized on biomimetic calcium-deficient hydroxyapatite (CDHA). The effect of heparin-functionalized CDHA on inflammation and osteoclastogenesis was investigated using primary human cells and compared with pristine CDHA and beta-tricalcium phosphate (β-TCP). Biomimetic substrates led to lower oxidative stresses by neutrophils and monocytes than sintered β-TCP, even though no further reduction was induced by the presence of heparin. In contrast, heparinized CDHA fostered osteoclastogenesis. Optical images of stained TRAP positive cells showed an earlier and higher presence of multinucleated cells, compatible with OC at 14 days, while pristine CDHA and β-TCP present OC at 21-28 days. Although no statistically significant differences were found in the OC activity, microscopy images evidenced early stages of degradation on heparinized CDHA, compatible with osteoclastic resorption. Overall, the results suggest that the functionalization with heparin fostered the formation and activity of OC, thus offering a promising strategy to integrate biomaterials in the bone remodelling cycle by increasing their OC-mediated resorption.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Elena Torreggiani
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Cecilia Persson
- Applied Material Science, Department of Engineering Sciences, The Ångstrom Laboratory, Uppsala University, Uppsala, Sweden
| | - Gabriela Ciapetti
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain.,Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
13
|
Galliera E, Ragone V, Marazzi MG, Selmin F, Banci L, Corsi Romanelli MM. Vitamin E-stabilized UHMWPE: Biological response on human osteoblasts to wear debris. Clin Chim Acta 2018; 486:18-25. [DOI: 10.1016/j.cca.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022]
|
14
|
Wang D, Zhao C, Gao L, Wang Y, Gao X, Tang L, Zhang K, Li Z, Han J, Xiao J. NPNT promotes early-stage bone metastases in breast cancer by regulation of the osteogenic niche. J Bone Oncol 2018; 13:91-96. [PMID: 30591862 PMCID: PMC6303384 DOI: 10.1016/j.jbo.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Patients with breast cancer are often afflicted by bone metastases, while the establishment and growth of bone metastases depend on interaction between cancer cells and the host environment. Moreover, osteoblasts, which play a vital role in cancer cells survival and colonization, can form an osteogenic niche in early stage of bone metastases. Also, it is widely accepted that there is a genetic determinant during bone metastases. Nephronectin (NPNT) is an extracellular matrix protein which has shown biological activities in breast cancer metastases and osteoblasts differentiation. But the role of NPNT in mediating breast cancer bone metastases remains elusive. In the present study, we revealed that up regulation of NPNT is associated with incidence of bone metastases. What's more, NPNT could significantly enhance the tumor cell clone formation but not proliferation and migration. We further demonstrated that NPNT significantly enhance osteoblast differentiation and tumor adhesion. Thus, we proposed that cancer secreted NPNT may be a novel marker with potential value of prediction and diagnosis of breast cancer bone metastases.
Collapse
Affiliation(s)
- Dongsheng Wang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Chenglong Zhao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Liangliang Gao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
- Department of orthopedics, Shanghai Kaiyuan Orthopedic Hospital, Shanghai, China
| | - Yao Wang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Xin Gao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Liang Tang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Kun Zhang
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
| | - Zhenxi Li
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
- Coressponding authors.
| | - Jing Han
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Coressponding authors.
| | - Jianru Xiao
- Spinal Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai, China
- Coressponding authors.
| |
Collapse
|
15
|
Micrometer-Sized Titanium Particles Induce Aseptic Loosening in Rabbit Knee. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5410875. [PMID: 29651439 PMCID: PMC5831897 DOI: 10.1155/2018/5410875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/06/2018] [Accepted: 01/14/2018] [Indexed: 11/26/2022]
Abstract
Wear debris induced aseptic loosening is the leading cause of total knee arthroplasty (TKA) failure. The complex mechanism of aseptic loosening has been a major issue for introducing effective prevention and treatment methods, so a simplified yet efficient rabbit model was established to address this concern with the use of micrometer-sized titanium particles. 20 New Zealand white rabbits were selected and divided into two groups (control = 10, study = 10). A TKA surgery was then performed for each of them, with implantation of a titanium rod prosthesis which was coated evenly with micrometer-sized titanium in the study group and nothing in the control group, into right femoral medullary cavity. After 12 weeks, all the animals were euthanized and X-ray analyses, H&E staining, Goldner Masson trichrome staining, Von Kossa staining, PCR, and Western blotting of some specific mRNAs and proteins in the interface membrane tissues around the prosthesis were carried out. The implantation of a titanium rod prosthesis coated with 20 μm titanium particles into the femoral medullary cavity of rabbits caused continuous titanium particle stimulation around the prosthesis, effectively inducing osteolysis and aseptic loosening. Titanium particle-induced macrophages produce multiple inflammatory factors able to activate osteoclast differentiation through the OPG/RANKL/RANK signaling pathway, resulting in osteolysis while suppressing the function of osteoblasts and reducing bone ingrowth around the prosthesis. This model simulated the implantation and loosening process of an artificial prosthesis, which is an ideal etiological model to study the aseptic prosthetic loosening.
Collapse
|
16
|
He XB, Ma T, Zheng W, Geng QH, Guo KJ. Nano-sized titanium alloy particles inhibit the proliferation and promote the apoptosis of bone marrow mesenchymal stem cells in vitro. Mol Med Rep 2018; 17:2271-2276. [PMID: 29207046 PMCID: PMC5783474 DOI: 10.3892/mmr.2017.8105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 11/06/2017] [Indexed: 02/05/2023] Open
Abstract
Aseptic loosening of artificial joints is the leading cause of failure for patients who receive total joint arthroplasty. Prior reports indicate that bone marrow mesenchymal stem cells (BSMC) are critical in the stabilization of implanted artificial joints, and that deregulated interaction between BMSCs and artificial joint derived particles is a risk factor for aseptic loosening with an unknown mechanism. In the present study, the pathomechanisms whereby titanium and its alloy derived particles facilitate aseptic loosing were investigated in vitro. It was demonstrated that nano‑sized titanium alloy particles significantly inhibited the proliferation of BMSCs in a time and concentration dependent manner. Furthermore, it was demonstrated that the particles promoted the apoptosis of BMSCs in the same manner. Bax and Caspase‑3 expression of BMSCs were elevated when cultured with the particles. As BMSCs exhibit a critical role in the stabilization of artificial joints, the results of the present study may provide a novel direction for the management of aseptic loosening in clinics.
Collapse
Affiliation(s)
- Xiao-Bo He
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tao Ma
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Zheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qing-He Geng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Kai-Jin Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
17
|
Ciapetti G, Di Pompo G, Avnet S, Martini D, Diez-Escudero A, Montufar EB, Ginebra MP, Baldini N. Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates. Acta Biomater 2017; 50:102-113. [PMID: 27940198 DOI: 10.1016/j.actbio.2016.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/08/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Abstract
The design of synthetic bone grafts to foster bone formation is a challenge in regenerative medicine. Understanding the interaction of bone substitutes with osteoclasts is essential, since osteoclasts not only drive a timely resorption of the biomaterial, but also trigger osteoblast activity. In this study, the adhesion and differentiation of human blood-derived osteoclast precursors (OCP) on two different micro-nanostructured biomimetic hydroxyapatite materials consisting in coarse (HA-C) and fine HA (HA-F) crystals, in comparison with sintered stoichiometric HA (sin-HA, reference material), were investigated. Osteoclasts were induced to differentiate by RANKL-containing supernatant using cell/substrate direct and indirect contact systems, and calcium (Ca++) and phosphorus (P5+) in culture medium were measured. We observed that OCP adhered to the experimental surfaces, and that osteoclast-like cells formed at a rate influenced by the micro- and nano-structure of HA, which also modulate extracellular Ca++. Qualitative differences were found between OCP on biomimetic HA-C and HA-F and their counterparts on plastic and sin-HA. On HA-C and HA-F cells shared typical features of mature osteoclasts, i.e. podosomes, multinuclearity, tartrate acid phosphatase (TRAP)-positive staining, and TRAP5b-enzyme release. However, cells were less in number compared to those on plastic or on sin-HA, and they did not express some specific osteoclast markers. In conclusion, blood-derived OCP are able to attach to biomimetic and sintered HA substrates, but their subsequent fusion and resorptive activity are hampered by surface micro-nano-structure. Indirect cultures suggest that fusion of OCP is sensitive to topography and to extracellular calcium. STATEMENT OF SIGNIFICANCE The novelty of the paper is the differentiation of human blood-derived osteoclast precursors, instead of mouse-derived macrophages as used in most studies, directly on biomimetic micro-nano structured HA-based surfaces, as triggered by osteoblast-produced factors (RANKL/OPG), and influenced by chemistry and topography of the substrate(s). Biomimetic HA-surfaces, like those obtained in calcium phosphate cements, are very different from the conventional calcium phosphate ceramics, both in terms of topography and ion exchange. The role of these factors in modulating precursors' differentiation and activity is analysed. The system is closely reproducing the physiological process of attachment of host cells and further maturation to osteoclasts toward resorption of the substrate, which occurs in vivo after filling bone defects with the calcium phosphate grafts.
Collapse
Affiliation(s)
- Gabriela Ciapetti
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Desirée Martini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia, BarcelonaTech (UPC), Barcelona, Spain.
| | - Edgar B Montufar
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia, BarcelonaTech (UPC), Barcelona, Spain.
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia, BarcelonaTech (UPC), Barcelona, Spain; Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
18
|
Hartmann ES, Köhler MI, Huber F, Redeker JI, Schmitt B, Schmitt-Sody M, Summer B, Fottner A, Jansson V, Mayer-Wagner S. Factors regulating bone remodeling processes in aseptic implant loosening. J Orthop Res 2017; 35:248-257. [PMID: 27116254 DOI: 10.1002/jor.23274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/19/2016] [Indexed: 02/04/2023]
Abstract
This study was undertaken to screen periprosthetic tissues (PPTs) under specified conditions for a series of molecular components and describe them in bone remodeling processes within aseptic loosening. PPT samples were obtained from patients undergoing revision surgery of endoprostheses (n = 24) and synovial tissues from patients with OA (control) (n = 18), patients with any form of inflammatory arthritides were excluded. Tissue samples were examined via microbiology, histology (H&E, TRAP), immunohistochemistry (CD68/anti-S100a4), quantitative real-time PCR (ALP, COL1A1, cathepsin K, M-CSF, MMP13, OPG, RANK, RANKL, TNF-α, and TRAP) and an endotoxin-assay. PPT samples contained a variety of cellular components and stained positive for TRAP (56%), CD68 (100%), and S100a4 (100%). Wear debris were found in cells staining positive for CD68 and S100a4. In PPTs significantly higher ALP, COL1A1, MMP-13, RANK, RANKL, and TRAP expression were found along with a significantly higher RANKL/OPG ratio and a significantly lower OPG expression. No significant difference was observed for M-CSF, TNF-α, cathepsin K, and endotoxin levels. In conclusion we found osteogenic proteins (ALP, COL1A1), a proteolytic enzyme (MMP-13), markers for osteoclast differentiation (RANK, RANKL), and osteoclast activity (TRAP) to be increased in PPT, whereas OPG expression decreased significantly in comparison to control. We present data about a large series of molecular components in PPT and describe novel and key findings about their expression levels in regards to aseptic implant loosening. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:248-257, 2017.
Collapse
Affiliation(s)
- Eliza S Hartmann
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Campus Großhadern, Ludwig-Maximilians-University, Marchioninistr 15, Munich 81377, Germany
| | - Miriam I Köhler
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Campus Großhadern, Ludwig-Maximilians-University, Marchioninistr 15, Munich 81377, Germany
| | - Felicitas Huber
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Campus Großhadern, Ludwig-Maximilians-University, Marchioninistr 15, Munich 81377, Germany
| | - Julia I Redeker
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Campus Großhadern, Ludwig-Maximilians-University, Marchioninistr 15, Munich 81377, Germany
| | - Baerbel Schmitt
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Campus Großhadern, Ludwig-Maximilians-University, Marchioninistr 15, Munich 81377, Germany
| | - Marcus Schmitt-Sody
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Campus Großhadern, Ludwig-Maximilians-University, Marchioninistr 15, Munich 81377, Germany
| | - Burkhard Summer
- Department of Dermatology, Ludwig-Maximilians-University, Frauenlobstr 9-11, Munich 80337, Germany
| | - Andreas Fottner
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Campus Großhadern, Ludwig-Maximilians-University, Marchioninistr 15, Munich 81377, Germany
| | - Volkmar Jansson
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Campus Großhadern, Ludwig-Maximilians-University, Marchioninistr 15, Munich 81377, Germany
| | - Susanne Mayer-Wagner
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, Campus Großhadern, Ludwig-Maximilians-University, Marchioninistr 15, Munich 81377, Germany
| |
Collapse
|
19
|
Lemma S, Sboarina M, Porporato PE, Zini N, Sonveaux P, Di Pompo G, Baldini N, Avnet S. Energy metabolism in osteoclast formation and activity. Int J Biochem Cell Biol 2016; 79:168-180. [PMID: 27590854 DOI: 10.1016/j.biocel.2016.08.034] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/09/2016] [Accepted: 08/29/2016] [Indexed: 01/07/2023]
Abstract
Osteoclastogenesis and osteolysis are energy-consuming processes supported by high metabolic activities. In human osteoclasts derived from the fusion of monocytic precursors, we found a substantial increase in the number of mitochondria with differentiation. In mature osteoclasts, mitochondria were also increased in size, rich of cristae and arranged in a complex tubular network. When compared with immature cells, fully differentiated osteoclasts showed higher levels of enzymes of the electron transport chain, a higher mitochondrial oxygen consumption rate and a lower glycolytic efficiency, as evaluated by extracellular flux analysis and by the quantification of metabolites in the culture supernatant. Thus, oxidative phosphorylation appeared the main bioenergetic source for osteoclast formation. Conversely, we found that bone resorption mainly relied on glycolysis. In fact, osteoclast fuelling with galactose, forcing cells to depend on Oxidative Phosphorylation by reducing the rate of glycolysis, significantly impaired Type I collagen degradation, whereas non-cytotoxic doses of rotenone, an inhibitor of the mitochondrial complex I, enhanced osteoclast activity. Furthermore, we found that the enzymes associated to the glycolytic pathway are localised close to the actin ring of polarised osteoclasts, where energy-demanding activities associated with bone degradation take place. In conclusion, we demonstrate that the energy required for osteoclast differentiation mainly derives from mitochondrial oxidative metabolism, whereas the peripheral cellular activities associated with bone matrix degradation are supported by glycolysis. A better understanding of human osteoclast energy metabolism holds the potential for future therapeutic interventions aimed to target osteoclast activity in different pathological conditions of bone.
Collapse
Affiliation(s)
- Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), via di Barbiano 1/10, 40136 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, 40136 Bologna, Italy
| | - Martina Sboarina
- Pole of Pharmacology, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL) Medical School, Brussels 1200, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL) Medical School, Brussels 1200, Belgium
| | - Nicoletta Zini
- CNR - National Research Council of Italy, Institute of Molecular Genetics, 40136 Bologna, Italy; Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli (IOR), 40136 Bologna, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL) Medical School, Brussels 1200, Belgium
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), via di Barbiano 1/10, 40136 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, 40136 Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
20
|
Gallo J, Raska M, Konttinen YT, Nich C, Goodman SB. Innate immunity sensors participating in pathophysiology of joint diseases: a brief overview. J Long Term Eff Med Implants 2015; 24:297-317. [PMID: 25747032 DOI: 10.1615/jlongtermeffmedimplants.2014010825] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The innate immune system consists of functionally specialized "modules" that are activated in response to a particular set of stimuli via sensors located on the surface or inside the tissue cells. These cells screen tissues for a wide range of exogenous and endogenous danger/damage-induced signals with the aim to reject or tolerate them and maintain tissue integrity. In this line of thinking, inflammation evolved as an adaptive tool for restoring tissue homeostasis. A number of diseases are mediated by a maladaptation of the innate immune response, perpetuating chronic inflammation and tissue damage. Here, we review recent evidence on the cross talk between innate immune sensors and development of rheumatoid arthritis, osteoarthritis, and aseptic loosening of total joint replacements. In relation to the latter topic, there is a growing body of evidence that aseptic loosening and periprosthetic osteolysis results from long-term maladaptation of periprosthetic tissues to the presence of by-products continuously released from an artificial joint.
Collapse
Affiliation(s)
- Jiri Gallo
- Department of Orthopedics, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc 775 20, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine & Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Yrjo T Konttinen
- Department of Clinical Medicine, University of Helsinki and ORTON Orthopaedic Hospital of the Invalid Foundation, Helsinki, Finland
| | - Christophe Nich
- Laboratoire de Biomecanique et Biomateriaux Osteo-Articulaires - UMR CNRS 7052, Faculte de Medecine - Universite Paris 7, Paris, France; Department of Orthopaedic Surgery, European Teaching Hospital, Assistance Publique - Hopitaux de Paris
| | - Stuart B Goodman
- Department of Orthopaedic Surgery Stanford University Medical Center Redwood City, CA
| |
Collapse
|
21
|
|
22
|
Díaz-Rodríguez P, Landin M. Controlled release of indomethacin from alginate–poloxamer–silicon carbide composites decrease in-vitro inflammation. Int J Pharm 2015; 480:92-100. [DOI: 10.1016/j.ijpharm.2015.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/13/2015] [Indexed: 12/28/2022]
|
23
|
Arnala IO. Salmon calcitonin (Miacalcic ns 200 IU) in prevention of bone loss after hip replacement. Scand J Surg 2014; 101:249-54. [PMID: 23238499 DOI: 10.1177/145749691210100405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Loosening of a hip prosthesis after total arthroplasty is related to periprosthetic bone loss. Calcitonin has been used in the treatment of bone loss in osteoporosis and prevention of fractures. The main purposes of the study were firstly to evaluate the effect of calcitonin on periprosthetic bone after total hip arthroplasty, secondly investigate possible loosening of the prosthesis and thirdly examine further clinical outcome. PATIENTS AND METHODS 60 patients who underwent total hip arthroplasty using cemented Exeter prosthesis were randomized in the treatment group (salmon calcitonin 200 IU nasal spray daily + calcium 500 mg) and the placebo group (inactive nasal spray + calcium 500 mg) for six months. Bone mineral density (BMD) was measured from different locations at the time of discharge and after six and 12 months. Dynamic histomorphometry on bone biopsies taken from femoral collum was performed. Serum bone-specific alkaline phosphatase (BAP), serum osteocalcine (OC) and cross-linked N-telopeptides (NTX) were measured after one week, one month, three months and 12 months. Clinical manifestations and the incidence of fractures and loosening of the prosthesis were followed up to eight years. RESULTS Statistically there was not significant difference in bone histomorphometry between the groups. In both groups there was a significant BMD decrease in periprosthetic bone. However, the difference between the groups was not statistically significant. In the biochemical analysis NTX increased more in the Miacalcic group than in the placebo group (p = 0.013). There were no significant differences between the groups in serum BAP or OC even though the changes within the groups were statistically significant. No loosening of the prosthesis was seen during the follow-up and there was no need for revision of any reason. Four fractures were recorded in three patients. One patient sustained a periprosthetic fracture. All the patients with fractures were allocated in the placebo group. CONCLUSIONS Nasal salmon calcitonin 200 IU on a daily basis does not promote any additional value on calcium substitution to prevent bone loss after hip replacement. The durability of the Exeter prosthesis was good.
Collapse
Affiliation(s)
- I O Arnala
- Department of Orthopaedics and Traumatology, Kanta-Häme Central Hospital, Hämeenlinna, Finland.
| |
Collapse
|
24
|
How has the introduction of new bearing surfaces altered the biological reactions to byproducts of wear and modularity? Clin Orthop Relat Res 2014; 472:3699-708. [PMID: 24942963 PMCID: PMC4397759 DOI: 10.1007/s11999-014-3725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Biological responses to wear debris were largely elucidated in studies focused on conventional ultrahigh-molecular-weight polyethylene (UHMWPE) and some investigations of polymethymethacrylate cement and orthopaedic metals. However, newer bearing couples, in particular metal-on-metal but also ceramic-on-ceramic bearings, may induce different biological reactions. QUESTIONS/PURPOSES Does wear debris from the newer bearing surfaces result in different biological responses compared with the known responses observed with conventional metal-on-UHMWPE bearings? METHODS A Medline search of articles published after 1996 supplemented by a hand search of reference lists of included studies and relevant conference proceedings was conducted to identify the biological responses to orthopaedic wear debris with a focus on biological responses to wear generated from metal-on-highly crosslinked polyethylene, metal-on-metal, ceramic-on-ceramic, and ceramic-on-polyethylene bearings. Articles were selected using criteria designed to identify reports of wear debris particles and biological responses contributing to prosthesis failure. Case reports and articles focused on either clinical outcomes or tribology were excluded. A total of 83 papers met the criteria and were reviewed in detail. RESULTS Biological response to conventional UHMWPE is regulated by the innate immune response. It is clear that the physical properties of debris (size, shape, surface topography) influence biological responses in addition to the chemical composition of the biomaterials. Highly crosslinked UHMWPE particles have the potential to alter, rather than eliminate, the biological response to conventional UHMWPE. Metal wear debris can generate elevated plasma levels of cobalt and chromium ions. These entities can provoke responses that extend to the elicitation of an acquired immune response. Wear generated from ceramic devices is significantly reduced in volume and may provide the impression of an "inert" response, but clinically relevant biological reactions do occur, including granulomatous responses in periprosthetic tissues. CONCLUSIONS The material composition of the device, the physical form of the debris, and disease pathophysiology contribute to complex interactions that determine the outcome to all wear debris. Metal debris does appear to increase the complexity of the biological response with the addition of immunological responses (and possibly direct cellular cytotoxicity) to the inflammatory reaction provoked by wear debris in some patients. However, the introduction of highly crosslinked polyethylene and ceramic bearing surfaces shows promising signs of reducing key biological mechanisms in osteolysis.
Collapse
|
25
|
Prokopovich P. Interactions between mammalian cells and nano- or micro-sized wear particles: physico-chemical views against biological approaches. Adv Colloid Interface Sci 2014; 213:36-47. [PMID: 25307126 DOI: 10.1016/j.cis.2014.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/20/2014] [Accepted: 09/06/2014] [Indexed: 11/26/2022]
Abstract
Total joint arthroplasty (TJA) is a more and more frequent approach for the treatment of end-stage osteoarthritis in young and active adults; it successfully relieves joint pain and improves function significantly enhancing the health-related quality of life. Aseptic loosening and other wear-related complications are some of the most recurrent reasons for revision of TJA. This review focuses on current understanding of the biological reactions to prosthetic wear debris comparing in vivo and in vitro results. Mechanisms of interactions of various types of cells with metal, polymeric and ceramic wear particles are summarised. Alternative views based on multidisciplinary approaches are proposed to consider physico-chemical, surface parameters of wear particles (such as: particle size, geometry and charge) and material (particle chemical composition and its nature) with biological effects (cellular responses).
Collapse
|
26
|
Steinbeck MJ, Jablonowski LJ, Parvizi J, Freeman TA. The role of oxidative stress in aseptic loosening of total hip arthroplasties. J Arthroplasty 2014; 29:843-9. [PMID: 24290740 PMCID: PMC3965616 DOI: 10.1016/j.arth.2013.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 02/01/2023] Open
Abstract
This study investigated the hypothesis that wear particle-induced oxidative stress initiates osteolysis after total hip arthroplasty (THA). Patient radiographs were scored for osteolysis and periprosthetic tissues were immunostained and imaged to quantify polyethylene wear, inflammation, and five osteoinflammatory and oxidative stress-responsive factors. These included high mobility group protein-B1 (HMGB1), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), 4-hydroxynonenal (4-HNE), and nitrotyrosine (NT). The results show wear debris correlated with inflammation, 4-HNE, NT and HMGB1, whereas inflammation only correlated with NT and HMGB1. Similar to wear debris and inflammation, osteolysis correlated with HMGB1. Additionally, osteolysis correlated with COX2 and 4-HNE, but not iNOS or NT. Understanding the involvement of oxidative stress in wear-induced osteolysis will help identify diagnostic biomarkers and therapeutic targets to prevent osteolysis after THA.
Collapse
Affiliation(s)
- Marla J Steinbeck
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, Pennsylvania; Department of Orthopaedic Surgery,Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Lauren J Jablonowski
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Javad Parvizi
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania; Rothman Institute at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Theresa A Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Zeng H, Yang H, Liu X, Shi D, Cao B, Du C, Ouyang J, Yu L, Wang Y, Liao H. In vitro effects of differentially shaped hydroxyapatite microparticles on RAW264.7 cell responses. RSC Adv 2014. [DOI: 10.1039/c4ra02995j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We testin vitroeffects of differently shaped hydroxyapatite microparticles on RAW264.7 cell responses, which may provide more understanding towards the potential role of HA wear debris shapesin vivo.
Collapse
Affiliation(s)
- Huijun Zeng
- Department of Anatomy
- Key Laboratory of Construction and Detection of Guangdong Province
- Southern Medical University
- Guangzhou, China
| | - Hui Yang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou, China
| | - Xinghui Liu
- Department of Anatomy
- Key Laboratory of Construction and Detection of Guangdong Province
- Southern Medical University
- Guangzhou, China
| | - Dandan Shi
- Department of Anatomy
- Key Laboratory of Construction and Detection of Guangdong Province
- Southern Medical University
- Guangzhou, China
| | - Biao Cao
- Department of Anatomy
- Key Laboratory of Construction and Detection of Guangdong Province
- Southern Medical University
- Guangzhou, China
| | - Chang Du
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou, China
| | - Jun Ouyang
- Department of Anatomy
- Key Laboratory of Construction and Detection of Guangdong Province
- Southern Medical University
- Guangzhou, China
| | - Lei Yu
- Department of Anatomy
- Key Laboratory of Construction and Detection of Guangdong Province
- Southern Medical University
- Guangzhou, China
| | - Yingjun Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou, China
| | - Hua Liao
- Department of Anatomy
- Key Laboratory of Construction and Detection of Guangdong Province
- Southern Medical University
- Guangzhou, China
| |
Collapse
|
28
|
Jiang Y, Jia T, Gong W, Wooley PH, Yang SY. Titanium particle-challenged osteoblasts promote osteoclastogenesis and osteolysis in a murine model of periprosthestic osteolysis. Acta Biomater 2013; 9:7564-72. [PMID: 23518478 DOI: 10.1016/j.actbio.2013.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 02/07/2023]
Abstract
The current study investigates the interactive behavior of titanium alloy particle-challenged osteoblastic bone marrow stromal cells (BMSCs) and macrophage lineage cells in a murine knee-prosthesis failure model. BMSCs were isolated from male BALB/c mice femurs and induced in osteogenic medium. At 24h after isolation, BMSCs in complete induction medium were challenged with 1, 3 or 5mgml(-1) titanium particles for 7days. Culture media were collected at 2, 4 and 6days and cells were harvested at 7days for alkaline phosphatase (ALP) assay/stains. Cell proliferation in the presence of Ti particles was periodically evaluated by MTT assay. Mice implanted with titanium-pin tibial implants were given an intra-articular injection of 50μl medium containing 5×10(5) Ti particles-challenged bone-marrow-derived osteoblastic cells, followed by a repeat injection at 2weeks post-operation. Control mice with titanium-pin implants received a naïve osteoblastic cell transfusion. After sacrifice at 4weeks, the implanted knee joint of each group was collected for biomechanical pin-pullout testing, histological evaluation and reverse transcriptase polymerase chain reaction analysis of mRNA extracted from the joint tissues. Ti particles significantly stimulated the proliferation of BMSC-derived osteoblastic cells at both high and low particle concentrations (p<0.05), with no marked differences between the particle doses. ALP expression was diminished following Ti particle interactions, especially in the high-dose particle group (p<0.05). In addition, the culture media collected from short-term challenged (48h) osteoblasts significantly increased the numbers of TRAP+ cells when added to mouse peripheral blood monocytes cultures, in comparison with the monocytes cells receiving naïve osteoblasts media (p<0.05). Intra-articular introduction of the osteoblastic cells to the mouse pin-implant failure model resulted in reduced implant interfacial shear strength and thicker peri-implant soft-tissue formation, suggesting that titanium particles-challenged osteoblasts contributed to periprosthetic osteolysis. Comparison of the gene expression profiles among the peri-implant tissue samples following osteoblast injection did not find significant difference in RunX2 or Osterix/Sp7 between the groups. However, MMP-2, IL-1, TNF-α, RANKL, and TRAP gene expressions were elevated in the challenged-osteoblast group (p<0.05). In conclusion, titanium alloy particles were shown to interfere with the growth, maturation, and functions of the bone marrow osteoblast progenitor cells. Particle-challenged osteoblasts appear to express mediators that regulate osteoclastogenesis and peri-prosthetic osteolysis.
Collapse
|
29
|
Low toxicity and unprecedented anti-osteoclast activity of a simple sulfur-containing gem-bisphosphonate: a comparative study. Eur J Med Chem 2013; 65:448-55. [PMID: 23748153 DOI: 10.1016/j.ejmech.2013.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 11/22/2022]
Abstract
Bisphosphonates (BPs) are key drugs for the treatment of bone resorption diseases like osteoporosis, Paget's disease and some forms of tumors. Recent findings underlined the importance of lipophilic N-containing BPs to ensure high biological activity. Herein we present some unprecedented results concerning the low toxicity and good anti-osteoclast activity of low molecular weight hydrophilic S-containing BPs. A series of S and N-containing BPs bearing aromatic and aliphatic substitution were prepared through Michael addition reaction between vinylidenebisphosphonate tetraethyl ester and the proper nucleophile under basic catalysis. S-containing BPs showed a generally low toxicity, determined with the neutral-red assay using the L929 cell line, and, in particular for an aliphatic one, a good biological activity assessed on primary cultures of human osteoclasts.
Collapse
|
30
|
De Pasquale D, Stea S, Beraudi A, Montesi M, Squarzoni S, Toni A. Ceramic debris in hip prosthesis: correlation between synovial fluid and joint capsule. J Arthroplasty 2013; 28:838-41. [PMID: 23489725 DOI: 10.1016/j.arth.2013.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/02/2013] [Accepted: 01/16/2013] [Indexed: 02/01/2023] Open
Abstract
Detection of ceramic particles in synovial fluids allows early diagnosis of ceramic damage, but there is no evidence of a relationship between ceramic debris in the articular space and in the joint capsule. The aim of the present study is to verify if the particles isolated in the synovial fluid are comparable with those stored in the capsular tissue. Twenty-one patients were enrolled. Both synovial fluid and capsular samples were collected during revision surgery and ceramic particles were isolated and analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. It resulted a significant correlation between the samples couples (18 out of 21). This study confirms that the synovial fluid analysis can give a clear definition of the presence of particles in the joint capsule.
Collapse
Affiliation(s)
- Dalila De Pasquale
- Medical Technology Laboratory, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Jiang Y, Jia T, Gong W, Wooley PH, Yang SY. Effects of Ti, PMMA, UHMWPE, and Co-Cr wear particles on differentiation and functions of bone marrow stromal cells. J Biomed Mater Res A 2013; 101:2817-25. [PMID: 24039045 DOI: 10.1002/jbm.a.34595] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/07/2012] [Accepted: 01/09/2013] [Indexed: 11/10/2022]
Abstract
This study investigates the roles of orthopedic biomaterial particles [Ti-alloy, poly(methyl methacrylate) (PMMA), ultrahigh-molecular-weight polyethylene (UHMWPE), Co-Cr alloy] on the differentiation and functions of bone marrow stromal cells (BMSCs). Cells were isolated from femurs of BALB/c mice and cultured in complete osteoblast-induction medium in presence of micron-sized biomaterial particles at various doses. 3-(4,5)-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and lactate dehydrogenase assay were performed for cell proliferation and cytotoxicity. Differentiation and function of osteoblasts were evaluated by alkaline phosphatase (ALP), osteocalcin, RANKL, OSX, and Runx2 expressions. Murine interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α in culture media were determined by enzyme-linked immunosorbent assay. Challenge with low doses of Ti, UHMWPE, or Co-Cr particles markedly promoted the bone marrow cell proliferation while high dose of Co-Cr significantly inhibited cell growth (p < 0.05). Cells challenged with low dose of PMMA or UHMWPE particles (0.63 mg/mL) exhibited strong ALP activity, whereas Ti and Co-Cr groups showed minimal effects (p < 0.05). UHMWPE and Ti particles also promoted higher expression of proinflammatory cytokines. Real-time polymerase chain reaction data suggested that cells treated with low dose (0.5 mg/mL) particles resulted in distinctly diminished RANKL expression compared to those exposed to high concentrated (3 mg/mL) particles. In conclusion, various types of wear debris particles behaved differently in the differentiation, maturation, and functions of osteogenic cells; and the particulate debris-interacted BMSCs may play an important role in the pathogenesis and process of the debris-associated aseptic prosthetic loosening.
Collapse
Affiliation(s)
- Yunpeng Jiang
- Orthopaedic Research Institute, Via Christi Wichita Hospitals, Wichita, Kansas; Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China; Department of Biological Sciences, Wichita State University, Wichita, Kansas
| | | | | | | | | |
Collapse
|
32
|
Rao AJ, Nich C, Dhulipala LS, Gibon E, Valladares R, Zwingenberger S, Smith RL, Goodman SB. Local effect of IL-4 delivery on polyethylene particle induced osteolysis in the murine calvarium. J Biomed Mater Res A 2012; 101:1926-34. [PMID: 23225668 DOI: 10.1002/jbm.a.34486] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/04/2012] [Indexed: 02/01/2023]
Abstract
Wear particles generated with use of total joint replacements incite a chronic macrophage-mediated inflammatory reaction, which leads to implant failure. Macrophage activation may be polarized into two states, with an M1 proinflammatory state dominating an alternatively activated M2 anti-inflammatory state. We hypothesized that IL-4, an activator of M2 macrophages, could modulate polyethylene (PE) particle-induced osteolysis in an experimental murine model. Four animal groups included (a) calvarial saline injection with harvest at 14 days (b) single calvarial injection of PE particles subcutaneously (SC) without IL-4 (c) PE particles placed as in (b), then IL-4 given SC for 14 consecutive days and (d) PE particles as in (b) then IL-4 beginning 7 days after particle injection for 7 days. The calvarial bone volume to total tissue volume was measured using microCT and histomorphometry. Calvaria were cultured for 24 h to assess release of RANKL, OPG, TNF-α, and IL-1ra and isolation and identification of M1 and M2 specific proteins. MicroCT and histomorphometric analysis showed that bone loss was significantly decreased following IL-4 administration to PE treated calvaria for both 7 and 14 days. Western blot analysis showed an increased M1/M2 ratio in the PE treated calvaria, which decreased with addition of IL-4. Cytokine analysis showed that the RANKL/OPG ratio and TNF-α/IL-1ra ratio decreased in PE-treated calvaria following IL-4 addition for 14 days. IL-4 delivery mitigated PE particle-induced osteolysis through macrophage polarization. Modulation of macrophage polarization is a potential treatment strategy for wear particle induced periprosthetic osteolysis.
Collapse
Affiliation(s)
- Allison J Rao
- Department of Orthopaedic Surgery, Orthopaedic Research Laboratories, Stanford University School of Medicine, Edwards R116, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Significance of nano- and microtopography for cell-surface interactions in orthopaedic implants. J Biomed Biotechnol 2012; 2007:69036. [PMID: 18274618 PMCID: PMC2233875 DOI: 10.1155/2007/69036] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Accepted: 08/05/2007] [Indexed: 01/12/2023] Open
Abstract
Cell-surface interactions play a crucial role for biomaterial application in orthopaedics. It is evident that not only the chemical composition of solid substances influence cellular adherence, migration, proliferation and differentiation but also the surface topography of a biomaterial. The progressive application of nanostructured surfaces in medicine has gained increasing interest to improve the cytocompatibility and osteointegration of orthopaedic implants. Therefore, the understanding of cell-surface interactions is of major interest for these substances. In this review, we elucidate the principle mechanisms of nano- and microscale cell-surface interactions in vitro for different cell types onto typical orthopaedic biomaterials such as titanium (Ti), cobalt-chrome-molybdenum (CoCrMo) alloys, stainless steel (SS), as well as synthetic polymers (UHMWPE, XLPE, PEEK, PLLA). In addition, effects of nano- and microscaled particles and their significance in orthopaedics were reviewed. The significance for the cytocompatibility of nanobiomaterials is discussed critically.
Collapse
|
34
|
Bortolini O, Fantin G, Fogagnolo M, Rossetti S, Maiuolo L, Di Pompo G, Avnet S, Granchi D. Synthesis, characterization and biological activity of hydroxyl-bisphosphonic analogs of bile acids. Eur J Med Chem 2012; 52:221-9. [DOI: 10.1016/j.ejmech.2012.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 12/01/2022]
|
35
|
Cenni E, Avnet S, Granchi D, Fotia C, Salerno M, Micieli D, Sarpietro MG, Pignatello R, Castelli F, Baldini N. The effect of poly(d,l-lactide-co-glycolide)-alendronate conjugate nanoparticles on human osteoclast precursors. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1285-300. [PMID: 21781381 DOI: 10.1163/092050611x580373] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nanoparticles (NPs) formed from polymers conjugated with bisphosphonates (BPs) allow the bone targeting of loaded drugs, such as doxorubicin, for the treatment of skeletal tumours. The additional antiosteoclastic effect of the conjugated BP could contribute to the inhibition of tumour-associated bone degradation. With this aim, we have produced NPs made of poly(d,l-lactide-co-glycolide) (PLGA) conjugated with alendronate (ALE). To show if ALE retained the antiosteoclastic properties after the conjugation with PLGA and the production of NPs, we treated human osteoclasts, derived from circulating precursors, with PLGA-ALE NPs and compared the effects on actin ring generation, apoptosis and type-I collagen degradation with those of free ALE and with NPs made of pure PLGA. PLGA-ALE NPs disrupted actin ring, induced apoptosis and inhibited collagen degradation. Unexpectedly, also NPs made of pure PLGA showed similar effects. Therefore, we cannot exclude that in addition to the observed antiosteoclastic activity dependent on ALE in PLGA-ALE NPs, there was also an effect due to pure PLGA. Still, as PLGA-ALE NPs are intended for the loading with drugs for the treatment of osteolytic bone metastases, the additional antiosteoclastic effect of PLGA-ALE NPs, and even of PLGA, may contribute to the inhibition of the disease-associated bone degradation.
Collapse
Affiliation(s)
- Elisabetta Cenni
- a Laboratorio di Fisiopatologia Ortopedica e Medicina Rigenerativa, Istituto Ortopedico Rizzoli , via di Barbiano 1/10 , 40136 , Bologna , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang YF, Zheng Y, Qin L. The potential biohazards of nanosized wear particles at bone-prosthesis interface. ASIA-PAC J CHEM ENG 2011. [DOI: 10.1002/apj.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Shimizu S, Okuda N, Kato N, Rittling SR, Okawa A, Shinomiya K, Muneta T, Denhardt DT, Noda M, Tsuji K, Asou Y. Osteopontin deficiency impairs wear debris-induced osteolysis via regulation of cytokine secretion from murine macrophages. ACTA ACUST UNITED AC 2010; 62:1329-37. [PMID: 20155835 DOI: 10.1002/art.27400] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To investigate the molecular mechanisms underlying particle-induced osteolysis, we focused on osteopontin (OPN), a cytokine and cell-attachment protein that is associated with macrophage chemoattractant and osteoclast activation. METHODS We compared OPN protein levels in human periprosthetic osteolysis tissues with those in osteoarthritis (OA) synovial tissues. To investigate the functions of OPN during particle-induced osteolysis in vivo, titanium particles were implanted onto the calvaria of OPN-deficient mice and their wild-type (WT) littermates. Mice were killed on day 10 and evaluated immunohistologically. The effects of OPN deficiency on the secretion of inflammatory cytokines were examined using cultured bone marrow-derived macrophages (BMMs). BMMs from OPN-deficient and WT mice were cultured with titanium particles for 12 hours, and the concentrations of inflammatory cytokines in the conditioned media were measured by enzyme-linked immunosorbent assay. RESULTS Expression of OPN protein was enhanced in human periprosthetic osteolysis tissues as compared with OA synovial tissues. In the particle-induced model of osteolysis of the calvaria, bone resorption was significantly suppressed by OPN deficiency via inhibition of osteoclastogenesis, whereas an inflammatory reaction was observed regardless of the genotype. Results of immunostaining indicated that OPN protein was highly expressed in the membrane and bone surface at the area of bone resorption in WT mice. When BMMs were exposed to titanium particles, the concentration of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1alpha (IL-1alpha), IL-1beta, and IL-6, as well as chemotactic factors, such as monocyte chemoattractant protein 1 and macrophage inflammatory protein 1alpha, in the conditioned medium were significantly reduced by OPN deficiency. Whereas phagocytic activity of BMMs was not attenuated by OPN deficiency, phagocytosis-mediated NF-kappaB activation was impaired in OPN-deficient BMMs. These data indicated that OPN was implicated in the development of particle-induced osteolysis via the orchestration of pro-/antiinflammatory cytokines secreted from macrophages. CONCLUSION OPN plays critical roles in wear debris-induced osteolysis, suggesting that OPN is a candidate therapeutic target for periprosthetic osteolysis.
Collapse
Affiliation(s)
- Sadanori Shimizu
- International Research Center for Molecular Science in Tooth and Bone Diseases, and Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cadosch D, Gautschi OP, Chan E, Simmen HP, Filgueira L. Titanium induced production of chemokines CCL17/TARC and CCL22/MDC in human osteoclasts and osteoblasts. J Biomed Mater Res A 2010; 92:475-83. [PMID: 19205012 DOI: 10.1002/jbm.a.32390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is increasing evidence that titanium (Ti(IV)) ions are released from orthopedic implants and play a role in aseptic loosening. This study aimed to investigate whether titanium induces expression of chemokines and cytokines that are important in osteoclastogenesis in human osteoclasts and osteoblasts. Incubation of those cells with 1 muM Ti(IV) significantly upregulated expression of CCL17/TARC and CCL22/MDC, RANK-L, M-CSF and pro-inflammatory cytokines as determined by quantitative real-time PCR and ELISA assays. Additionally, flow cytometry was used to show Ti(IV) related increased expression of CCR4, the cognate receptor for CCL17 and CCL22 in challenged osteoclast precursors. These results strongly suggest that Ti(IV) ions play a role in the recruitment of osteoclast precursors to the bone-implant interface by increasing CCL17 and CCL22 expression and by upregulating their cognate receptor. Moreover the increased expression of RANK-L and M-CSF by osteoblasts together with increased levels of pro-inflammatory cytokines may enhance osteoclast differentiation and activity, and subsequently contribute to the pathomechanism of aseptic loosening.
Collapse
Affiliation(s)
- Dieter Cadosch
- School of Anatomy and Human Biology, University of Western Australia, Crawley, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
39
|
Drees P, Eckardt A, Gay RE, Gay S, Huber LC. [Molecular pathways in aseptic loosening of orthopaedic endoprosthesis]. ACTA ACUST UNITED AC 2008; 53:93-103. [PMID: 18601617 DOI: 10.1515/bmt.2008.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Operative joint replacement to treat disabling joint conditions secondary to degenerative and inflammatory arthritides has become one of the most efficacious and cost-effective procedures to relieve pain and restore joint function. However, prosthetic implants are not built to last forever and osteolysis and aseptic loosening has been associated with prosthetic arthroplasties since their introduction. The functional life of a synthetic joint is influenced by many factors including the material of the implant, operation procedures and the surgeon involved, as well as patient-related factors. Although promising developments have been achieved in this field, more than 10% of all implants still have to undergo operative revision within 15 years after the initial operation. Failure due to sepsis, fractures and dislocations has become rare; premature loosening of implants on the other hand is becoming much more important. Prosthetic loosening without concurrent infection or trauma is called aseptic loosening. It is generally accepted that small particles ("wear debris") and activated macrophages play a key role in aseptic loosening. The pathophysiology of this condition, however, is still not very well characterized. In this article, we review the molecular mechanisms and signal pathways that were unravelled as responsible factors for loosening orthopaedic implants. Finally, we discuss possible novel strategies for future therapeutic approaches.
Collapse
Affiliation(s)
- Philipp Drees
- Orthopädische Klinik und Poliklinik der Johannes-Gutenberg-Universität, Mainz, Deutschland.
| | | | | | | | | |
Collapse
|
40
|
What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? J Am Acad Orthop Surg 2008; 16 Suppl 1:S42-8. [PMID: 18612013 PMCID: PMC2714366 DOI: 10.5435/00124635-200800001-00010] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
New clinical and basic science data on the cellular and molecular mechanisms by which wear particles stimulate the host inflammatory response have provided deeper insight into the pathophysiology of periprosthetic bone loss. Interactions among wear particles, macrophages, osteoblasts, bone marrow-derived mesenchymal stem cells, fibroblasts, endothelial cells, and T cells contribute to the production of pro-inflammatory and pro-osteoclastogenic cytokines such as TNF-alpha, RANKL, M-SCF, PGE2, IL-1, IL-6, and IL-8. These cytokines not only promote osteoclastogenesis but interfere with osteogenesis led by osteoprogenitor cells. Recent studies indicate that genetic variations in TNF-alpha, IL-1, and FRZB can result in subtle changes in gene function, giving rise to altered susceptibility or severity for periprosthetic inflammation and bone loss. Continuing research on the biologic effects and mechanisms of action of wear particles will provide a rational basis for the development of novel and effective ways of diagnosis, prevention, and treatment of periprosthetic inflammatory bone loss.
Collapse
|
41
|
Koulouvaris P, Ly K, Ivashkiv LB, Bostrom MP, Nestor BJ, Sculco TP, Purdue PE. Expression profiling reveals alternative macrophage activation and impaired osteogenesis in periprosthetic osteolysis. J Orthop Res 2008; 26:106-16. [PMID: 17729302 DOI: 10.1002/jor.20486] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interactions between periprosthetic cells and prosthetic wear debris have been recognized as an important event in the development of osteolysis and aseptic loosening. Although the ability of wear debris to activate pro-inflammatory macrophage signaling has been documented, the full repertoire of macrophage responses to wear particles has not been established. Here, we examined the involvement of alternative macrophage activation and defective osteogenic signaling in osteolysis. Using real-time RT-PCR analysis of periprosthetic soft tissue from osteolysis patients, we detected elevated levels of expression of alternative macrophage activation markers (CHIT1, CCL18), chemokines (IL8, MIP1 alpha) and markers of osteoclast precursor cell differentiation and multinucleation (Cathepsin K, TRAP, DC-STAMP) relative to osteoarthritis controls. The presence of cathepsin K positive multinuclear cells was confirmed by immunohistochemistry. Reduced expression levels of the osteogenic signaling components BMP4 and FGF18 were detected. Expression levels of TNF-alpha, IL-6, and RANKL were unchanged, while the anti-osteoclastogenic cytokine OPG was reduced in osteolysis patients, resulting in elevated RANKL:OPG ratios. In vitro studies confirmed the role of particulate debris in alternative macrophage activation and inhibition of osteogenic signaling. Taken together, these results suggest involvement in osteolysis of alternative macrophage activation, accompanied by elevated levels of various chemokines. Increased recruitment and maturation of osteoclast precursors is also observed, as is reduced osteogenesis. These findings provide new insights into the molecular pathogenesis of osteolysis, and identify new potential candidate markers for disease progression and therapeutic targeting.
Collapse
Affiliation(s)
- Panagiotis Koulouvaris
- Osteolysis Research Laboratory, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Stea S, Visentin M, Bordini B, Traina F, Squarzoni S, Toni A. A case report of fracture of ceramic head in total hip arthroplasty: histological and biochemical features of perimplant tissues. Int J Artif Organs 2007; 29:800-8. [PMID: 16969758 DOI: 10.1177/039139880602900810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors analyzed the case of a patient with a non-cemented hip prosthesis with a ceramic-ceramic coupling. As a consequence of trauma the head fractured. Although the patient could feel the joint grinding, there was no pain and he continued daily living activities for nearly six months, which led to marked wearing of the ceramic head. SEM analysis with microprobe showed 'planed' surfaces on the ceramic head, suggesting repeated movements between the fractured components. Inside the cone of the head, signs of TiAlV, which is an alloy of the prosthetic stem, could be seen. Periprosthetic tissues were packed with ceramic wear particles of sizes ranging between 0.2 and 10 microns, according to the harvest site. Metal and mixed particles were also found. IL1, IL6, IL8 and IL10 assays in the synovial liquid confirmed the inflammatory state and a modest induction of bone resorption, which was less than that observed in patients with loosened metal-polyethylene couplings. The humoral picture was compatible with the radiological aspect, which did not show marked signs of bone resorption. In revision surgery both ceramic components were replaced by a metal head and polyethylene liner. The clinical outcome after 12 months was very good.
Collapse
Affiliation(s)
- S Stea
- Medical Technology Laboratory, Rizzoli Orthopaedic Institutes, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Goodman SB, Ma T, Chiu R, Ramachandran R, Smith RL. Effects of orthopaedic wear particles on osteoprogenitor cells. Biomaterials 2006; 27:6096-101. [PMID: 16949151 DOI: 10.1016/j.biomaterials.2006.08.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 08/02/2006] [Indexed: 01/14/2023]
Abstract
Wear particles from total joint arthroplasties are constantly being generated throughout the lifetime of an implant. Since mesenchymal stem cells and osteoprogenitors from the bone marrow are the precursors of osteoblasts, the reaction of these cells to orthopaedic wear particles is critical to both initial osseointegration of implants and ongoing regeneration of the periprosthetic bed. Particles less than 5 microm can undergo phagocytosis by mature osteoblasts, with potential adverse effects on cellular viability, proliferation and function. The specific effects are dependent on particle composition and dose. Metal and polymer particles in non-toxic doses stimulate pro-inflammatory factor release more than ceramic particles of a similar size. The released factors inhibit markers of bone formation and are capable of stimulating osteoclast-mediated bone resorption. Mesenchymal stem cells and osteoprogenitors are also profoundly affected by wear particles. Titanium and polymethylmethacrylate particles inhibit bone cell viability and proliferation, and downregulate markers of bone formation in a dose- and time-dependent manner. Future studies should delineate the molecular mechanisms by which particles adversely affect mesenchymal stems cells and the bone cell lineage and provide strategies to modulate these effects.
Collapse
Affiliation(s)
- Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, #R144, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305-5326, USA.
| | | | | | | | | |
Collapse
|
44
|
Koreny T, Tunyogi-Csapó M, Gál I, Vermes C, Jacobs JJ, Glant TT. The role of fibroblasts and fibroblast-derived factors in periprosthetic osteolysis. ACTA ACUST UNITED AC 2006; 54:3221-32. [PMID: 17009257 DOI: 10.1002/art.22134] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE This study was undertaken to investigate how fibroblasts respond to stimulation with particulate wear debris and/or conditioned media obtained from pathologic tissue, and whether these activated fibroblasts express compounds that are involved in bone resorption. METHODS Conditioned media from explant cultures of synovial tissue, periprosthetic soft tissue (interface membranes), titanium particles, and proinflammatory cytokines were used to stimulate fibroblasts. RNase protection assay was used to measure altered gene expression, and enzyme-linked immunosorbent assay, Western blot hybridization, and flow cytometry were used to determine fibroblast protein expression. Tartrate-resistant acid phosphatase staining was used to identify multinucleated osteoclast-like cells. RESULTS The most dominant compounds measured in the conditioned media from interface membranes were tumor necrosis factor alpha (TNFalpha), monocyte chemoattractant protein 1 (MCP-1), interleukin-1beta (IL-1beta), IL-6, IL-8, and vascular endothelial growth factor. Fibroblasts phagocytosed particulate wear debris and responded to cytokine/chemokine stimulation. The most prominent up-regulated genes and proteins secreted by fibroblasts in response to stimulation were matrix metalloproteinase 1, MCP-1, IL-1beta, IL-6, IL-8, cyclooxygenase 1 (COX-1), COX-2, leukemia inhibitory factor 1, transforming growth factor beta1 (TGFbeta1), and TGFbeta receptor type I. In addition, interface membrane fibroblasts expressed RANKL and osteoprotegerin in response to stimulation with conditioned media, TNFalpha, or IL-1beta. Stimulated fibroblasts cocultured with bone marrow cells in the presence of macrophage colony-stimulating factor induced osteoclastogenesis. CONCLUSION Interface membrane fibroblasts respond directly to particulate wear debris, possibly via phagocytosis, expressing proinflammatory cytokines and RANKL. Thus, these cells may be actively involved in osteoclastogenesis and pathologic (periprosthetic) bone resorption.
Collapse
Affiliation(s)
- Tamas Koreny
- Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
45
|
Sawajiri M, Nomura Y, Bhawal UK, Nishikiori R, Okazaki M, Mizoe J, Tanimoto K. Different effects of carbon ion and γ-irradiation on expression of receptor activator of NF-kB ligand in MC3T3-E1 osteoblast cells. Bull Exp Biol Med 2006; 142:618-24. [PMID: 17415477 DOI: 10.1007/s10517-006-0433-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We investigated the effects of carbon ion and gamma-irradiation on osteoblastic MC3T3-E1 cells by comparing mRNA expression levels for RANKL and osteoprotegerin by RT-PCR. MC3T3-E1 cells were irradiated with 2, 4, or 6 Gy of carbon ions or gamma-rays, and total RNA was harvested 1, 2, 3, 5, or 7 days after irradiation. The RANKL mRNA/OPG mRNA ratio in carbon ion-irradiated MC3T3-E1 cells was lower, while in gamma-irradiated MC3T3-E1 cells this ratio was higher than in non-irradiated cells. To evaluate osteoclastogenesis of MC3T3-E1 cells, carbon ion- or gamma-irradiated cells were co-cultured with non-irradiated cells from murine bone marrow. Staining for tartrate-resistant acid phosphatase (TRAP) in co-cultures showed that carbon ion irradiation suppressed osteoclastogenesis. This result is consistent with the lower RANKL/OPG mRNA ratio for carbon ion-irradiated cells. These results suggest that carbon ion irradiation acts primarily on osteoblastic cells, leading to a decrease in the RANKL/OPG mRNA ratio. This effect, in turn, leads to a decrease in osteoclastogenesis and osteoclast activity, which results in an increase in bone volume.
Collapse
Affiliation(s)
- Masahiko Sawajiri
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Avnet S, Lamolinara A, Zini N, Solimando L, Quacquaruccio G, Granchi D, Maraldi NM, Giunti A, Baldini N. Effects of antisense mediated inhibition of cathepsin K on human osteoclasts obtained from peripheral blood. J Orthop Res 2006; 24:1699-708. [PMID: 16795033 DOI: 10.1002/jor.20209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cathepsin K is a cystein protease that displays a proteolytic activity against Type I collagen and is abundantly and selectively expressed in osteoclasts where it plays a critical role in bone degradation. Its direct role in bone tissue has been defined by knock-out mice studies and inhibiting strategies in animals models. However, direct proof of cathepsin K function in human osteoclast model in vitro is lacking. The aim of this study is to analyze cathepsin K expression and localization in human osteoclasts obtained from peripheral blood and to examine cathepsin K function in these cells by antisense oligodeoxynucleotide (AS-ODN) strategy. AS-ODN was added to the culture of osteoclast precursors induced to differentiate by RANKL and M-CSF. AS-ODN treatment produced a significant down-regulation of cathepsin K mRNA (>80%) and protein expression, as verified respectively by Real-time PCR and by immunocytochemistry or Western blot. The cathepsin K inhibition caused an impairment of resorption activity as evaluated by a pit formation assay ( p = 0.045) and by electron microscopy, while the acidification process was unaffected. We demonstrated that antisense strategies against cathepsin K are selectively effective to inhibit resorption activity in human osteoclasts, like in animal models.
Collapse
Affiliation(s)
- Sofia Avnet
- Laboratory for Pathophysiology, Istituti Ortopedici Rizzoli, v. di barbiano 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Granchi D, Pellacani A, Spina M, Cenni E, Savarino LM, Baldini N, Giunti A. Serum levels of osteoprotegerin and receptor activator of nuclear factor-kappaB ligand as markers of periprosthetic osteolysis. J Bone Joint Surg Am 2006; 88:1501-9. [PMID: 16818976 DOI: 10.2106/jbjs.e.01038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous studies have suggested that the balance between receptor activator of nuclear factor-kappaB ligand (RANKL) and its decoy-receptor osteoprotegerin (OPG) in local tissue seems to play a crucial role in the loosening of the total hip replacement. The aim of this study was to evaluate whether the circulating levels of OPG and RANKL, as well as their ratio, could be different in patients with aseptic loosening compared with patients with stable implants. METHODS One hundred and twenty-eight subjects were recruited. They included thirty-nine patients with osteoarthritis who had not yet undergone total hip arthroplasty, thirty-three patients who had undergone total hip arthroplasty and had clinically and radiographically stable implants, thirty-six patients with aseptic loosening of total hip arthroplasty components, and twenty healthy volunteers. Serum levels of OPG and RANKL were measured with use of an immunoenzymatic method, and in each individual the OPG-to-RANKL ratio was calculated. RESULTS In every group, a significant correlation was detected between OPG concentration and age (r = 0.58, p < 0.0001), especially in individuals older than fifty years, while gender and underlying disease were not found to influence serum levels of the tested parameters. In comparison with the levels in healthy donors and patients with a stable total hip replacement, the serum levels of OPG were increased in the patients who had not yet had an arthroplasty, those with aseptic loosening of a total hip replacement, and those with a cemented total hip replacement. Moreover, the OPG serum level provided good diagnostic accuracy in detecting the implant failure. A correlation was found between the sum of the osteolytic areas seen radiographically around the femoral stem and the RANKL level (r = 0.38, p = 0.02) and the OPG-to-RANKL ratio (r = -0.29, p = 0.04). CONCLUSIONS An increase in OPG levels may reflect a protective mechanism of the skeleton to compensate for the osteolytic activity that occurs in severe osteoarthritis and in aseptic loosening. Prospective studies are needed to determine whether serum OPG levels could be used as markers for monitoring the stability of the implant, as well as for predicting aseptic loosening. LEVEL OF EVIDENCE Diagnostic study, Level III. See Instructions to Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Donatella Granchi
- Laboratory for Pathophysiology of Orthopedic Implants, Istituti Ortopedici Rizzoli, via di Barbiano 1/10,40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Okafor CC, Haleem-Smith H, Laqueriere P, Manner PA, Tuan RS. Particulate endocytosis mediates biological responses of human mesenchymal stem cells to titanium wear debris. J Orthop Res 2006; 24:461-73. [PMID: 16450379 DOI: 10.1002/jor.20075] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Continual loading and articulation cycles undergone by metallic (e.g., titanium) alloy arthroplasty prostheses lead to liberation of a large number of metallic debris particulates, which have long been implicated as a primary cause of periprosthetic osteolysis and postarthroplasty aseptic implant loosening. Long-term stability of total joint replacement prostheses relies on proper integration between implant biomaterial and osseous tissue, and factors that interfere with this integration are likely to cause osteolysis. Because multipotent mesenchymal stem cells (MSCs) located adjacent to the implant have an osteoprogenitor function and are critical contributors to osseous tissue integrity, when their functions or activities are compromised, osteolysis will most likely occur. To date, it is not certain or sufficiently confirmed whether MSCs endocytose titanium particles, and if so, whether particulate endocytosis has any effect on cellular responses to wear debris. This study seeks to clarify the phenomenon of titanium endocytosis by human MSCs (hMSCs), and investigates the influence of endocytosis on their activities. hMSCs incubated with commercially pure titanium particles exhibited internalized particles, as observed by scanning electron microscopy and confocal laser scanning microscopy, with time-dependent reduction in the number of extracellular particles. Particulate endocytosis was associated with reduced rates of cellular proliferation and cell-substrate adhesion, suppressed osteogenic differentiation, and increased rate of apoptosis. These cellular effects of exposure to titanium particles were reduced when endocytosis was inhibited by treatment with cytochalasin D, and no significant effect was seen when hMSCs were treated only with conditioned medium obtained from particulate-treated cells. These findings strongly suggest that the biological responses of hMSCs to wear debris are triggered primarily by the direct endocytosis of titanium particulates, and not mediated by secreted soluble factors. In this manner, therapeutical approaches that suppress particle endocytosis could reduce the bioreactivity of hMSCs to particulates, and enhance long-term orthopedic implant prognosis by minimizing wear-debris periprosthethic osteolysis.
Collapse
Affiliation(s)
- Chukwuka C Okafor
- Cartilage Biology and Orthopaedics Branch, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Building 50, Room 1503, MSC8022, Department of Health and Human Services, Bethesda, Maryland 20892-8022, USA
| | | | | | | | | |
Collapse
|
49
|
Rouahi M, Champion E, Hardouin P, Anselme K. Quantitative kinetic analysis of gene expression during human osteoblastic adhesion on orthopaedic materials. Biomaterials 2006; 27:2829-44. [PMID: 16427124 DOI: 10.1016/j.biomaterials.2006.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
Little information was found in the literature about the expression on hydroxyapatite (HA) materials of genes specific of cellular adhesion molecules although more were found on titanium-based substrates. Hence, the goal of this work was to study by a kinetic approach from 30 min to 4 days the adhesion of Saos-2 cells on microporous (mHA) and non-microporous hydroxyapatite (pHA) in comparison to polished titanium. Our strategy associated the visualization of adhesion proteins inside the cells by immunohistochemistry and the quantitative expression of genes at mRNA level by real-time PCR. The cell morphology was assessed using scanning electron microscopy and the number of cells thanks to biochemical techniques. The cellular attachment was the highest on mHA from 30 min to 24 h although the cell growth on mHA was the lowest after 4 days. Generally, the Saos-2 osteoblastic cells morphology on mHA was radically different than on other surfaces with the particularity of the cytoplasmic edge, which appeared un-distinguishable from the surface. The revelation by specific antibodies of proteins of the cytoskeleton (actin) and the focal adhesions (FAK, phosphotyrosine) confirmed that adhesion and spreading were different on the 3 materials. The actin stress fibres were less numerous and shorter on mHA ceramics. Cells had more focal contacts after 4 h on mHA compared to other substrates but less after 24 h. The highest values of total proteins were extracted from mHA at 0.5 and 24 h and from pHA at 1, 4, and 96 h. The alphav and beta1 integrin, actin, FAK, and ERK gene expression were found to be different with adhesion time and with materials. C-jun expression was comparable on mHA, titanium and plastic but was largely higher than on pHA at 0.5 and 1 h. On the contrary, c-fos expression was the highest on pHA after 0.5 h and the lowest after 1h. This difference between c-fos and c-jun expression on pHA after 0.5 h could be related to the fact that these two genes may differ in their signalling pathways. The expression of the alkaline phosphatase gene after 4 days was lower on mHA compared to other materials demonstrating that the microstructure of the mHA ceramic was not favourable to Saos-2 cells differentiation. Finally, it was demonstrated in this study that HA and titanium surfaces influence as well gene expression at early times of adhesion as the synthesis of adhesion proteins but also proliferation and differentiation phases. Indeed, the signal transduction pathways involved in adhesion of Saos-2 cells on HA and titanium were confirmed by the sequential expression of alphav and beta1 integrins, FAK, and ERK genes followed by the expression of c-jun and c-fos genes for proliferation and alkaline phosphatase gene for differentiation.
Collapse
Affiliation(s)
- Myriam Rouahi
- Laboratoire de Recherche sur les Biomatériaux et Biotechnologies, LR2B, Quai Robert Masset, Bassin Napoléon, BP 120 62327 Boulogne sur mer, France
| | | | | | | |
Collapse
|